1
|
Constantinou SM, Bennett DC. Cell Senescence and the Genetics of Melanoma Development. Genes Chromosomes Cancer 2024; 63:e23273. [PMID: 39422311 DOI: 10.1002/gcc.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous malignant melanoma is an aggressive skin cancer with an approximate lifetime risk of 1 in 38 in the UK. While exposure to ultraviolet radiation is a key environmental risk factor for melanoma, up to ~10% of patients report a family history of melanoma, and ~1% have a strong family history. The understanding of causal mutations in melanoma has been critical to the development of novel targeted therapies that have contributed to improved outcomes for late-stage patients. Here, we review current knowledge of the genes affected by familial melanoma mutations and their partial overlap with driver genes commonly mutated in sporadic melanoma development. One theme linking a set of susceptibility loci/genes is the regulation of skin pigmentation and suntanning. The largest functional set of susceptibility variants, typically with high penetrance, includes CDKN2A, RB1, and telomerase reverse transcriptase (TERT) mutations, associated with attenuation of cell senescence. We discuss the mechanisms of action of these gene sets in the biology and progression of nevi and melanoma.
Collapse
Affiliation(s)
- Sophie M Constantinou
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| | - Dorothy C Bennett
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| |
Collapse
|
2
|
Tan KT, Slevin MK, Leibowitz ML, Garrity-Janger M, Shan J, Li H, Meyerson M. Neotelomeres and telomere-spanning chromosomal arm fusions in cancer genomes revealed by long-read sequencing. CELL GENOMICS 2024; 4:100588. [PMID: 38917803 PMCID: PMC11293586 DOI: 10.1016/j.xgen.2024.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Alterations in the structure and location of telomeres are pivotal in cancer genome evolution. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeats, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. These results provide a framework for the systematic study of telomeric repeats in cancer genomes, which could serve as a model for understanding the somatic evolution of other repetitive genomic elements.
Collapse
Affiliation(s)
- Kar-Tong Tan
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | | | - Mitchell L Leibowitz
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Max Garrity-Janger
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Jidong Shan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heng Li
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Tan KT, Slevin MK, Leibowitz ML, Garrity-Janger M, Li H, Meyerson M. Neotelomeres and Telomere-Spanning Chromosomal Arm Fusions in Cancer Genomes Revealed by Long-Read Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569101. [PMID: 38077026 PMCID: PMC10705422 DOI: 10.1101/2023.11.30.569101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Alterations in the structure and location of telomeres are key events in cancer genome evolution. However, previous genomic approaches, unable to span long telomeric repeat arrays, could not characterize the nature of these alterations. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeat arrays, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. Analysis of lung adenocarcinoma genome sequences identified somatic neotelomere and telomere-spanning fusion alterations. These results provide a framework for systematic study of telomeric repeat arrays in cancer genomes, that could serve as a model for understanding the somatic evolution of other repetitive genomic elements.
Collapse
Affiliation(s)
- Kar-Tong Tan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Michael K. Slevin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mitchell L. Leibowitz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Max Garrity-Janger
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Lead contact
| |
Collapse
|
4
|
Parekh N, Garg A, Choudhary R, Gupta M, Kaur G, Ramniwas S, Shahwan M, Tuli HS, Sethi G. The Role of Natural Flavonoids as Telomerase Inhibitors in Suppressing Cancer Growth. Pharmaceuticals (Basel) 2023; 16:ph16040605. [PMID: 37111362 PMCID: PMC10143453 DOI: 10.3390/ph16040605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled growth and spread of abnormal cells. While cancer can be challenging and life-altering, advances in research and development have led to the identification of new promising anti-cancer targets. Telomerase is one such target that is overexpressed in almost all cancer cells and plays a critical role in maintaining telomere length, which is essential for cell proliferation and survival. Inhibiting telomerase activity can lead to telomere shortening and eventual cell death, thus presenting itself as a potential target for cancer therapy. Naturally occurring flavonoids are a class of compounds that have already been shown to possess different biological properties, including the anti-cancer property. They are present in various everyday food sources and richly present in fruits, nuts, soybeans, vegetables, tea, wine, and berries, to name a few. Thus, these flavonoids could inhibit or deactivate telomerase expression in cancer cells by different mechanisms, which include inhibiting the expression of hTERT, mRNA, protein, and nuclear translocation, inhibiting the binding of transcription factors to hTERT promoters, and even telomere shortening. Numerous cell line studies and in vivo experiments have supported this hypothesis, and this development could serve as a vital and innovative therapeutic option for cancer. In this light, we aim to elucidate the role of telomerase as a potential anti-cancer target. Subsequently, we have illustrated that how commonly found natural flavonoids demonstrate their anti-cancer activity via telomerase inactivation in different cancer types, thus proving the potential of these naturally occurring flavonoids as useful therapeutic agents.
