1
|
Javed SR, Skolariki A, Zameer MZ, Lord SR. Implications of obesity and insulin resistance for the treatment of oestrogen receptor-positive breast cancer. Br J Cancer 2024; 131:1724-1736. [PMID: 39251829 PMCID: PMC11589622 DOI: 10.1038/s41416-024-02833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is the most common cancer in women, and incidence rates are rising, it is thought in part, due to increasing levels of obesity. Endocrine therapy (ET) remains the cornerstone of systemic therapy for early and advanced oestrogen receptor-positive (ER + ) breast cancer, but despite treatment advances, it is becoming more evident that obesity and insulin resistance are associated with worse outcomes. Here, we describe the current understanding of the relationship between both obesity and diabetes and the prevalence and outcomes for ER+ breast cancer. We also discuss the mechanisms associated with resistance to ET and the relationship to treatment toxicity.
Collapse
Affiliation(s)
| | | | | | - Simon R Lord
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Kulkoyluoglu Cotul E, Safdar MH, Paez SJ, Kulkarni A, Ayers MG, Lin H, Xianyu Z, Teegarden D, Hursting SD, Wendt MK. FGFR1 Signaling Facilitates Obesity-Driven Pulmonary Outgrowth in Metastatic Breast Cancer. Mol Cancer Res 2024; 22:254-267. [PMID: 38153436 PMCID: PMC10923021 DOI: 10.1158/1541-7786.mcr-23-0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Survival of dormant, disseminated breast cancer cells contributes to tumor relapse and metastasis. Women with a body mass index greater than 35 have an increased risk of developing metastatic recurrence. Herein, we investigated the effect of diet-induced obesity (DIO) on primary tumor growth and metastatic progression using both metastatic and systemically dormant mouse models of breast cancer. This approach led to increased PT growth and pulmonary metastasis. We developed a novel protocol to induce obesity in Balb/c mice by combining dietary and hormonal interventions with a thermoneutral housing strategy. In contrast to standard housing conditions, ovariectomized Balb/c mice fed a high-fat diet under thermoneutral conditions became obese over a period of 10 weeks, resulting in a 250% gain in fat mass. Obese mice injected with the D2.OR model developed macroscopic pulmonary nodules compared with the dormant phenotype of these cells in mice fed a control diet. Analysis of the serum from obese Balb/c mice revealed increased levels of FGF2 as compared with lean mice. We demonstrate that serum from obese animals, exogenous FGF stimulation, or constitutive stimulation through autocrine and paracrine FGF2 is sufficient to break dormancy and drive pulmonary outgrowth. Blockade of FGFR signaling or specific depletion of FGFR1 prevented obesity-associated outgrowth of the D2.OR model. IMPLICATIONS Overall, this study developed a novel DIO model that allowed for demonstration of FGF2:FGFR1 signaling as a key molecular mechanism connecting obesity to breakage of systemic tumor dormancy and metastatic progression.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu Cotul
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Muhammad Hassan Safdar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Sebastian Juan Paez
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Aneesha Kulkarni
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Mitchell G. Ayers
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Hang Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Zilin Xianyu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Dorothy Teegarden
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Stephen D. Hursting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael K. Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Sankofi BM, Valencia-Rincón E, Sekhri M, Ponton-Almodovar AL, Bernard JJ, Wellberg EA. The impact of poor metabolic health on aggressive breast cancer: adipose tissue and tumor metabolism. Front Endocrinol (Lausanne) 2023; 14:1217875. [PMID: 37800138 PMCID: PMC10548218 DOI: 10.3389/fendo.2023.1217875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Obesity and type 2 diabetes are chronic metabolic diseases that impact tens to hundreds of millions of adults, especially in developed countries. Each condition is associated with an elevated risk of breast cancer and with a poor prognosis after treatment. The mechanisms connecting poor metabolic health to breast cancer are numerous and include hyperinsulinemia, inflammation, excess nutrient availability, and adipose tissue dysfunction. Here, we focus on adipose tissue, highlighting important roles for both adipocytes and fibroblasts in breast cancer progression. One potentially important mediator of adipose tissue effects on breast cancer is the fibroblast growth factor receptor (FGFR) signaling network. Among the many roles of FGFR signaling, we postulate that key mechanisms driving aggressive breast cancer include epithelial-to-mesenchymal transition and cellular metabolic reprogramming. We also pose existing questions that may help better understand breast cancer biology in people with obesity, type 2 diabetes, and poor metabolic health.
