1
|
Wang X, Bigman LS, Greenblatt HM, Yu B, Levy Y, Iwahara J. Negatively charged, intrinsically disordered regions can accelerate target search by DNA-binding proteins. Nucleic Acids Res 2023; 51:4701-4712. [PMID: 36774964 PMCID: PMC10250230 DOI: 10.1093/nar/gkad045] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
In eukaryotes, many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition through intramolecular electrostatic interaction with functional domains. In this work, we investigated the impacts of D/E repeats on the target DNA search kinetics for the high-mobility group box 1 (HMGB1) protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats of varied lengths. Our experimental data showed that D/E repeats of particular lengths can accelerate the target association in the overwhelming presence of non-functional high-affinity ligands ('decoys'). Our coarse-grained molecular dynamics (CGMD) simulations showed that the autoinhibited proteins can bind to DNA and transition into the uninhibited complex with DNA through an electrostatically driven induced-fit process. In conjunction with the CGMD simulations, our kinetic model can explain how D/E repeats can accelerate the target association process in the presence of decoys. This study illuminates an unprecedented role of the negatively charged IDRs in the target search process.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry M Greenblatt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| |
Collapse
|
2
|
Gao R, Brokaw SE, Li Z, Helfant LJ, Wu T, Malik M, Stock AM. Exploring the mono-/bistability range of positively autoregulated signaling systems in the presence of competing transcription factor binding sites. PLoS Comput Biol 2022; 18:e1010738. [PMID: 36413575 PMCID: PMC9725139 DOI: 10.1371/journal.pcbi.1010738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/06/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Binding of transcription factor (TF) proteins to regulatory DNA sites is key to accurate control of gene expression in response to environmental stimuli. Theoretical modeling of transcription regulation is often focused on a limited set of genes of interest, while binding of the TF to other genomic sites is seldom considered. The total number of TF binding sites (TFBSs) affects the availability of TF protein molecules and sequestration of a TF by TFBSs can promote bistability. For many signaling systems where a graded response is desirable for continuous control over the input range, biochemical parameters of the regulatory proteins need be tuned to avoid bistability. Here we analyze the mono-/bistable parameter range for positively autoregulated two-component systems (TCSs) in the presence of different numbers of competing TFBSs. TCS signaling, one of the major bacterial signaling strategies, couples signal perception with output responses via protein phosphorylation. For bistability, competition for TF proteins by TFBSs lowers the requirement for high fold change of the autoregulated transcription but demands high phosphorylation activities of TCS proteins. We show that bistability can be avoided with a low phosphorylation capacity of TCSs, a high TF affinity for the autoregulated promoter or a low fold change in signaling protein levels upon induction. These may represent general design rules for TCSs to ensure uniform graded responses. Examining the mono-/bistability parameter range allows qualitative prediction of steady-state responses, which are experimentally validated in the E. coli CusRS system.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Samantha E. Brokaw
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Zeyue Li
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Libby J. Helfant
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Muhammad Malik
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|
3
|
Specht DA, Cortes LB, Lambert G. Overcoming Leak Sensitivity in CRISPRi Circuits Using Antisense RNA Sequestration and Regulatory Feedback. ACS Synth Biol 2022; 11:2927-2937. [PMID: 36017994 PMCID: PMC9486968 DOI: 10.1021/acssynbio.2c00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 01/24/2023]
Abstract
The controlled binding of the catalytically dead CRISPR nuclease (dCas) to DNA can be used to create complex, programmable transcriptional genetic circuits, a fundamental goal of synthetic biology. This approach, called CRISPR interference (CRISPRi), is advantageous over existing methods because the programmable nature of CRISPR proteins in principle enables the simultaneous regulation of many different targets without crosstalk. However, the performance of dCas-based genetic circuits is limited by both the sensitivity to leaky repression within CRISPRi logic gates and retroactive effects due to a shared pool of dCas proteins. By utilizing antisense RNAs (asRNAs) to sequester gRNA transcripts as well as CRISPRi feedback to self-regulate asRNA production, we demonstrate a mechanism that suppresses unwanted repression by CRISPRi and improves logical gene circuit function in Escherichia coli. This improvement is particularly pronounced during stationary expression when CRISPRi circuits do not achieve the expected regulatory dynamics. Furthermore, the use of dual CRISPRi/asRNA inverters restores the logical performance of layered circuits such as a double inverter. By studying circuit induction at the single-cell level in microfluidic channels, we provide insight into the dynamics of antisense sequestration of gRNA and regulatory feedback on dCas-based repression and derepression. These results demonstrate how CRISPRi inverters can be improved for use in more complex genetic circuitry without sacrificing the programmability and orthogonality of dCas proteins.