Collapse
Affiliation(s)
- Neel Parekh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai 400056, India
| | - Ashish Garg
- Department of P.G. Studies and Research in Chemistry and Pharmacy, Rani Durgavati University Jabalpur, Jabalpur 482001, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar, Deemed to be University, Ambala 133207, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai 400056, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar, Deemed to be University, Ambala 133207, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
5
|
Zia S, Khan N, Tehreem K, Rehman N, Sami R, Baty RS, Tayeb FJ, Almashjary MN, Alsubhi NH, Alrefaei GI, Shahid R. Transcriptomic Analysis of Conserved Telomere Maintenance Component 1 (CTC1) and Its Association with Leukemia. J Clin Med 2022; 11:jcm11195780. [PMID: 36233645 PMCID: PMC9571731 DOI: 10.3390/jcm11195780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Telomere length (TEL) regulation is important for genome stability and is governed by the coordinated role of shelterin proteins, telomerase (TERT), and CST (CTC1/OBFC1/TEN1) complex. Previous studies have shown the association of telomerase expression with the risk of acute lymphoblastic leukemia (ALL). However, no data are available for CST association with the ALL. The current pilot study was designed to evaluate the CST expression levels in ALL. In total, 350 subjects were recruited, including 250 ALL cases and 100 controls. The subjects were stratified by age and categorized into pediatrics (1–18 years) and adults (19–54 years). TEL and expression patterns of CTC1, OBFC1, and TERT genes were determined by qPCR. The univariable logistic regression analysis was performed to determine the association of gene expression with ALL, and the results were adjusted for age and sex in multivariable analyses. Pediatric and adult cases did not reflect any change in telomere lengths relative to controls. However, expression of CTC1, OBFC1, and TERT genes were induced among ALL cases. Multivariable logistic regression analyses showed association of CTC1 with ALL in pediatric [β estimate (standard error (SE)= −0.013 (0.007), p = 0.049, and adults [0.053 (0.023), p = 0.025]. The association of CTC1 remained significant when taken together with OBFC1 and TERT in a multivariable model. Furthermore, CTC1 showed significant association with B-cell ALL [−0.057(0.017), p = 0.002) and T-cell ALL [−0.050 (0.018), p = 0.008] in pediatric group while no such association was noted in adults. Together, our findings demonstrated that telomere modulating genes, particularly CTC1, are strongly associated with ALL. Therefore, CTC1 can potentially be used as a risk biomarker for the identification of ALL in both pediatrics and adults.
Collapse
Affiliation(s)
- Saadiya Zia
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Netasha Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Komal Tehreem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Nazia Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Roua S. Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Faris J. Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Nouf H. Alsubhi
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
- Correspondence:
| |
Collapse
|
6
|
Tan KT, Slevin MK, Meyerson M, Li H. Identifying and correcting repeat-calling errors in nanopore sequencing of telomeres. Genome Biol 2022; 23:180. [PMID: 36028900 PMCID: PMC9414165 DOI: 10.1186/s13059-022-02751-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/16/2022] [Indexed: 12/27/2022] Open
Abstract
Nanopore long-read sequencing is an emerging approach for studying genomes, including long repetitive elements like telomeres. Here, we report extensive basecalling induced errors at telomere repeats across nanopore datasets, sequencing platforms, basecallers, and basecalling models. We find that telomeres in many organisms are frequently miscalled. We demonstrate that tuning of nanopore basecalling models leads to improved recovery and analysis of telomeric regions, with minimal negative impact on other genomic regions. We highlight the importance of verifying nanopore basecalls in long, repetitive, and poorly defined regions, and showcase how artefacts can be resolved by improvements in nanopore basecalling models.
