1
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Wetzstein N, Diricks M, Anton TB, Andres S, Kuhns M, Kohl TA, Schwarz C, Lewin A, Kehrmann J, Kahl BC, Schmidt A, Zimmermann S, Jansson MK, Baron SA, Schulthess B, Hogardt M, Friesen I, Niemann S, Wichelhaus TA. Clinical and genomic features of Mycobacterium avium complex: a multi-national European study. Genome Med 2024; 16:86. [PMID: 38982539 PMCID: PMC11232273 DOI: 10.1186/s13073-024-01359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The Mycobacterium avium complex (MAC) comprises the most frequent non-tuberculous mycobacteria (NTM) in Central Europe and currently includes twelve species. M. avium (MAV), M. intracellulare subsp. intracellulare (MINT), and M. intracellulare subsp. chimaera (MCH) are clinically most relevant. However, the population structure and genomic landscape of MAC linked with potential pathobiological differences remain little investigated. METHODS Whole genome sequencing (WGS) was performed on a multi-national set of MAC isolates from Germany, France, and Switzerland. Phylogenetic analysis was conducted, as well as plasmids, resistance, and virulence genes predicted from WGS data. Data was set into a global context with publicly available sequences. Finally, detailed clinical characteristics were associated with genomic data in a subset of the cohort. RESULTS Overall, 610 isolates from 465 patients were included. The majority could be assigned to MAV (n = 386), MCH (n = 111), and MINT (n = 77). We demonstrate clustering with less than 12 SNPs distance of isolates obtained from different patients in all major MAC species and the identification of trans-European or even trans-continental clusters when set into relation with 1307 public sequences. However, none of our MCH isolates clustered closely with the heater-cooler unit outbreak strain Zuerich-1. Known plasmids were detected in MAV (325/1076, 30.2%), MINT (62/327, 19.0%), and almost all MCH-isolates (457/463, 98.7%). Predicted resistance to aminoglycosides or macrolides was rare. Overall, there was no direct link between phylogenomic grouping and clinical manifestations, but MCH and MINT were rarely found in patients with extra-pulmonary disease (OR 0.12 95% CI 0.04-0.28, p < 0.001 and OR 0.11 95% CI 0.02-0.4, p = 0.004, respectively) and MCH was negatively associated with fulfillment of the ATS criteria when isolated from respiratory samples (OR 0.28 95% CI 0.09-0.7, p = 0.011). With 14 out of 43 patients with available serial isolates, co-infections or co-colonizations with different strains or even species of the MAC were frequent (32.6%). CONCLUSIONS This study demonstrates clustering and the presence of plasmids in a large proportion of MAC isolates in Europe and in a global context. Future studies need to urgently define potential ways of transmission of MAC isolates and the potential involvement of plasmids in virulence.
Collapse
Affiliation(s)
- Nils Wetzstein
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital, Theodor-Stern-Kai 7, FrankfurtFrankfurt Am Main, 60590, Germany.
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
| | - Margo Diricks
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Thomas B Anton
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital, Theodor-Stern-Kai 7, FrankfurtFrankfurt Am Main, 60590, Germany
| | - Sönke Andres
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Martin Kuhns
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Carsten Schwarz
- Division of Cystic Fibrosis, CF Center Westbrandenburg, Campus Potsdam, Klinikum Potsdam, Potsdam, Germany
| | - Astrid Lewin
- Unit Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Annika Schmidt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz K Jansson
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Sophie A Baron
- Faculté de Médecine Et de Pharmacie, IRD, APHM, Aix Marseille Univ, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Bettina Schulthess
- National Reference Laboratory for Mycobacteria, Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, Goethe University, University Hospital, FrankfurtFrankfurt Am Main, Germany
- German National Consiliary Laboratory On Cystic Fibrosis Bacteriology, Frankfurt Am Main, Germany
| | - Inna Friesen
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, Goethe University, University Hospital, FrankfurtFrankfurt Am Main, Germany
| |
Collapse
|
3
|
Akter S, Kamal E, Schwarz C, Lewin A. Gene knock-out in Mycobacterium abscessus using Streptococcus thermophilus CRISPR/Cas. J Microbiol Methods 2024; 220:106924. [PMID: 38548070 DOI: 10.1016/j.mimet.2024.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
The CRISPRi system using dCas9Sth1 from Streptococcus thermophilus developed for Mycobacterium tuberculosis and M. smegmatis was modified to allow gene knock-out in M. abscessus. Efficacy of the knock-out system was evaluated by applying deletions and insertions to the mps1 gene. A comparative genomic analysis of mutants and wild type validated the target specificity.