Collapse
Affiliation(s)
- David A. Specht
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| | - Louis B. Cortes
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| | - Guillaume Lambert
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Casas G, Perche F, Midoux P, Pichon C, Malinge JM. DNA minicircles as novel STAT3 decoy oligodeoxynucleotides endowed with anticancer activity in triple-negative breast cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:162-175. [PMID: 35847174 PMCID: PMC9263874 DOI: 10.1016/j.omtn.2022.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Decoy technology is a versatile and specific DNA oligonucleotide-based targeting strategy of pathogenic transcription factors (TFs). Chemical modifications of linear decoy oligonucleotides have been made to decrease nuclease sensitivity because of the presence of free ends but at the cost of new limitations that affect their use as therapeutic drugs. Although a short DNA minicircle is a phosphodiester nucleic acid without free ends, its potential therapeutic activity as a TF decoy oligonucleotide has not yet been investigated. Here we describe the in vitro and in vivo activity of formulated 95-bp minicircles bearing one or several STAT3 binding sequences in triple-negative breast cancer (TNBC). Minicircles bearing one STAT3 binding site interacted specifically with the active form of STAT3 and inhibited proliferation, induced apoptosis, slowed down cell cycle progression, and decreased STAT3 target gene expression in human and murine TNBC cells. Intratumoral injection of STAT3 minicircles inhibited tumor growth and metastasis in a murine model of TNBC. Increasing the number of STAT3 binding sites resulted in improved anticancer activity, opening the way for a TF multitargeting strategy. Our data provide the first demonstration of minicircles acting as STAT3 decoys and show that they could be an effective therapeutic drug for TNBC treatment.
Collapse
Affiliation(s)
- Geoffrey Casas
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
| | - Federico Perche
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
- Corresponding author Chantal Pichon, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, CS-80054, 45071 Orléans, Cedex 02, France.
| | - Jean-Marc Malinge
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
- Corresponding author Jean-Marc Malinge, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, CS-80054, 45071 Orléans, Cedex 02, France.
| |
Collapse
|
5
|
Dey S, Singh A. Diverse role of decoys on emergence and precision of oscillations in a biomolecular clock. Biophys J 2021; 120:5564-5574. [PMID: 34774502 PMCID: PMC8715246 DOI: 10.1016/j.bpj.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/11/2021] [Accepted: 11/05/2021] [Indexed: 01/14/2023] Open
Abstract
Biomolecular clocks are key drivers of oscillatory dynamics in diverse biological processes including cell-cycle regulation, circadian rhythms, and pattern formation during development. A minimal clock implementation is based on the classical Goodwin oscillator, in which a repressor protein inhibits its own synthesis via time-delayed negative feedback. Clock motifs, however, do not exist in isolation; its components are open to interacting with the complex environment inside cells. For example, there are ubiquitous high-affinity binding sites along the genome, known as decoys, where transcription factors such as repressor proteins can potentially interact. This binding affects the availability of transcription factors and has often been ignored in theoretical studies. How does such genomic decoy binding impact the clock's robustness and precision? To address this question, we systematically analyze deterministic and stochastic models of the Goodwin oscillator in the presence of reversible binding of the repressor to a finite number of decoy sites. Our analysis reveals that the relative stability of decoy-bound repressors compared to the free repressor plays distinct roles on the emergence and precision of oscillations. Interestingly, active degradation of the bound repressor can induce sustained oscillations that are otherwise absent without decoys. In contrast, decoy abundances can kill oscillation dynamics if the bound repressor is protected from degradation. Taking into account low copy-number fluctuations in clock components, we show that the degradation of the bound repressors enhances precision by attenuating noise in both the amplitude and period of oscillations. Overall, these results highlight the versatile role of otherwise hidden decoys in shaping the stochastic dynamics of biological clocks and emphasize the importance of synthetic decoys in designing robust clocks.