Collapse
Affiliation(s)
- Kar-Tong Tan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Michael K Slevin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
TERT Promoter Mutations and Telomerase in Melanoma. JOURNAL OF ONCOLOGY 2022; 2022:6300329. [PMID: 35903534 PMCID: PMC9325578 DOI: 10.1155/2022/6300329] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Malignant melanoma is an extremely malignant tumor with a high mortality rate and an increasing incidence with a high mutation load. The frequency of mutations in the TERT promoter exceeds the frequency of any known noncoding mutations in melanoma. A growing number of recent studies suggest that the most common mutations in the TERT promoter (ATG start site −124C>T and −146C>T) are associated with increased TERT mRNA expression, telomerase activity, telomere length, and poor prognosis. Recently, it has been shown that TERT promoter mutations are more correlated with the occurrence, development, invasion, and metastasis of melanoma, as well as emerging approaches such as the therapeutic potential of chemical inhibition of TERT promoter mutations, direct telomerase inhibitors, combined targeted therapy, and immunotherapies. In this review, we describe the latest advances in the role of TERT promoter mutations and telomerase in promoting the occurrence, development, and poor prognosis of melanoma and discuss the clinical significance of the TERT promoter and telomerase in the treatment of melanoma.
Collapse
|
8
|
Bhari VK, Kumar D, Kumar S, Mishra R. Shelterin complex gene: Prognosis and therapeutic vulnerability in cancer. Biochem Biophys Rep 2021; 26:100937. [PMID: 33553693 PMCID: PMC7859307 DOI: 10.1016/j.bbrep.2021.100937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Telomere encompasses a (TTAGGG)n tandem repeats, and its dysfunction has emerged as the epicenter of driving carcinogenesis by promoting genetic instability. Indeed, they play an essential role in stabilizing chromosomes and therefore protecting them from end-to-end fusion and DNA degradation. Telomere length homeostasis is regulated by several key players including shelterin complex genes, telomerase, and various other regulators. Targeting these regulatory players can be a good approach to combat cancer as telomere length is increasingly correlated with cancer initiation and progression. In this review, we have aimed to describe the telomere length regulator's role in prognostic significance and important drug targets in breast cancer. Moreover, we also assessed alteration in telomeric function by various telomere length regulators and compares this to the regulatory mechanisms that can be associated with clinical biomarkers in cancer. Using publicly available software we summarized mutational and CpG island prediction analysis of the TERT gene breast cancer patient database. Studies have reported that the TERT gene has prognostic significance in breast cancer progression however mechanistic approaches are not defined yet. Interestingly, we reported using the UCSC Xena web-based tool, we confirmed a positive correlation of shelterin complex genes TERF1 and TERF2 in recurrent free survival, indicating the critical role of these genes in breast cancer prognosis. Moreover, the epigenetic landscape of DNA damage repair genes in different breast cancer subtypes also being analyzed using the UCSC Xena database. Together, these datasets provide a comprehensive resource for shelterin complex gene profiles and define epigenetic landscapes of DNA damage repair genes which reveals the key role of shelterin complex genes in breast cancer with the potential to identify novel and actionable targets for treatment.
Collapse
Affiliation(s)
- Vikas Kumar Bhari
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| | - Durgesh Kumar
- Department of Physiology, Government Medical College, Kannauj, Uttar Pradesh, India
| | - Surendra Kumar
- Department of Neurology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Rajeev Mishra
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| |
Collapse
|
9
|
Sharma S, Mukherjee AK, Roy SS, Bagri S, Lier S, Verma M, Sengupta A, Kumar M, Nesse G, Pandey DP, Chowdhury S. Human telomerase is directly regulated by non-telomeric TRF2-G-quadruplex interaction. Cell Rep 2021; 35:109154. [PMID: 34010660 PMCID: PMC7611063 DOI: 10.1016/j.celrep.2021.109154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/15/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) remains suppressed in most normal somatic cells. Resulting erosion of telomeres leads eventually to replicative senescence. Reactivation of hTERT maintains telomeres and triggers progression of >90% of cancers. However, any direct causal link between telomeres and telomerase regulation remains unclear. Here, we show that the telomere-repeat-binding-factor 2 (TRF2) binds hTERT promoter G-quadruplexes and recruits the polycomb-repressor EZH2/PRC2 complex. This is causal for H3K27 trimethylation at the hTERT promoter and represses hTERT in cancer as well as normal cells. Two highly recurrent hTERT promoter mutations found in many cancers, including ∼83% glioblastoma multiforme, that are known to destabilize hTERT promoter G-quadruplexes, showed loss of TRF2 binding in patient-derived primary glioblastoma multiforme cells. Ligand-induced G-quadruplex stabilization restored TRF2 binding, H3K27-trimethylation, and hTERT re-suppression. These results uncover a mechanism of hTERT regulation through a telomeric factor, implicating telomere-telomerase molecular links important in neoplastic transformation, aging, and regenerative therapy.