Collapse
Affiliation(s)
- Suriya Akter
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Elisabeth Kamal
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany.
| | - Carsten Schwarz
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.
| | - Astrid Lewin
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
4
|
De K, Belardinelli JM, Pandurangan AP, Ehianeta T, Lian E, Palčeková Z, Lam H, Gonzalez-Juarrero M, Bryant JM, Blundell TL, Parkhill J, Floto RA, Lowary TL, Wheat WH, Jackson M. Lipoarabinomannan modification as a source of phenotypic heterogeneity in host-adapted Mycobacterium abscessus isolates. Proc Natl Acad Sci U S A 2024; 121:e2403206121. [PMID: 38630725 PMCID: PMC11046677 DOI: 10.1073/pnas.2403206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.
Collapse
Affiliation(s)
- Kavita De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Juan M. Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Arun Prasad Pandurangan
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
| | - Teddy Ehianeta
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
| | - Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Ha Lam
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Josephine M. Bryant
- Parasites and Microbes Programme, Wellcome Sanger Institute, HinxtonCB10 1SA, United Kingdom
| | - Tom L. Blundell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - R. Andres Floto
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
- Molecular Immunity Unit, Department of Medicine, Medical Research Council-Laboratory of Molecular Biology, University of Cambridge, Trumpington, CambridgeCB2 0QH, United Kingdom
- University of Cambridge Centre for AI in Medicine, Cambridge CB3 0WA, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, CambridgeCB2 0AY, United Kingdom
| | - Todd L. Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei106, Taiwan
| | - William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| |
Collapse
|
5
|
Buenestado-Serrano S, Martínez-Lirola M, Herranz-Martín M, Esteban J, Broncano-Lavado A, Molero-Salinas A, Sanz-Pérez A, Blázquez J, Ruedas-López A, Toro C, López-Roa P, Domingo D, Zamarrón E, Ruiz Serrano MJ, Muñoz P, Pérez-Lago L, García de Viedma D. Microevolution, reinfection and highly complex genomic diversity in patients with sequential isolates of Mycobacterium abscessus. Nat Commun 2024; 15:2717. [PMID: 38548737 PMCID: PMC10979023 DOI: 10.1038/s41467-024-46552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
Mycobacterium abscessus is an opportunistic, extensively drug-resistant non-tuberculous mycobacterium. Few genomic studies consider its diversity in persistent infections. Our aim was to characterize microevolution/reinfection events in persistent infections. Fifty-three sequential isolates from 14 patients were sequenced to determine SNV-based distances, assign resistance mutations and characterize plasmids. Genomic analysis revealed 12 persistent cases (0-13 differential SNVs), one reinfection (15,956 SNVs) and one very complex case (23 sequential isolates over 192 months), in which a first period of persistence (58 months) involving the same genotype 1 was followed by identification of a genotype 2 (76 SNVs) in 6 additional alternating isolates; additionally, ten transient genotypes (88-243 SNVs) were found. A macrolide resistance mutation was identified from the second isolate. Despite high diversity, the genotypes shared a common phylogenetic ancestor and some coexisted in the same specimens. Genomic analysis is required to access the true intra-patient complexity behind persistent infections involving M. abscessus.
Collapse
Affiliation(s)
- Sergio Buenestado-Serrano
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Escuela de Doctorado, Universidad de Alcalá, Plaza de San Diego, s/n, 28801, Alcalá de Henares, Madrid, Spain
| | | | - Marta Herranz-Martín
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
| | - Jaime Esteban
- Servicio de Microbiología, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, Hospital Universitario La Fundación Jiménez Díaz, Av. de los Reyes Católicos, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas - CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Broncano-Lavado
- Servicio de Microbiología, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, Hospital Universitario La Fundación Jiménez Díaz, Av. de los Reyes Católicos, 28040, Madrid, Spain
| | - Andrea Molero-Salinas
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
| | - Amadeo Sanz-Pérez
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
| | - Jesús Blázquez
- Department of Microbial Biotechnology, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), C/ Darwin, 3, Campus de la Universidad Autónoma-Cantoblanco, 28049, Madrid, Spain
| | - Alba Ruedas-López
- Microbiología y Enfermedades Infecciosas, Hospital Universitario 12 de Octubre, Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Carlos Toro
- Servicio de Microbiología y Parasitología, Hospital Universitario La Paz - IdiPAZ, Madrid, Spain
| | - Paula López-Roa
- Microbiología y Enfermedades Infecciosas, Hospital Universitario 12 de Octubre, Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Diego Domingo
- Servicio de Microbiología, Instituto de Investigación Sanitaria, Hospital Universitario La Princesa, Calle de Diego de León, 62, 28006, Madrid, Spain
| | - Ester Zamarrón
- Servicio de Neumología, Hospital Universitario La Paz -IdiPAZ, Madrid, Spain
| | - María Jesús Ruiz Serrano
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias - CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Muñoz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias - CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina, Universidad Complutense, Av. Séneca, 2, 28040, Madrid, Spain
| | - Laura Pérez-Lago
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain.
| | - Darío García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain.