Collapse
Affiliation(s)
- Supravat Dey
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware,Corresponding author
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware,Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
6
|
Bernaudat F, Gustems M, Günther J, Oliva MF, Buschle A, Göbel C, Pagniez P, Lupo J, Signor L, Müller CW, Morand P, Sattler M, Hammerschmidt W, Petosa C. Structural basis of DNA methylation-dependent site selectivity of the Epstein-Barr virus lytic switch protein ZEBRA/Zta/BZLF1. Nucleic Acids Res 2021; 50:490-511. [PMID: 34893887 PMCID: PMC8754650 DOI: 10.1093/nar/gkab1183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
In infected cells, Epstein-Barr virus (EBV) alternates between latency and lytic replication. The viral bZIP transcription factor ZEBRA (Zta, BZLF1) regulates this cycle by binding to two classes of ZEBRA response elements (ZREs): CpG-free motifs resembling the consensus AP-1 site recognized by cellular bZIP proteins and CpG-containing motifs that are selectively bound by ZEBRA upon cytosine methylation. We report structural and mutational analysis of ZEBRA bound to a CpG-methylated ZRE (meZRE) from a viral lytic promoter. ZEBRA recognizes the CpG methylation marks through a ZEBRA-specific serine and a methylcytosine-arginine-guanine triad resembling that found in canonical methyl-CpG binding proteins. ZEBRA preferentially binds the meZRE over the AP-1 site but mutating the ZEBRA-specific serine to alanine inverts this selectivity and abrogates viral replication. Our findings elucidate a DNA methylation-dependent switch in ZEBRA's transactivation function that enables ZEBRA to bind AP-1 sites and promote viral latency early during infection and subsequently, under appropriate conditions, to trigger EBV lytic replication by binding meZREs.
Collapse
Affiliation(s)
- Florent Bernaudat
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble, France
| | - Montse Gustems
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Johannes Günther
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Mizar F Oliva
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9 Grenoble, France
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Christine Göbel
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Priscilla Pagniez
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Julien Lupo
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Patrice Morand
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Carlo Petosa
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| |
Collapse
|
7
|
Gao R, Helfant LJ, Wu T, Li Z, Brokaw SE, Stock AM. A balancing act in transcription regulation by response regulators: titration of transcription factor activity by decoy DNA binding sites. Nucleic Acids Res 2021; 49:11537-11549. [PMID: 34669947 PMCID: PMC8599769 DOI: 10.1093/nar/gkab935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Studies of transcription regulation are often focused on binding of transcription factors (TFs) to a small number of promoters of interest. It is often assumed that TFs are in great excess to their binding sites (TFBSs) and competition for TFs between DNA sites is seldom considered. With increasing evidence that TFBSs are exceedingly abundant for many TFs and significant variations in TF and TFBS numbers occur during growth, the interplay between a TF and all TFBSs should not be ignored. Here, we use additional decoy DNA sites to quantitatively analyze how the relative abundance of a TF to its TFBSs impacts the steady-state level and onset time of gene expression for the auto-activated Escherichia coli PhoB response regulator. We show that increasing numbers of decoy sites progressively delayed transcription activation and lowered promoter activities. Perturbation of transcription regulation by additional TFBSs did not require extreme numbers of decoys, suggesting that PhoB is approximately at capacity for its DNA sites. Addition of decoys also converted a graded response to a bi-modal response. We developed a binding competition model that captures the major features of experimental observations, providing a quantitative framework to assess how variations in TFs and TFBSs influence transcriptional responses.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Libby J Helfant
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Zeyue Li
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Samantha E Brokaw
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Wang T, Tague N, Whelan SA, Dunlop MJ. Programmable gene regulation for metabolic engineering using decoy transcription factor binding sites. Nucleic Acids Res 2021; 49:1163-1172. [PMID: 33367820 PMCID: PMC7826281 DOI: 10.1093/nar/gkaa1234] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
