1
|
Brukman NG, Li X, Podbilewicz B. Fusexins, HAP2/GCS1 and Evolution of Gamete Fusion. Front Cell Dev Biol 2022; 9:824024. [PMID: 35083224 PMCID: PMC8784728 DOI: 10.3389/fcell.2021.824024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Gamete fusion is the climax of fertilization in all sexually reproductive organisms, from unicellular fungi to humans. Similarly to other cell-cell fusion events, gamete fusion is mediated by specialized proteins, named fusogens, that overcome the energetic barriers during this process. In recent years, HAPLESS 2/GENERATIVE CELL-SPECIFIC 1 (HAP2/GCS1) was identified as the fusogen mediating sperm-egg fusion in flowering plants and protists, being both essential and sufficient for the membrane merger in some species. The identification of HAP2/GCS1 in invertebrates, opens the possibility that a similar fusogen may be used in vertebrate fertilization. HAP2/GCS1 proteins share a similar structure with two distinct families of exoplasmic fusogens: the somatic Fusion Family (FF) proteins discovered in nematodes, and class II viral glycoproteins (e.g., rubella and dengue viruses). Altogether, these fusogens form the Fusexin superfamily. While some attributes are shared among fusexins, for example the overall structure and the possibility of assembly into trimers, some other characteristics seem to be specific, such as the presence or not of hydrophobic loops or helices at the distal tip of the protein. Intriguingly, HAP2/GCS1 or other fusexins have neither been identified in vertebrates nor in fungi, raising the question of whether these genes were lost during evolution and were replaced by other fusion machinery or a significant divergence makes their identification difficult. Here, we discuss the biology of HAP2/GCS1, its involvement in gamete fusion and the structural, mechanistic and evolutionary relationships with other fusexins.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Xiaohui Li
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
2
|
Gutiérrez-Pérez P, Santillán EM, Lendl T, Wang J, Schrempf A, Steinacker TL, Asparuhova M, Brandstetter M, Haselbach D, Cochella L. miR-1 sustains muscle physiology by controlling V-ATPase complex assembly. SCIENCE ADVANCES 2021; 7:eabh1434. [PMID: 34652942 PMCID: PMC8519577 DOI: 10.1126/sciadv.abh1434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
Muscle function requires unique structural and metabolic adaptations that can render muscle cells selectively vulnerable, with mutations in some ubiquitously expressed genes causing myopathies but sparing other tissues. We uncovered a muscle cell vulnerability by studying miR-1, a deeply conserved, muscle-specific microRNA whose ablation causes various muscle defects. Using Caenorhabditis elegans, we found that miR-1 represses multiple subunits of the ubiquitous vacuolar adenosine triphosphatase (V-ATPase) complex, which is essential for internal compartment acidification and metabolic signaling. V-ATPase subunits are predicted miR-1 targets in animals ranging from C. elegans to humans, and we experimentally validated this in Drosophila. Unexpectedly, up-regulation of V-ATPase subunits upon miR-1 deletion causes reduced V-ATPase function due to defects in complex assembly. These results reveal V-ATPase assembly as a conserved muscle cell vulnerability and support a previously unknown role for microRNAs in the regulation of protein complexes.