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias - CIBERES, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Oschmann-Kadenbach AM, Schaudinn C, Borst L, Schwarz C, Konrat K, Arvand M, Lewin A. Impact of Mycobacteroides abscessus colony morphology on biofilm formation and antimicrobial resistance. Int J Med Microbiol 2024; 314:151603. [PMID: 38246090 DOI: 10.1016/j.ijmm.2024.151603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Mycobacteroides abscessus is one of the most resistant bacteria so far known and causes severe and hard to treat lung infections in predisposed patients such as those with Cystic Fibrosis (CF). Further, it causes nosocomial infections by forming biofilms on medical devices or water reservoirs. An eye-catching feature of M. abscessus is the growth in two colony morphotypes. Depending on the presence or absence of glycopeptidolipids on the cell surface, it forms smooth or rough colonies. In this study, a porous glass bead biofilm model was used to compare biofilm formation, biofilm organization and biofilm matrix composition in addition to the antimicrobial susceptibility of M. abscessus biofilms versus suspensions of isogenic (smooth and rough) patient isolates. Both morphotypes reached the same cell densities in biofilms. The biofilm architecture, however, was dramatically different with evenly distributed oligo-layered biofilms in smooth isolates, compared to tightly packed, voluminous biofilm clusters in rough morphotypes. Biofilms of both morphotypes contained more total biomass of the matrix components protein, lipid plus DNA than was seen in corresponding suspensions. The biofilm mode of growth of M. abscessus substantially increased resistance to the antibiotics amikacin and tigecycline. Tolerance to the disinfectant peracetic acid of both morphotypes was increased when grown as biofilm, while tolerance to glutaraldehyde was significantly increased in biofilm of smooth isolates only. Overall, smooth colony morphotypes had more pronounced antimicrobial resistance benefit when growing as biofilm than M. abscessus showing rough colony morphotypes.
Collapse
Affiliation(s)
- Anna Maria Oschmann-Kadenbach
- Unit 14 Hospital Hygiene, Infection Prevention and Control, Robert Koch Institute, Seestr. 10, Berlin, Germany; Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Christoph Schaudinn
- Unit ZBS4 Advanced Light and Electron Microscopy, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Leonard Borst
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Carsten Schwarz
- CF Center Westbrandenburg, Division Cystic Fibrosis, Health and Medical University Potsdam and Clinic Westbrandenburg, Hebbelstraße 1, 14467 Potsdam, Germany
| | - Katharina Konrat
- Unit 14 Hospital Hygiene, Infection Prevention and Control, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Mardjan Arvand
- Unit 14 Hospital Hygiene, Infection Prevention and Control, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Astrid Lewin
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Seestr. 10, Berlin, Germany.
| |
Collapse
|
7
|
Belardinelli JM, Arora D, Avanzi C, Wheat WH, Bryant JM, Spencer JS, Blundell TL, Parkhill J, Floto RA, Jackson M. Clinically relevant mutations in the PhoR sensor kinase of host-adapted Mycobacterium abscessus isolates impact response to acidic pH and virulence. Microbiol Spectr 2023; 11:e0158823. [PMID: 37874174 PMCID: PMC10715180 DOI: 10.1128/spectrum.01588-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/14/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Difficult-to-treat pulmonary infections caused by nontuberculous mycobacteria of the Mycobacterium abscessus group have been steadily increasing in the USA and globally. Owing to the relatively recent recognition of M. abscessus as a human pathogen, basic and translational research to address critical gaps in diagnosis, treatment, and prevention of diseases caused by this microorganism has been lagging behind that of the better-known mycobacterial pathogen, Mycobacterium tuberculosis. To begin unraveling the molecular mechanisms of pathogenicity of M. abscessus, we here focus on the study of a two-component regulator known as PhoPR which we found to be under strong evolutionary pressure during human lung infection. We show that PhoPR is activated at acidic pH and serves to regulate a defined set of genes involved in host adaptation. Accordingly, clinical isolates from chronically infected human lungs tend to hyperactivate this regulator enabling M. abscessus to escape macrophage killing.