Transcription factor decoy binding sites are short DNA sequences that can titrate a transcription factor away from its natural binding site, therefore regulating gene expression. In this study, we harness synthetic transcription factor decoy systems to regulate gene expression for metabolic pathways in Escherichia coli. We show that transcription factor decoys can effectively regulate expression of native and heterologous genes. Tunability of the decoy can be engineered via changes in copy number or modifications to the DNA decoy site sequence. Using arginine biosynthesis as a showcase, we observed a 16-fold increase in arginine production when we introduced the decoy system to steer metabolic flux towards increased arginine biosynthesis, with negligible growth differences compared to the wild type strain. The decoy-based production strain retains high genetic integrity; in contrast to a gene knock-out approach where mutations were common, we detected no mutations in the production system using the decoy-based strain. We further show that transcription factor decoys are amenable to multiplexed library screening by demonstrating enhanced tolerance to pinene with a combinatorial decoy library. Our study shows that transcription factor decoy binding sites are a powerful and compact tool for metabolic engineering.
Collapse
Affiliation(s)
- Tiebin Wang
- Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston, MA 02215, USA.,Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Nathan Tague
- Biological Design Center, Boston University, Boston, MA 02215, USA.,Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Mary J Dunlop
- Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston, MA 02215, USA.,Biological Design Center, Boston University, Boston, MA 02215, USA.,Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
9
|
Wang J, Belta C, Isaacson SA. How Retroactivity Affects the Behavior of Incoherent Feedforward Loops. iScience 2020; 23:101779. [PMID: 33305173 PMCID: PMC7711281 DOI: 10.1016/j.isci.2020.101779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 11/02/2020] [Indexed: 10/27/2022] Open
Abstract
An incoherent feedforward loop (IFFL) is a network motif known for its ability to accelerate responses and generate pulses. It remains an open question to understand the behavior of IFFLs in contexts with high levels of retroactivity, where an upstream transcription factor binds to numerous downstream binding sites. Here we study the behavior of IFFLs by simulating and comparing ODE models with different levels of retroactivity. We find that increasing retroactivity in an IFFL can increase, decrease, or keep the network's response time and pulse amplitude constant. This suggests that increasing retroactivity, traditionally considered an impediment to designing robust synthetic systems, could be exploited to improve the performance of IFFLs. In contrast, we find that increasing retroactivity in a negative autoregulated circuit can only slow the response. The ability of an IFFL to flexibly handle retroactivity may have contributed to its significant abundance in both bacterial and eukaryotic regulatory networks.
Collapse
Affiliation(s)
- Junmin Wang
- The Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Calin Belta
- The Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Samuel A. Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
10
|
Wan X, Pinto F, Yu L, Wang B. Synthetic protein-binding DNA sponge as a tool to tune gene expression and mitigate protein toxicity. Nat Commun 2020; 11:5961. [PMID: 33235249 PMCID: PMC7686491 DOI: 10.1038/s41467-020-19552-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Versatile tools for gene expression regulation are vital for engineering gene networks of increasing scales and complexity with bespoke responses. Here, we investigate and repurpose a ubiquitous, indirect gene regulation mechanism from nature, which uses decoy protein-binding DNA sites, named DNA sponge, to modulate target gene expression in Escherichia coli. We show that synthetic DNA sponges can be designed to reshape the response profiles of gene circuits, lending multifaceted tuning capacities including reducing basal leakage by >20-fold, increasing system output amplitude by >130-fold and dynamic range by >70-fold, and mitigating host growth inhibition by >20%. Further, multi-layer DNA sponges for decoying multiple regulatory proteins provide an additive tuning effect on the responses of layered circuits compared to single-layer sponges. Our work shows synthetic DNA sponges offer a simple yet generalizable route to systematically engineer the performance of synthetic gene circuits, expanding the current toolkit for gene regulation with broad potential applications. Decoy binding sites are natural regulators of gene expression. Here the authors design synthetic DNA sponges that fine tune the performance of synthetic gene circuits in a simple yet systematic manner, expanding the synthetic biology toolkit for gene regulation.