Collapse
Affiliation(s)
- Shalu Sharma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Ananda Kishore Mukherjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Shuvra Shekhar Roy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Silje Lier
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Meenakshi Verma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Manish Kumar
- Imaging Facility, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Gaute Nesse
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India.
| |
Collapse
|
10
|
Dratwa M, Wysoczanska B, Turlej E, Anisiewicz A, Maciejewska M, Wietrzyk J, Bogunia-Kubik K. Heterogeneity of telomerase reverse transcriptase mutation and expression, telomerase activity and telomere length across human cancer cell lines cultured in vitro. Exp Cell Res 2020; 396:112298. [PMID: 32971118 DOI: 10.1016/j.yexcr.2020.112298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022]
Abstract
Promoter region of the telomerase reverse transcriptase gene (TERTp) constitutes a regulatory element capable to affect TERT expression (TE), telomerase activity (TA) and telomere length (TL). TERTp mutation status, TL, TA and TE were assessed in 27 in vitro cultured human cell lines, including 11 solid tumour, 13 haematological and 3 normal cell lines. C228T and C250T TERTp mutations were detected in 5 solid tumour and none of haematological cell lines (p = 0.0100). As compared to other solid tumour cell lines, those with the presence of somatic mutations were characterized by: shorter TL, lower TA and TE. Furthermore, cell lines carrying TERTp mutations showed a linear correlation between TE and TA (R = 0.9708, p = 0.0021). Moreover, haematological cell lines exhibited higher TE compared to solid tumour cell lines (p = 0.0007). TL and TA were correlated in both solid tumour (R = 0.4875, p = 0.0169) and haematological (R = 0.4719, p = 0.0095) cell lines. Our results based on the in vitro model suggest that oncogenic processes may differ between solid tumours and haematological malignancies with regard to their TERT gene regulation mechanisms.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Barbara Wysoczanska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Magdalena Maciejewska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
11
|
Panebianco F, Nikitski AV, Nikiforova MN, Nikiforov YE. Spectrum of TERT promoter mutations and mechanisms of activation in thyroid cancer. Cancer Med 2019; 8:5831-5839. [PMID: 31408918 PMCID: PMC6792496 DOI: 10.1002/cam4.2467] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Reactivation of telomerase reverse transcriptase (TERT) is an important event in cancer. Two hotspot mutations in the TERT promoter region, c.-124C > T (C228T) and c.-146C > T (C250T), occur in various cancer types including thyroid cancer. They generate de novo binding sites for E-twenty-six (ETS) transcription factors causing increased TERT transcription. The aim of this study was to search for novel TERT promoter mutations and additional mechanisms of TERT activation in thyroid cancer. METHODS We studied 198 papillary thyroid carcinomas (PTCs), 34 follicular thyroid carcinomas (FTCs), 40 Hürthle cell carcinomas (HCCs), 14 poorly differentiated/anaplastic thyroid carcinomas (PDTC/ATC), and 15 medullary thyroid carcinomas (MTCs) for mutations in an -424 bp to +64 bp region of TERT. The luciferase reporter assay was used to functionally characterize the identified alterations. Copy number variations (CNVs) in the TERT region were analyzed using TaqMan copy number assay and validated with fluorescence in situ hybridization (FISH). RESULTS We detected the hotspot c.-124C > T and c.-146C > T mutations in 7% PTC, 18% FTC, 25% HCC, and 86% PDTC/ATC. One PTC carried a c.-124C > A mutation. Furthermore, we identified two novel mutations resulting in the formation of de novo ETS-binding motifs: c.-332C > T in one MTC and c.-104_-83dup in one PTC. These genetic alterations, as well as other detected mutations, led to a significant increase in TERT promoter activity when assayed using luciferase reporter system. In addition, 5% of thyroid tumors were found to have ≥3 copies of TERT. CONCLUSIONS This study confirms the increased prevalence of TERT promoter mutations and CNV in advanced thyroid cancers and describes novel functional alterations in the TERT gene promoter, including a point mutation and small duplication. These mutations, as well as TERT copy number alterations, may represent an additional mechanism of TERT activation in thyroid cancer.