Collapse
Affiliation(s)
- Paula Gutiérrez-Pérez
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Emilio M. Santillán
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Thomas Lendl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Anna Schrempf
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Mila Asparuhova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marlene Brandstetter
- Electron Microscopy Facility, Vienna BioCenter Core Facilities GmbH, Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
3
|
Barnea-Zohar M, Winograd-Katz SE, Shalev M, Arman E, Reuven N, Roth L, Golani O, Stein M, Thalji F, Kanaan M, Tuckermann J, Geiger B, Elson A. An SNX10-dependent mechanism downregulates fusion between mature osteoclasts. J Cell Sci 2021; 134:261809. [PMID: 33975343 PMCID: PMC8182410 DOI: 10.1242/jcs.254979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/19/2021] [Indexed: 01/13/2023] Open
Abstract
Homozygosity for the R51Q mutation in sorting nexin 10 (SNX10) inactivates osteoclasts (OCLs) and induces autosomal recessive osteopetrosis in humans and in mice. We show here that the fusion of wild-type murine monocytes to form OCLs is highly regulated, and that its extent is limited by blocking fusion between mature OCLs. In contrast, monocytes from homozygous R51Q SNX10 mice fuse uncontrollably, forming giant dysfunctional OCLs that can become 10- to 100-fold larger than their wild-type counterparts. Furthermore, mutant OCLs display reduced endocytotic activity, suggesting that their deregulated fusion is due to alterations in membrane homeostasis caused by loss of SNX10 function. This is supported by the finding that the R51Q SNX10 protein is unstable and exhibits altered lipid-binding properties, and is consistent with a key role for SNX10 in vesicular trafficking. We propose that OCL size and functionality are regulated by a cell-autonomous SNX10-dependent mechanism that downregulates fusion between mature OCLs. The R51Q mutation abolishes this regulatory activity, leading to excessive fusion, loss of bone resorption capacity and, consequently, to an osteopetrotic phenotype in vivo. This article has an associated First Person interview with the joint first authors of the paper. Summary: Fusion of monocytes to become bone-resorbing osteoclasts is limited by an SNX10-dependent cell-autonomous mechanism. Loss of SNX10 function deregulates fusion and generates giant inactive osteoclasts.
Collapse
Affiliation(s)
- Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lee Roth
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merle Stein
- Department of Biology, Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Fadi Thalji
- Department of Orthopedics, Istishari Arab Hospital, Ramallah, Palestine
| | - Moien Kanaan
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem 0045866, Palestine
| | - Jan Tuckermann
- Department of Biology, Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Benjamin Geiger
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Abstract
During multicellular organism development, complex structures are sculpted to form organs and tissues, which are maintained throughout adulthood. Many of these processes require cells to fuse with one another, or with themselves. These plasma membrane fusions merge endoplasmic cellular content across external, exoplasmic, space. In the nematode Caenorhabditis elegans, such cell fusions serve as a unique sculpting force, involved in the embryonic morphogenesis of the skin-like multinuclear hypodermal cells, but also in refining delicate structures, such as valve openings and the tip of the tail. During post-embryonic development, plasma membrane fusions continue to shape complex neuron structures and organs such as the vulva, while during adulthood fusion participates in cell and tissue repair. These processes rely on two fusion proteins (fusogens): EFF-1 and AFF-1, which are part of a broader family of structurally related membrane fusion proteins, encompassing sexual reproduction, viral infection, and tissue remodeling. The established capabilities of these exoplasmic fusogens are further expanded by new findings involving EFF-1 and AFF-1 in endocytic vesicle fission and phagosome sealing. Tight regulation by cell-autonomous and non-cell autonomous mechanisms orchestrates these diverse cell fusions at the correct place and time-these processes and their significance are discussed in this review.