Collapse
Affiliation(s)
- Juan M. Belardinelli
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Divya Arora
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Charlotte Avanzi
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - William H. Wheat
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Josephine M. Bryant
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- University of Cambridge Centre for AI in Medicine, Cambridge, United Kingdom
| | - John S. Spencer
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Julian Parkhill
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R. Andres Floto
- Department of Medicine, Molecular Immunity Unit, University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- University of Cambridge Centre for AI in Medicine, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, United Kingdom
| | - Mary Jackson
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
8
|
Baird T, Bell S. Cystic Fibrosis-Related Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:847-860. [PMID: 37890921 DOI: 10.1016/j.ccm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Non-tuberculous mycobacteria (NTM) infection is a major cause of morbidity in people with cystic fibrosis (pwCF) with rates of infection increasing worldwide. Accurate diagnosis and decisions surrounding best management remain challenging. Treatment guidelines have been developed to assist physicians in managing NTM in pwCF, but involve prolonged and complex mycobacterial regimens, often associated with significant toxicity. Fortunately, current management and outcomes of NTM in CF are likely to evolve due to improved understanding of disease acquisition, better diagnostics, emerging antimycobacterial therapies, and the widespread uptake of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies.
Collapse
Affiliation(s)
- Timothy Baird
- Department of Respiratory Medicine, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia; Sunshine Coast Health Institute, Sunshine Coast, Queensland, Australia; University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Scott Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia; Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Queensland, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| |
Collapse
|
9
|
Shallom SJ, Tettelin H, Chandrasekaran P, Park IK, Agrawal S, Arora K, Sadzewicz L, Milstone AM, Aitken ML, Brown-Elliott BA, Wallace RJ, Sampaio EP, Niederweis M, Olivier KN, Holland SM, Zelazny AM. Evolution of Mycobacterium abscessus in the human lung: Cumulative mutations and genomic rearrangement of porin genes in patient isolates. Virulence 2023; 14:2215602. [PMID: 37221835 PMCID: PMC10243398 DOI: 10.1080/21505594.2023.2215602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Mycobacterium abscessus subspecies massiliense (M. massiliense) is increasingly recognized as an emerging bacterial pathogen, particularly in cystic fibrosis (CF) patients and CF centres' respiratory outbreaks. We characterized genomic and phenotypic changes in 15 serial isolates from two CF patients (1S and 2B) with chronic pulmonary M. massiliense infection leading to death, as well as four isolates from a CF centre outbreak in which patient 2B was the index case. RESULTS Comparative genomic analysis revealed the mutations affecting growth rate, metabolism, transport, lipids (loss of glycopeptidolipids), antibiotic susceptibility (macrolides and aminoglycosides resistance), and virulence factors. Mutations in 23S rRNA, mmpL4, porin locus and tetR genes occurred in isolates from both CF patients. Interestingly, we identified two different spontaneous mutation events at the mycobacterial porin locus: a fusion of two tandem porin paralogs in patient 1S and a partial deletion of the first porin paralog in patient 2B. These genomic changes correlated with reduced porin protein expression, diminished 14C-glucose uptake, slower bacterial growth rates, and enhanced TNF-α induction in mycobacteria-infected THP-1 human cells. Porin gene complementation of porin mutants partly restored 14C-glucose uptake, growth rate and TNF-α levels to those of intact porin strains. CONCLUSIONS We hypothesize that specific mutations accumulated and maintained over time in M. massiliense, including mutations shared among transmissible strains, collectively lead to more virulent, host adapted lineages in CF patients and other susceptible hosts.