Collapse
Affiliation(s)
- Federica Panebianco
- Department of Pathology and Laboratory MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Alyaksandr V. Nikitski
- Department of Pathology and Laboratory MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Marina N. Nikiforova
- Department of Pathology and Laboratory MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Yuri E. Nikiforov
- Department of Pathology and Laboratory MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| |
Collapse
|
12
|
Fangchinoline, a Bisbenzylisoquinoline Alkaloid can Modulate Cytokine-Impelled Apoptosis via the Dual Regulation of NF-κB and AP-1 Pathways. Molecules 2019; 24:molecules24173127. [PMID: 31466313 PMCID: PMC6749215 DOI: 10.3390/molecules24173127] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
Fangchinoline (FCN) derived from Stephaniae tetrandrine S. Moore can be employed to treat fever, inflammation, rheumatism arthralgia, edema, dysuria, athlete’s foot, and swollen wet sores. FCN can exhibit a plethora of anti-neoplastic effects although its precise mode of action still remains to be deciphered. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) can closely regulate carcinogenesis and thus we analyzed the possible action of FCN may have on these two signaling cascades in tumor cells. The effect of FCN on NF-κB and AP-1 signaling cascades and its downstream functions was deciphered using diverse assays in both human chronic myeloid leukemia (KBM5) and multiple myeloma (U266). FCN attenuated growth of both leukemic and multiple myeloma cells and repressed NF-κB, and AP-1 activation through diverse mechanisms, including attenuation of phosphorylation of IκB kinase (IKK) and p65. Furthermore, FCN could also cause significant enhancement in TNFα-driven apoptosis as studied by various molecular techniques. Thus, FCN may exhibit potent anti-neoplastic effects by affecting diverse oncogenic pathways and may be employed as pro-apoptotic agent against various malignancies.
Collapse
|
13
|
Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Biosci Rep 2018; 38:BSR20180511. [PMID: 30166456 PMCID: PMC6167501 DOI: 10.1042/bsr20180511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Although most melanoma cases may be treated by surgical intervention upon early diagnosis, a significant portion of patients can still be refractory, presenting low survival rates within 5 years after the discovery of the illness. As a hallmark, melanomas are highly prone to evolve into metastatic sites. Moreover, melanoma tumors are highly resistant to most available drug therapies and their incidence have increased over the years, therefore leading to public health concerns about the development of novel therapies. Therefore, researches are getting deeper in unveiling the mechanisms by which melanoma initiation can be triggered and sustained. In this context, important progress has been achieved regarding the roles and the impact of cellular signaling pathways in melanoma. This knowledge has provided tools for the development of therapies based on the intervention of signal(s) promoted by these cascades. In this review, we summarize the importance of major signaling pathways (mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, Wnt, nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), transforming growth factor β (TGF-β) and Notch) in skin homeostasis and melanoma progression. Available and developing melanoma therapies interfering with these signaling cascades are further discussed.
Collapse
|
14
|
Gorgoulis VG, Pefani D, Pateras IS, Trougakos IP. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 2018; 246:12-40. [PMID: 29756349 PMCID: PMC6120562 DOI: 10.1002/path.5097] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven 'defensive' network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Dafni‐Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
15
|
Nasser MM, Mehdipour P. Exploration of Involved Key Genes and Signaling Diversity in Brain Tumors. Cell Mol Neurobiol 2018; 38:393-419. [PMID: 28493234 DOI: 10.1007/s10571-017-0498-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/02/2017] [Indexed: 02/05/2023]
Abstract
Brain tumors are becoming a major cause of death. The classification of brain tumors has gone through restructuring with regard to some criteria such as the presence or absence of a specific genetic alteration in the 2016 central nervous system World Health Organization update. Two categories of genes with a leading role in tumorigenesis and cancer induction include tumor suppressor genes and oncogenes; tumor suppressor genes are inactivated through a variety of mechanisms that result in their loss of function. As for the oncogenes, overexpression and amplification are the most common mechanisms of alteration. Important cell cycle genes such as p53, ATM, cyclin D2, and Rb have shown altered expression patterns in different brain tumors such as meningioma and astrocytoma. Some genes in signaling pathways have a role in brain tumorigenesis. These pathways include hedgehog, EGFR, Notch, hippo, MAPK, PI3K/Akt, and WNT signaling. It has been shown that telomere length in some brain tumor samples is shortened compared to that in normal cells. As the shortening of telomere length triggers chromosome instability early in brain tumors, it could lead to initiation of cancer. On the other hand, telomerase activity was positive in some brain tumors. It is suggestive that telomere length and telomerase activity are important diagnostic markers in brain tumors. This review focuses on brain tumors with regard to the status of oncogenes, tumor suppressors, cell cycle genes, and genes in signaling pathways as well as the role of telomere length and telomerase in brain tumors.