Collapse
|
5
|
Fusogen-mediated neuron-neuron fusion disrupts neural circuit connectivity and alters animal behavior. Proc Natl Acad Sci U S A 2020; 117:23054-23065. [PMID: 32855296 PMCID: PMC7502713 DOI: 10.1073/pnas.1919063117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ramón y Cajal’s neuron doctrine, which states that neurons are individual cells that do not share any membrane or cytoplasmic continuity between them, has underpinned our view of modern neuroscience. However, there is considerable evidence that fusogens, specialized proteins essential and sufficient for the fusion of cells in other tissues, are expressed in the nervous system of several species in response to viral infection, stress conditions, and neurological disease. By manipulating the expression of fusogens in the chemosensory neurons of Caenorhabditis elegans, our results provide conclusive evidence that deregulation of fusogen expression causes neuronal fusion and can have deleterious effects on neural circuitry and behavioral outputs, revealing a possible novel underlying cause of neurological disorders. The 100-y-old neuron doctrine from Ramón y Cajal states that neurons are individual cells, rejecting the process of cell−cell fusion in the normal development and function of the nervous system. However, fusogens—specialized molecules essential and sufficient for the fusion of cells—are expressed in the nervous system of different species under conditions of viral infection, stress, or disease. Despite these findings, whether the expression of fusogens in neurons leads to cell−cell fusion, and, if so, whether this affects neuronal fate, function, and animal behavior, has not been explored. Here, using Caenorhabditis elegans chemosensory neurons as a model system, we provide proof-of-principle that aberrant expression of fusogens in neurons results in neuron−neuron fusion and behavioral impairments. We demonstrate that fusion between chemoattractive neurons does not affect the response to odorants, whereas fusion between chemoattractive and chemorepulsive neurons compromises chemosensation. Moreover, we provide evidence that fused neurons are viable and retain their original specific neuronal fate markers. Finally, analysis of calcium transients reveals that fused neurons become electrically coupled, thereby compromising neural circuit connectivity. Thus, we propose that aberrant expression of fusogens in the nervous system disrupts neuronal individuality, which, in turn, leads to a change in neural circuit connectivity and disruption of normal behavior. Our results expose a previously uncharacterized basis of circuit malfunction, and a possible underlying cause of neurological diseases.
Collapse
|
6
|
Actin Polymerization and ESCRT Trigger Recruitment of the Fusogens Syntaxin-2 and EFF-1 to Promote Membrane Repair in C. elegans. Dev Cell 2020; 54:624-638.e5. [DOI: 10.1016/j.devcel.2020.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/08/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
|
7
|
Petrany MJ, Millay DP. Cell Fusion: Merging Membranes and Making Muscle. Trends Cell Biol 2019; 29:964-973. [PMID: 31648852 PMCID: PMC7849503 DOI: 10.1016/j.tcb.2019.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Cell fusion is essential for the development of multicellular organisms, and plays a key role in the formation of various cell types and tissues. Recent findings have highlighted the varied protein machinery that drives plasma-membrane merger in different systems, which is characterized by diverse structural and functional elements. We highlight the discovery and activities of several key sets of fusion proteins that together offer an evolving perspective on cell membrane fusion. We also emphasize recent discoveries in vertebrate myoblast fusion in skeletal muscle, which is composed of numerous multinucleated myofibers formed by the fusion of progenitor cells during development.
Collapse
Affiliation(s)
- Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
8
|
Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. How cells fuse. J Cell Biol 2019; 218:1436-1451. [PMID: 30936162 PMCID: PMC6504885 DOI: 10.1083/jcb.201901017] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Brukman et al. review cell–cell fusion mechanisms, focusing on the identity of the fusogens that mediate these processes and the regulation of their activities. Cell–cell fusion remains the least understood type of membrane fusion process. However, the last few years have brought about major advances in understanding fusion between gametes, myoblasts, macrophages, trophoblasts, epithelial, cancer, and other cells in normal development and in diseases. While different cell fusion processes appear to proceed via similar membrane rearrangements, proteins that have been identified as necessary and sufficient for cell fusion (fusogens) use diverse mechanisms. Some fusions are controlled by a single fusogen; other fusions depend on several proteins that either work together throughout the fusion pathway or drive distinct stages. Furthermore, some fusions require fusogens to be present on both fusing membranes, and in other fusions, fusogens have to be on only one of the membranes. Remarkably, some of the proteins that fuse cells also sculpt single cells, repair neurons, promote scission of endocytic vesicles, and seal phagosomes. In this review, we discuss the properties and diversity of the known proteins mediating cell–cell fusion and highlight their different working mechanisms in various contexts.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Berna Uygur
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Neumann B, Linton C, Giordano-Santini R, Hilliard MA. Axonal fusion: An alternative and efficient mechanism of nerve repair. Prog Neurobiol 2018; 173:88-101. [PMID: 30500382 DOI: 10.1016/j.pneurobio.2018.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Injuries to the nervous system can cause lifelong morbidity due to the disconnect that occurs between nerve cells and their cellular targets. Re-establishing these lost connections is the ultimate goal of endogenous regenerative mechanisms, as well as those induced by exogenous manipulations in a laboratory or clinical setting. Reconnection between severed neuronal fibers occurs spontaneously in some invertebrate species and can be induced in mammalian systems. This process, known as axonal fusion, represents a highly efficient means of repair after injury. Recent progress has greatly enhanced our understanding of the molecular control of axonal fusion, demonstrating that the machinery required for the engulfment of apoptotic cells is repurposed to mediate the reconnection between severed axon fragments, which are subsequently merged by fusogen proteins. Here, we review our current understanding of naturally occurring axonal fusion events, as well as those being ectopically produced with the aim of achieving better clinical outcomes.