Collapse
Affiliation(s)
- Xinyi Wan
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Filipe Pinto
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Luyang Yu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.,Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Baojun Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK. .,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK. .,College of Life Sciences, Zhejiang University, Hangzhou, 310058, China. .,Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China.
| |
Collapse
|
11
|
Ali MZ, Parisutham V, Choubey S, Brewster RC. Inherent regulatory asymmetry emanating from network architecture in a prevalent autoregulatory motif. eLife 2020; 9:56517. [PMID: 32808926 PMCID: PMC7505660 DOI: 10.7554/elife.56517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Predicting gene expression from DNA sequence remains a major goal in the field of gene regulation. A challenge to this goal is the connectivity of the network, whose role in altering gene expression remains unclear. Here, we study a common autoregulatory network motif, the negative single-input module, to explore the regulatory properties inherited from the motif. Using stochastic simulations and a synthetic biology approach in E. coli, we find that the TF gene and its target genes have inherent asymmetry in regulation, even when their promoters are identical; the TF gene being more repressed than its targets. The magnitude of asymmetry depends on network features such as network size and TF-binding affinities. Intriguingly, asymmetry disappears when the growth rate is too fast or too slow and is most significant for typical growth conditions. These results highlight the importance of accounting for network architecture in quantitative models of gene expression.
Collapse
Affiliation(s)
- Md Zulfikar Ali
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Vinuselvi Parisutham
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Sandeep Choubey
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Robert C Brewster
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
12
|
Enhancement of gene expression noise from transcription factor binding to genomic decoy sites. Sci Rep 2020; 10:9126. [PMID: 32499583 PMCID: PMC7272470 DOI: 10.1038/s41598-020-65750-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/08/2020] [Indexed: 12/29/2022] Open
Abstract
The genome contains several high-affinity non-functional binding sites for transcription factors (TFs) creating a hidden and unexplored layer of gene regulation. We investigate the role of such “decoy sites” in controlling noise (random fluctuations) in the level of a TF that is synthesized in stochastic bursts. Prior studies have assumed that decoy-bound TFs are protected from degradation, and in this case decoys function to buffer noise. Relaxing this assumption to consider arbitrary degradation rates for both bound/unbound TF states, we find rich noise behaviors. For low-affinity decoys, noise in the level of unbound TF always monotonically decreases to the Poisson limit with increasing decoy numbers. In contrast, for high-affinity decoys, noise levels first increase with increasing decoy numbers, before decreasing back to the Poisson limit. Interestingly, while protection of bound TFs from degradation slows the time-scale of fluctuations in the unbound TF levels, the decay of bound TFs leads to faster fluctuations and smaller noise propagation to downstream target proteins. In summary, our analysis reveals stochastic dynamics emerging from nonspecific binding of TFs and highlights the dual role of decoys as attenuators or amplifiers of gene expression noise depending on their binding affinity and stability of the bound TF.
Collapse
|
13
|
Jayaprakash C, Das J. Stochastic Sequestration Promotes Specificity in Decision Making in Single Cells. J Phys Chem B 2019; 123:10323-10330. [PMID: 31577902 DOI: 10.1021/acs.jpcb.9b05722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular functions are mediated by specific molecular interactions; however, often competing nonspecific interactions can occur instead, for example, in noncoding regions of genes during transcription or in the response of cell receptors to external signals. Various functional roles have been proposed for such interactions. Motivated by these considerations, we study the time-dependent behavior of a class of discrete, stochastic models in which decoy molecules mediate nonspecific reactions that sequester activated molecules. It is shown that such nonspecific interactions can lead to a time delay in the completion of the specific reaction by the activated molecule, thus permitting discrimination between signals of different duration. We study the effect of stochastic fluctuations in a simple model of gene transcription by numerical solution of the Master Equation and find that the distribution of first passage times for the specific reaction shows surprising nonexponential (non-Debye) behavior over a range of time scales. The mathematical mechanism underlying this behavior is explained in terms of the behavior of the eigensystem of the linear operator associated with the time evolution. Our results demonstrate that stochastic sequestration can be used to enhance the specificity achieved by the well-known kinetic proofreading mechanism.