Collapse
Affiliation(s)
- Shamira J. Shallom
- Microbiology Service, Department of Laboratory Medicine (DLM), Clinical Center, NIH, Bethesda, MD, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prabha Chandrasekaran
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - In Kwon Park
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Sonia Agrawal
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kriti Arora
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron M. Milstone
- Pediatric Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Moira L. Aitken
- Division of Pulmonary and Critical Care Medicine, University of Washington Medical Center, Seattle, WA, USA
| | | | - Richard J. Wallace
- Mycobacteria/Nocardia Laboratory, University of Texas Health Science Center, Tyler, TX, USA
| | - Elizabeth P. Sampaio
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | | | - Kenneth N. Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart Lung and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Adrian M. Zelazny
- Microbiology Service, Department of Laboratory Medicine (DLM), Clinical Center, NIH, Bethesda, MD, USA
| |
Collapse
|
10
|
Choi J, Keen EC, Wallace MA, Fishbein S, Prusa J, Zimbric M, Mejia-Chew CR, Mehta SB, Bailey TC, Caverly LJ, Burnham CAD, Dantas G. Genomic Analyses of Longitudinal Mycobacterium abscessus Isolates in a Multicenter Cohort Reveal Parallel Signatures of In-Host Adaptation. J Infect Dis 2023; 228:321-331. [PMID: 37254795 PMCID: PMC10420398 DOI: 10.1093/infdis/jiad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/18/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) are ubiquitous in the environment and an increasingly frequent cause of opportunistic infections. Mycobacterium abscessus complex (MABC) is one of the major NTM lung pathogens that disproportionately colonize and infect the lungs of individuals with cystic fibrosis (CF). MABC infection can persist for years, and antimicrobial treatment is frequently ineffective. METHODS We sequenced the genomes of 175 isolates longitudinally collected from 30 patients with MABC lung infection. We contextualized our cohort amidst the broader MABC phylogeny and investigated genes undergoing parallel adaptation across patients. Finally, we tested the phenotypic consequences of parallel mutations by conducting antimicrobial resistance and mercury-resistance assays. RESULTS We identified highly related isolate pairs across hospital centers with low likelihood of transmission. We further annotated nonrandom parallel mutations in 22 genes and demonstrated altered macrolide susceptibility co-occurring with a nonsynonymous whiB1 mutation. Finally, we highlighted a 23-kb mercury-resistance plasmid whose loss during chronic infection conferred phenotypic susceptibility to organic and nonorganic mercury compounds. CONCLUSIONS We characterized parallel genomic processes through which MABC is adapting to promote survival within the host. The within-lineage polymorphisms we observed have phenotypic effects, potentially benefiting fitness in the host at the putative detriment of environmental survival.
Collapse
Affiliation(s)
- JooHee Choi
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Eric C Keen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Meghan A Wallace
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Skye Fishbein
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Jerome Prusa
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Madsen Zimbric
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carlos R Mejia-Chew
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Shail B Mehta
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Thomas C Bailey
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, Missouri, USA
| |
Collapse
|
11
|
Santos A, Pinto M, Carneiro S, Silva S, Rodrigues I, Munhá J, Gomes JP, Macedo R. Microevolution of a Mycobacteroides abscessus subsp. bolletii strain in a clinical persistent infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105437. [PMID: 37100339 DOI: 10.1016/j.meegid.2023.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Mycobacteroides abscessus complex (MAB), a fast-growing nontuberculous mycobacterium, is emerging as a significant infectious disease threat, due to both intrinsic and acquired resistance mechanisms to antibiotics and disinfectants and the need for extensive and multidrug regimens for treatment. Despite the prolonged regimens, outcomes are poor and persistence cases have been reported. Here, we describe clinical, microbiologic and genomic features of a M. abscessus subsp. bolletii (M. bolletii) strain consecutively isolated from a patient within an eight-year infection period. From April 2014 to September 2021, the National Reference Laboratory for Mycobacteria received eight strains isolated from a male patient. Species identification, molecular resistance profile and phenotypic drug susceptibility were determined. Five of these isolates were recovered for further in-depth genomic analysis. Genomic analysis confirmed the multidrug resistant pattern of the strain and also other genetic changes associated with adaptation to environment and defence mechanisms. We highlight the identification of new mutations in locus MAB_1881c and in locus MAB_4099c (mps1 gene), already described as associated with macrolides resistance and morphotype switching, respectively. Additionally, we also observed the emergence and fixation of a mutation in locus MAB_0364c that appeared at a frequency of 36% for the 2014 isolate, 57% for the 2015 isolate and 100% for the 2017 and 2021 isolates, clearly illustrating a fixation process underlying a microevolution of the MAB strain within the patient. Altogether these results suggest that the observed genetic alterations are a reflection of the bacterial population's continuous adaptation and survival to the host environment during infection, contributing to persistence and treatment failure.
Collapse
Affiliation(s)
- Andrea Santos
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Sofia Carneiro
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal; Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sónia Silva
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Irene Rodrigues
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - João Munhá
- Pulmonology Unit of Portimão Hospital, Algarve University Hospital Centre, Algarve, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Rita Macedo
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal.