Collapse
Affiliation(s)
- Mojdeh Mahdian Nasser
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Cleal K, Norris K, Baird D. Telomere Length Dynamics and the Evolution of Cancer Genome Architecture. Int J Mol Sci 2018; 19:E482. [PMID: 29415479 PMCID: PMC5855704 DOI: 10.3390/ijms19020482] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Telomeres are progressively eroded during repeated rounds of cell division due to the end replication problem but also undergo additional more substantial stochastic shortening events. In most cases, shortened telomeres induce a cell-cycle arrest or trigger apoptosis, although for those cells that bypass such signals during tumour progression, a critical length threshold is reached at which telomere dysfunction may ensue. Dysfunction of the telomere nucleoprotein complex can expose free chromosome ends to the DNA double-strand break (DSB) repair machinery, leading to telomere fusion with both telomeric and non-telomeric loci. The consequences of telomere fusions in promoting genome instability have long been appreciated through the breakage-fusion-bridge (BFB) cycle mechanism, although recent studies using high-throughput sequencing technologies have uncovered evidence of involvement in a wider spectrum of genomic rearrangements including chromothripsis. A critical step in cancer progression is the transition of a clone to immortality, through the stabilisation of the telomere repeat array. This can be achieved via the reactivation of telomerase, or the induction of the alternative lengthening of telomeres (ALT) pathway. Whilst telomere dysfunction may promote genome instability and tumour progression, by limiting the replicative potential of a cell and enforcing senescence, telomere shortening can act as a tumour suppressor mechanism. However, the burden of senescent cells has also been implicated as a driver of ageing and age-related pathology, and in the promotion of cancer through inflammatory signalling. Considering the critical role of telomere length in governing cancer biology, we review questions related to the prognostic value of studying the dynamics of telomere shortening and fusion, and discuss mechanisms and consequences of telomere-induced genome rearrangements.
Collapse
Affiliation(s)
- Kez Cleal
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| | - Kevin Norris
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| | - Duncan Baird
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| |
Collapse
|
17
|
Xiu Y, Dong Q, Li Q, Li F, Borcherding N, Zhang W, Boyce B, Xue HH, Zhao C. Stabilization of NF-κB-Inducing Kinase Suppresses MLL-AF9-Induced Acute Myeloid Leukemia. Cell Rep 2018; 22:350-358. [PMID: 29320732 PMCID: PMC5810947 DOI: 10.1016/j.celrep.2017.12.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/02/2017] [Accepted: 12/15/2017] [Indexed: 02/08/2023] Open
Abstract
Canonical NF-κB signaling is constitutively activated in acute myeloid leukemia (AML) stem cells and is required for maintenance of the self-renewal of leukemia stem cells (LSCs). However, any potential role for NF-κB non-canonical signaling in AML has been largely overlooked. Here, we report that stabilization of NF-κB-inducing kinase (NIK) suppresses AML. Mechanistically, stabilization of NIK activates NF-κB non-canonical signaling and represses NF-κB canonical signaling. In addition, stabilization of NIK-induced activation of NF-κB non-canonical signaling upregulates Dnmt3a and downregulates Mef2c, which suppresses and promotes AML development, respectively. Importantly, by querying the connectivity MAP using up- and downregulated genes that are present exclusively in NIK-stabilized LSCs, we discovered that verteporfin has anti-AML effects, suggesting that repurposing verteporfin to target myeloid leukemia is worth testing clinically. Our data provide a scientific rationale for developing small molecules to stabilize NIK specifically in myeloid leukemias as an attractive therapeutic option.