Collapse
Affiliation(s)
- Ciriyam Jayaprakash
- Department of Physics , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Jayajit Das
- Battelle Center for Mathematical Medicine , The Research Institute at the Nationwide Children's Hospital , Columbus , Ohio 43205 , United States.,Department of Pediatrics, The Wexner College of Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
14
|
Hodges AJ, Hudson NO, Buck-Koehntop BA. Cys 2His 2 Zinc Finger Methyl-CpG Binding Proteins: Getting a Handle on Methylated DNA. J Mol Biol 2019:S0022-2836(19)30567-4. [PMID: 31628952 DOI: 10.1016/j.jmb.2019.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation is an essential epigenetic modification involved in the maintenance of genomic stability, preservation of cellular identity, and regulation of the transcriptional landscape needed to maintain cellular function. In an increasing number of disease conditions, DNA methylation patterns are inappropriately distributed in a manner that supports the disease phenotype. Methyl-CpG binding proteins (MBPs) are specialized transcription factors that read and translate methylated DNA signals into recruitment of protein assemblies that can alter local chromatin architecture and transcription. MBPs thus play a key intermediary role in gene regulation for both normal and diseased cells. Here, we highlight established and potential structure-function relationships for the best characterized members of the zinc finger (ZF) family of MBPs in propagating DNA methylation signals into downstream cellular responses. Current and future investigations aimed toward expanding our understanding of ZF MBP cellular roles will provide needed mechanistic insight into normal and disease state functions, as well as afford evaluation for the potential of these proteins as epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Amelia J Hodges
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Nicholas O Hudson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
15
|
Brignall R, Moody AT, Mathew S, Gaudet S. Considering Abundance, Affinity, and Binding Site Availability in the NF-κB Target Selection Puzzle. Front Immunol 2019; 10:609. [PMID: 30984185 PMCID: PMC6450194 DOI: 10.3389/fimmu.2019.00609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription regulation system governs a diverse set of responses to various cytokine stimuli. With tools from in vitro biochemical characterizations, to omics-based whole genome investigations, great strides have been made in understanding how NF-κB transcription factors control the expression of specific sets of genes. Nonetheless, these efforts have also revealed a very large number of potential binding sites for NF-κB in the human genome, and a puzzle emerges when trying to explain how NF-κB selects from these many binding sites to direct cell-type- and stimulus-specific gene expression patterns. In this review, we surmise that target gene transcription can broadly be thought of as a function of the nuclear abundance of the various NF-κB dimers, the affinity of NF-κB dimers for the regulatory sequence and the availability of this regulatory site. We use this framework to place quantitative information that has been gathered about the NF-κB transcription regulation system into context and thus consider questions it answers, and questions it raises. We end with a brief discussion of some of the future prospects that new approaches could bring to our understanding of how NF-κB transcription factors orchestrate diverse responses in different biological contexts.