| |
Collapse
|
12
|
Fressatti Cardoso R, Martín-Blecua I, Pietrowski Baldin V, Meneguello JE, Valverde JR, Blázquez J, Castañeda-García A. Noncanonical Mismatch Repair Protein NucS Modulates the Emergence of Antibiotic Resistance in Mycobacterium abscessus. Microbiol Spectr 2022; 10:e0222822. [PMID: 36219122 PMCID: PMC9769700 DOI: 10.1128/spectrum.02228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023] Open
Abstract
NucS/EndoMS-dependent noncanonical mismatch repair (MMR) ensures the stability of genomic DNA in mycobacteria and acts as a guardian of the genome by preventing the accumulation of point mutations. In order to address whether the inactivation of noncanonical MMR could increase the acquisition of drug resistance by mutation, a ΔnucS strain was constructed and explored in the emerging pathogen Mycobacterium abscessus. Deletion of nucS resulted in a mutator phenotype with increased acquisition of resistance to macrolides and aminoglycosides, the two main groups of antimycobacterial agents for M. abscessus treatment, and also to second-line drugs such as fluoroquinolones. Inactivation of the noncanonical MMR in M. abscessus led to increases of 10- to 22-fold in the appearance of spontaneous mutants resistant to the macrolide clarithromycin and the aminoglycosides amikacin, gentamicin, and apramycin, compared with the wild-type strain. Furthermore, emergence of fluoroquinolone (ciprofloxacin) resistance was detected in a nucS-deficient strain but not in a wild-type M. abscessus strain. Acquired drug resistance to macrolides and aminoglycosides was analyzed through sequencing of the 23S rRNA gene rrl and the 16S rRNA gene rrs from independent drug-resistant colonies of both strains. When the acquisition of clarithromycin resistance was examined, a different mutational profile was detected in the M. abscessus ΔnucS strain compared with the wild-type one. To summarize, M. abscessus requires the NucS-dependent noncanonical MMR pathway to prevent the emergence of drug-resistant isolates by mutation. To our knowledge, this is the first report that reveals the role of NucS in a human pathogen, and these findings have potential implications for the treatment of M. abscessus infections. IMPORTANCE Chronic infections caused by M. abscessus are an emerging challenge in public health, posing a substantial health and economic burden, especially in patients with cystic fibrosis. Treatment of M. abscessus infections with antibiotics is particularly challenging, as its complex drug resistance mechanisms, including constitutive resistance through DNA mutation, lead to high rates of treatment failure. To decipher the evolution of antibiotic resistance in M. abscessus, we studied NucS-dependent noncanonical MMR, a unique DNA repair pathway involved in genomic maintenance. Inactivation of NucS is linked to the increase of DNA mutations (hypermutation), which can confer drug resistance. Our analysis detected increased acquisition of mutations conferring resistance to first-line and second-line antibiotics. We believe that this study will improve the knowledge of how this pathogen could evolve into an untreatable infectious agent, and it uncovers a role for hypermutators in chronic infectious diseases under antibiotic pressure.
Collapse
Affiliation(s)
- Rosilene Fressatti Cardoso
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Isabel Martín-Blecua
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| | - Vanessa Pietrowski Baldin
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Jean Eduardo Meneguello
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - José Ramón Valverde
- Departamento de Computación Científica, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| | - Jesús Blázquez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| | - Alfredo Castañeda-García
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CNB-CSIC, Madrid, Spain
| |
Collapse
|
13
|
Whole-Genome Sequencing and Drug-Susceptibility Analysis of Serial Mycobacterium abscessus Isolates from Thai Patients. BIOLOGY 2022; 11:biology11091319. [PMID: 36138798 PMCID: PMC9495349 DOI: 10.3390/biology11091319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Mycobacterium abscessus is an important pathogen that can cause serious human diseases and is difficult to treat due to antibiotic resistance. In this study, we analyzed, using whole-genome sequence (WGS) data, M. abscessus strains serially isolated from patients at various time intervals. We undertook genetic diversity analysis between subspecies, mutation-rate estimation and identification of drug-resistant mutations with minimum inhibitory concentration (MIC) analysis. Clonal isolates of M. abscessus:—subsp. abscessus (MAB) and subsp. massiliense (MMAS)—causing persistent infection through time, differed by 0−7 and 0−14 SNPs, respectively, despite being isolated 1 to 659 days apart. Two cases caused by MMAS differed by ≥102 SNPs at 350 days apart and were regarded as examples of reinfection. Isolates collected ≤7 days apart exhibited a high mutation rate (133.83 ± 0.00 SNPs/genome (5 Mb)/year for MMAS and 127.75 SNPs/genome (5 Mb)/year for MAB). Mutation rates declined in a time-dependent manner in both subspecies. Based on isolates collected > 180 days apart, MMAS had a significantly higher average mutation rate than MAB (2.89 ± 1.02 versus 0.82 ± 0.83 SNPs/genome (5 Mb)/year, (p = 0.01), respectively). All well-known drug-resistance mutations were found to be strongly associated with high MIC levels for clarithromycin and ciprofloxacin. No known mutations were identified for strains resistant to linezolid and amikacin. MAB strains in the study were susceptible to amikacin, while most MMAS strains were susceptible to clarithromycin, amikacin and linezolid. No hetero-resistance was found in the strains analyzed. Our study reports the genetic diversity and mutation rate of M. abscessus between the two major subspecies and confirms the drug resistance-associated mutations. Information about drug-resistance and associated mutations can be applied in diagnosis and patient management.