Collapse
Affiliation(s)
- Yan Xiu
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Qianze Dong
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, China Medical University, 77 Puhe Rd., Shenbei Xinqu, Shenyang Shi, Liaoning Sheng 110122, China
| | - Qingchang Li
- Department of Pathology, China Medical University, 77 Puhe Rd., Shenbei Xinqu, Shenyang Shi, Liaoning Sheng 110122, China
| | - Fengyin Li
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nick Borcherding
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Weizhou Zhang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Brendan Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Chen Zhao
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
18
|
Ozturk MB, Li Y, Tergaonkar V. Current Insights to Regulation and Role of Telomerase in Human Diseases. Antioxidants (Basel) 2017; 6:antiox6010017. [PMID: 28264499 PMCID: PMC5384180 DOI: 10.3390/antiox6010017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022] Open
Abstract
The telomerase ribonucleoprotein complex has a pivotal role in regulating the proliferation and senescence of normal somatic cells as well as cancer cells. This complex is comprised mainly of telomerase reverse transcriptase (TERT), telomerase RNA component (TERC) and other associated proteins that function to elongate telomeres localized at the end of the chromosomes. While reactivation of telomerase is a major hallmark of most cancers, together with the synergistic activation of other oncogenic signals, deficiency in telomerase and telomeric proteins might lead to aging and senescence-associated disorders. Therefore, it is critically important to understand the canonical as well as non-canonical functions of telomerase through TERT to develop a therapeutic strategy against telomerase-related diseases. In this review, we shed light on the regulation and function of telomerase, and current therapeutic strategies against telomerase in cancer and age-related diseases.
Collapse
Affiliation(s)
- Mert Burak Ozturk
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| | - Yinghui Li
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide SA 5000, Australia.
| |
Collapse
|
19
|
Khattar E, Tergaonkar V. Transcriptional Regulation of Telomerase Reverse Transcriptase (TERT) by MYC. Front Cell Dev Biol 2017; 5:1. [PMID: 28184371 PMCID: PMC5266692 DOI: 10.3389/fcell.2017.00001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Telomerase elongates telomeres and is crucial for maintaining genomic stability. While stem cells and cancer cells display high telomerase activity, normal somatic cells lack telomerase activity primarily due to transcriptional repression of telomerase reverse transcriptase (TERT), the catalytic component of telomerase. Transcription factor binding, chromatin status as well as epigenetic modifications at the TERT promoter regulates TERT transcription. Myc is an important transcriptional regulator of TERT that directly controls its expression by promoter binding and associating with other transcription factors. In this review, we discuss the current understanding of the molecular mechanisms behind regulation of TERT transcription by Myc. We also discuss future perspectives in investigating the regulation of Myc at TERT promoter during cancer development.
Collapse
Affiliation(s)
- Ekta Khattar
- Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology, ASTAR Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology, ASTARSingapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore; Centre for Cancer Biology, University of South Australia and SA PathologyAdelaide, SA, Australia
| |
Collapse
|
20
|
Activation of mutant TERT promoter by RAS-ERK signaling is a key step in malignant progression of BRAF-mutant human melanomas. Proc Natl Acad Sci U S A 2016; 113:14402-14407. [PMID: 27911794 DOI: 10.1073/pnas.1611106113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although activating BRAF/NRAS mutations are frequently seen in melanomas, they are not sufficient to drive malignant transformation and require additional events. Frequent co-occurrence of mutations in the promoter for telomerase reverse transcriptase (TERT), along with BRAF alterations, has recently been noted and correlated with poorer prognosis, implicating a functional link between BRAF signaling and telomerase reactivation in melanomas. Here, we report that RAS-ERK signaling in BRAF mutant melanomas is critical for regulating active chromatin state and recruitment of RNA polymerase II at mutant TERT promoters. Our study provides evidence that the mutant TERT promoter is a key substrate downstream of the RAS-ERK pathway. Reactivating TERT and hence reconstituting telomerase is an important step in melanoma progression from nonmalignant nevi with BRAF mutations. Hence, combined targeting of RAS-ERK and TERT promoter remodeling is a promising avenue to limit long-term survival of a majority of melanomas that harbor these two mutations.
Collapse
|