Collapse
Affiliation(s)
- Ruth Brignall
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Amy T Moody
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Laboratory for Systems Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Department of Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Shibin Mathew
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Suzanne Gaudet
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| |
Collapse
|
16
|
Hudson NO, Buck-Koehntop BA. Zinc Finger Readers of Methylated DNA. Molecules 2018; 23:E2555. [PMID: 30301273 PMCID: PMC6222495 DOI: 10.3390/molecules23102555] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
DNA methylation is a prevalent epigenetic modification involved in regulating a number of essential cellular processes, including genomic accessibility and transcriptional outcomes. As such, aberrant alterations in global DNA methylation patterns have been associated with a growing number of disease conditions. Nevertheless, the full mechanisms by which DNA methylation information is interpreted and translated into genomic responses is not yet fully understood. Methyl-CpG binding proteins (MBPs) function as important mediators of this essential process by selectively reading DNA methylation signals and translating this information into down-stream cellular outcomes. The Cys₂His₂ zinc finger scaffold is one of the most abundant DNA binding motifs found within human transcription factors, yet only a few zinc finger containing proteins capable of conferring selectivity for mCpG over CpG sites have been characterized. This review summarizes our current structural understanding for the mechanisms by which the zinc finger MBPs evaluated to date read this essential epigenetic mark. Further, some of the biological implications for mCpG readout elicited by this family of MBPs are discussed.
Collapse
Affiliation(s)
- Nicholas O Hudson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
17
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
18
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
19
|
Kemme CA, Marquez R, Luu RH, Iwahara J. Potential role of DNA methylation as a facilitator of target search processes for transcription factors through interplay with methyl-CpG-binding proteins. Nucleic Acids Res 2017; 45:7751-7759. [PMID: 28486614 PMCID: PMC5569922 DOI: 10.1093/nar/gkx387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/06/2017] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic genomes contain numerous non-functional high-affinity sequences for transcription factors. These sequences potentially serve as natural decoys that sequester transcription factors. We have previously shown that the presence of sequences similar to the target sequence could substantially impede association of the transcription factor Egr-1 with its targets. In this study, using a stopped-flow fluorescence method, we examined the kinetic impact of DNA methylation of decoys on the search process of the Egr-1 zinc-finger protein. We analyzed its association with an unmethylated target site on fluorescence-labeled DNA in the presence of competitor DNA duplexes, including Egr-1 decoys. DNA methylation of decoys alone did not affect target search kinetics. In the presence of the MeCP2 methyl-CpG-binding domain (MBD), however, DNA methylation of decoys substantially (∼10-30-fold) accelerated the target search process of the Egr-1 zinc-finger protein. This acceleration did not occur when the target was also methylated. These results suggest that when decoys are methylated, MBD proteins can block them and thereby allow Egr-1 to avoid sequestration in non-functional locations. This effect may occur in vivo for DNA methylation outside CpG islands (CGIs) and could facilitate localization of some transcription factors within regulatory CGIs, where DNA methylation is rare.
Collapse
Affiliation(s)
- Catherine A Kemme
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Rolando Marquez
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Ross H Luu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| |
Collapse
|
20
|
Chattopadhyay A, Zandarashvili L, Luu RH, Iwahara J. Thermodynamic Additivity for Impacts of Base-Pair Substitutions on Association of the Egr-1 Zinc-Finger Protein with DNA. Biochemistry 2016; 55:6467-6474. [PMID: 27933778 DOI: 10.1021/acs.biochem.6b00757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcription factor Egr-1 specifically binds as a monomer to its 9 bp target DNA sequence, GCGTGGGCG, via three zinc fingers and plays important roles in the brain and cardiovascular systems. Using fluorescence-based competitive binding assays, we systematically analyzed the impacts of all possible single-nucleotide substitutions in the target DNA sequence and determined the change in binding free energy for each. Then, we measured the changes in binding free energy for sequences with multiple substitutions and compared them with the sum of the changes in binding free energy for each constituent single substitution. For the DNA variants with two or three nucleotide substitutions in the target sequence, we found excellent agreement between the measured and predicted changes in binding free energy. Interestingly, however, we found that this thermodynamic additivity broke down with a larger number of substitutions. For DNA sequences with four or more substitutions, the measured changes in binding free energy were significantly larger than predicted. On the basis of these results, we analyzed the occurrences of high-affinity sequences in the genome and found that the genome contains millions of such sequences that might functionally sequester Egr-1.
Collapse
Affiliation(s)
- Abhijnan Chattopadhyay
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Levani Zandarashvili
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Ross H Luu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , Galveston, Texas 77555, United States
| |
Collapse
|