Collapse
|
14
|
Wetzstein N, Diricks M, Kohl TA, Wichelhaus TA, Andres S, Paulowski L, Schwarz C, Lewin A, Kehrmann J, Kahl BC, Dichtl K, Hügel C, Eickmeier O, Smaczny C, Schmidt A, Zimmermann S, Nährlich L, Hafkemeyer S, Niemann S, Maurer FP, Hogardt M. Molecular Epidemiology of Mycobacterium abscessus Isolates Recovered from German Cystic Fibrosis Patients. Microbiol Spectr 2022; 10:e0171422. [PMID: 35938728 PMCID: PMC9431180 DOI: 10.1128/spectrum.01714-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/17/2022] [Indexed: 11/20/2022] Open
Abstract
Infections due to Mycobacterium abscessus are a major cause of mortality and morbidity in cystic fibrosis (CF) patients. Furthermore, M. abscessus has been suspected to be involved in person-to-person transmissions. In 2016, dominant global clonal complexes (DCCs) that occur worldwide among CF patients have been described. To elucidate the epidemiological situation of M. abscessus among CF patients in Germany and to put these data into a global context, we performed whole-genome sequencing of a set of 154 M. abscessus isolates from 123 German patients treated in 14 CF centers. We used MTBseq pipeline to identify clusters of closely related isolates and correlate those with global findings. Genotypic drug susceptibility for macrolides and aminoglycosides was assessed by characterization of the erm(41), rrl, and rrs genes. By this approach, we could identify representatives of all major DCCs (Absc 1, Absc 2, and Mass 1) in our cohort. Intrapersonal isolates showed higher genetic relatedness than interpersonal isolates (median 3 SNPs versus 16 SNPs; P < 0.001). We further identified four clusters with German patients from same centers clustering with less than 25 SNPs distance (range 3 to 18 SNPs) but did not find any hint for in-hospital person-to-person transmission. This is the largest study investigating phylogenetic relations of M. abscessus isolates in Germany. We identified representatives of all reported DCCs but evidence for nosocomial transmission remained inconclusive. Thus, the occurrence of genetically closely related isolates of M. abscessus has to be interpreted with care, as a direct interhuman transmission cannot be directly deduced. IMPORTANCE Mycobacterium abscessus is a major respiratory pathogen in cystic fibrosis (CF) patients. Recently it has been shown that dominant global clonal complexes (DCCs) have spread worldwide among CF patients. This study investigated the epidemiological situation of M. abscessus among CF patients in Germany by performing whole-genome sequencing (WGS) of a set of 154 M. abscessus from 123 German patients treated in 14 CF centers. This is the largest study investigating the phylogenetic relationship of M. abscessus CF isolates in Germany.
Collapse
Affiliation(s)
- Nils Wetzstein
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Margo Diricks
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Thomas A. Kohl
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Thomas A. Wichelhaus
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Sönke Andres
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Laura Paulowski
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Carsten Schwarz
- Division of Cystic Fibrosis, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Division of Cystic Fibrosis, CF Center Westbrandenburg, Campus Potsdam, Klinikum Potsdam, Potsdam, Germany
| | - Astrid Lewin
- Unit Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Karl Dichtl
- Max von Pettenkofer Institut, Institute of Medical Microbiology and Hygiene, Medizinische Fakultät, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian Hügel
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Christiane Herzog CF Center, Medical Clinic, Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Olaf Eickmeier
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christina Smaczny
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Christiane Herzog CF Center, Medical Clinic, Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Annika Schmidt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Insitute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Lutz Nährlich
- Department of Pediatrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sylvia Hafkemeyer
- Mukoviszidose Institut, gemeinnützige Gesellschaft für Forschung und Therapieentwicklung mbH, Bonn, Germany
| | - Stefan Niemann
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Florian P. Maurer
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Institute of Medical Microbiology, Virology and Hospital Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German National Consiliary Laboratory on Cystic Fibrosis Bacteriology, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Potential opportunities and challenges for infection prevention and control for cystic fibrosis in the modern era. Curr Opin Infect Dis 2022; 35:346-352. [PMID: 35849525 DOI: 10.1097/qco.0000000000000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW We describe recent changes in care for people with cystic fibrosis (PwCF) that could impact infection prevention and control (IP&C) practices. RECENT FINDINGS Current IP&C guidelines primarily aim to prevent acquisition and transmission of pathogens in PwCF utilizing evidence-based recommendations for healthcare settings. Currently, highly effective modulator therapy (HEMT) is dramatically improving the clinical manifestations of cystic fibrosis and reducing pulmonary exacerbations and hospitalizations. Thus, it is feasible that long-term, sustained improvements in pulmonary manifestations of cystic fibrosis could favorably alter cystic fibrosis microbiology. The COVID-19 pandemic increased the use of virtual care, enabling PwCF to spend less time in healthcare settings and potentially reduce the risk of acquiring cystic fibrosis pathogens. The increasing use of whole genome sequencing (WGS) shows great promise in elucidating sources of cystic fibrosis pathogens, shared strains, and epidemic strains and ultimately could allow the cystic fibrosis community to monitor the safety of changed IP&C practices, if deemed appropriate. Finally, given the nonhealthcare environmental reservoirs for cystic fibrosis pathogens, practical guidance can inform PwCF and their families about potential risks and mitigation strategies. SUMMARY New developments in the treatment of PwCF, a shift toward virtual care delivery of care, and use of WGS could change future IP&C practices.