Collapse
Affiliation(s)
- Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia.
| | - Casey Linton
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosina Giordano-Santini
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Ghose P, Rashid A, Insley P, Trivedi M, Shah P, Singhal A, Lu Y, Bao Z, Shaham S. EFF-1 fusogen promotes phagosome sealing during cell process clearance in Caenorhabditis elegans. Nat Cell Biol 2018; 20:393-399. [PMID: 29556089 PMCID: PMC5876135 DOI: 10.1038/s41556-018-0068-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Phagocytosis of dying cells is critical in development and immunity1–3. While proteins for recognition and engulfment of cellular debris following cell death are known4,5, proteins that directly mediate phagosome sealing are uncharacterized. Furthermore, whether all phagocytic targets are cleared using the same machinery is unclear. Degeneration of morphologically-complex cells, such as neurons, glia, and melanocytes, produces phagocytic targets of various shapes and sizes located in different microenvironments6,7. Such cells, therefore, offer unique settings to explore engulfment program mechanisms and specificity. Here we report that dismantling and clearance of a morphologically-complex C. elegans epithelial cell requires separate cell-soma, proximal-, and distal-process programs. Similar compartment-specific events govern elimination of a C. elegans neuron. While canonical engulfment proteins drive cell-soma clearance, these are not required for process removal. We find that EFF-1, a protein previously implicated in cell-cell fusion8, specifically promotes distal-process phagocytosis. EFF-1 localizes to phagocyte pseudopod tips, and acts exoplasmically to drive phagosome sealing. eff-1 mutations result in phagocytosis arrest with unsealed phagosomes. Our studies suggest universal mechanisms for dismantling morphologically-complex cells, and uncover a phagosome sealing component promoting cell-process clearance.
Collapse
Affiliation(s)
- Piya Ghose
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Alina Rashid
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Peter Insley
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Meera Trivedi
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Pavak Shah
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Anupriya Singhal
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
11
|
Abstract
Cell-cell fusion is essential for fertilization and organ development. Dedicated proteins known as fusogens are responsible for mediating membrane fusion. However, until recently, these proteins either remained unidentified or were poorly understood at the mechanistic level. Here, we review how fusogens surmount multiple energy barriers to mediate cell-cell fusion. We describe how early preparatory steps bring membranes to a distance of ∼10 nm, while fusogens act in the final approach between membranes. The mechanical force exerted by cell fusogens and the accompanying lipidic rearrangements constitute the hallmarks of cell-cell fusion. Finally, we discuss the relationship between viral and eukaryotic fusogens, highlight a classification scheme regrouping a superfamily of fusogens called Fusexins, and propose new questions and avenues of enquiry.
Collapse
Affiliation(s)
- Javier M Hernández
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Benjamin Podbilewicz
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
12
|
Oren-Suissa M, Gattegno T, Kravtsov V, Podbilewicz B. Extrinsic Repair of Injured Dendrites as a Paradigm for Regeneration by Fusion in Caenorhabditis elegans. Genetics 2017; 206:215-230. [PMID: 28283540 PMCID: PMC5419471 DOI: 10.1534/genetics.116.196386] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/07/2017] [Indexed: 11/18/2022] Open
Abstract
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries.
Collapse
Affiliation(s)
- Meital Oren-Suissa
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tamar Gattegno
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Veronika Kravtsov
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Benjamin Podbilewicz
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|