Collapse
|
16
|
Sur S, Patra T, Karmakar M, Banerjee A. Mycobacterium abscessus: insights from a bioinformatic perspective. Crit Rev Microbiol 2022:1-16. [PMID: 35696783 DOI: 10.1080/1040841x.2022.2082268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycobacterium abscessus is a nontuberculous mycobacterium, associated with broncho-pulmonary infections in individuals suffering from cystic fibrosis, bronchiectasis, and pulmonary diseases. The risk factors for transmission include biofilms, contaminated water resources, fomites, and infected individuals. M. abscessus is extensively resistant to antibiotics. To date, there is no vaccine and combination antibiotic therapy is followed. However, drug toxicities, low cure rates, and high cost of treatment make it imperfect. Over the last 20 years, bioinformatic studies on M. abscessus have advanced our understanding of the pathogen. This review integrates knowledge from the analysis of genomes, microbiomes, genomic variations, phylogeny, proteome, transcriptome, secretome, antibiotic resistance, and vaccine design to further our understanding. The utility of genome-based studies in comprehending disease progression, surveillance, tracing transmission routes, and epidemiological outbreaks on a global scale has been highlighted. Furthermore, this review underlined the importance of using computational methodologies for pinpointing factors responsible for pathogen survival and resistance. We reiterate the significance of interdisciplinary research to fight M. abscessus. In a nutshell, the outcome of computational studies can go a long way in creating novel therapeutic avenues to control M. abscessus mediated pulmonary infections.
Collapse
Affiliation(s)
- Saubashya Sur
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Tanushree Patra
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Mistu Karmakar
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Anindita Banerjee
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| |
Collapse
|
17
|
Ferrell KC, Johansen MD, Triccas JA, Counoupas C. Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Front Microbiol 2022; 13:842017. [PMID: 35308378 PMCID: PMC8928063 DOI: 10.3389/fmicb.2022.842017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus is a member of the non-tuberculous mycobacteria (NTM) group, responsible for chronic infections in individuals with cystic fibrosis (CF) or those otherwise immunocompromised. While viewed traditionally as an opportunistic pathogen, increasing research into M. abscessus in recent years has highlighted its continued evolution into a true pathogen. This is demonstrated through an extensive collection of virulence factors (VFs) possessed by this organism which facilitate survival within the host, particularly in the harsh environment of the CF lung. These include VFs resembling those of other Mycobacteria, and non-mycobacterial VFs, both of which make a notable contribution in shaping M. abscessus interaction with the host. Mycobacterium abscessus continued acquisition of VFs is cause for concern and highlights the need for novel vaccination strategies to combat this pathogen. An effective M. abscessus vaccine must be suitably designed for target populations (i.e., individuals with CF) and incorporate current knowledge on immune correlates of protection against M. abscessus infection. Vaccination strategies must also build upon lessons learned from ongoing efforts to develop novel vaccines for other pathogens, particularly Mycobacterium tuberculosis (M. tb); decades of research into M. tb has provided insight into unconventional and innovative vaccine approaches that may be applied to M. abscessus. Continued research into M. abscessus pathogenesis will be critical for the future development of safe and effective vaccines and therapeutics to reduce global incidence of this emerging pathogen.
Collapse
Affiliation(s)
- Kia C. Ferrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- *Correspondence: Kia C. Ferrell,
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute, University of Technology, Sydney, NSW, Australia
- Faculty of Science, School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - James A. Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Claudio Counoupas,
| |
Collapse
|