Collapse
Affiliation(s)
- Barbara Mensah Sankofi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Estefania Valencia-Rincón
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Malika Sekhri
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Adriana L. Ponton-Almodovar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
4
|
Le Moli R, Vella V, Tumino D, Piticchio T, Naselli A, Belfiore A, Frasca F. Inflammasome activation as a link between obesity and thyroid disorders: Implications for an integrated clinical management. Front Endocrinol (Lausanne) 2022; 13:959276. [PMID: 36060941 PMCID: PMC9437482 DOI: 10.3389/fendo.2022.959276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Obesity is strongly associated with chronic low-grade inflammation. Obese patients have an increased risk to develop thyroid autoimmunity and to became hypothyroid, suggesting a pathogenetic link between obesity, inflammation and autoimmunity. Moreover, type 2 diabetes and dyslipidemia, also characterized by low-grade inflammation, were recently associated with more aggressive forms of Graves' ophthalmopathy. The association between obesity and autoimmune thyroid disorders may also go in the opposite direction, as treating autoimmune hyper and hypothyroidism can lead to weight gain. In addition, restoration of euthyroidism by L-T4 replacement therapy is more challenging in obese athyreotic patients, as it is difficult to maintain thyrotropin stimulation hormone (TSH) values within the normal range. Intriguingly, pro-inflammatory cytokines decrease in obese patients after bariatric surgery along with TSH levels. Moreover, the risk of thyroid cancer is increased in patients with thyroid autoimmune disorders, and is also related to the degree of obesity and inflammation. Molecular studies have shown a relationship between the low-grade inflammation of obesity and the activity of intracellular multiprotein complexes typical of immune cells (inflammasomes). We will now highlight some clinical implications of inflammasome activation in the relationship between obesity and thyroid disease.
Collapse
|
5
|
Holowatyj AN, Gigic B, Warby CA, Ose J, Lin T, Schrotz-King P, Ulrich CM, Bernard JJ. The Use of Human Serum Samples to Study Malignant Transformation: A Pilot Study. Cells 2021; 10:2670. [PMID: 34685650 PMCID: PMC8534413 DOI: 10.3390/cells10102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Obesity and excess adiposity account for approximately 20% of all cancer cases; however, biomarkers of risk remain to be elucidated. While fibroblast growth factor-2 (FGF2) is emerging as an attractive candidate biomarker for visceral adipose tissue mass, the role of circulating FGF2 in malignant transformation remains unknown. Moreover, functional assays for biomarker discovery are limited. We sought to determine if human serum could stimulate the 3D growth of a non-tumorigenic cell line. This type of anchorage-independent 3D growth in soft agar is a surrogate marker for acquired tumorigenicity of cell lines. We found that human serum from cancer-free men and women has the potential to stimulate growth in soft agar of non-tumorigenic epithelial JB6 P+ cells. We examined circulating levels of FGF2 in humans in malignant transformation in vitro in a pilot study of n = 33 men and women. Serum FGF2 levels were not associated with colony formation in epithelial cells (r = 0.05, p = 0.80); however, a fibroblast growth factor receptor-1 (FGFR1) selective inhibitor significantly blocked serum-stimulated transformation, suggesting that FGF2 activation of FGFR1 may be necessary, but not sufficient for the transforming effects of human serum. This pilot study indicates that the FGF2/FGFR1 axis plays a role in JB6 P+ malignant transformation and describes an assay to determine critical serum factors that have the potential to promote tumorigenesis.
Collapse
Affiliation(s)
- Andreana N. Holowatyj
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Christy A. Warby
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Petra Schrotz-King
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (C.A.W.); (J.O.); (T.L.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
6
|
Fabian CJ, Klemp JR, Marchello NJ, Vidoni ED, Sullivan DK, Nydegger JL, Phillips TA, Kreutzjans AL, Hendry B, Befort CA, Nye L, Powers KR, Hursting SD, Giles ED, Hamilton-Reeves JM, Li B, Kimler BF. Rapid Escalation of High-Volume Exercise during Caloric Restriction; Change in Visceral Adipose Tissue and Adipocytokines in Obese Sedentary Breast Cancer Survivors. Cancers (Basel) 2021; 13:cancers13194871. [PMID: 34638355 PMCID: PMC8508448 DOI: 10.3390/cancers13194871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Aerobic exercise reduces risk for developing breast cancer or for breast cancer recurrence. In obese women exercise can significantly augment the effects of caloric restriction on visceral fat, reducing metabolic abnormalities and cancer. Women who are older, obese, and sedentary, especially those who have been treated for breast cancer, find it difficult to initiate and achieve the minimum or optimum levels of exercise. In a two-part pilot we found that by providing older, obese, sedentary breast cancer survivors 12 weeks of twice weekly personal training sessions, they could safely increase exercise to ≥200 min/week by 9 weeks during caloric restriction. At 24 weeks, high levels of exercise were still observed with continued behavioral support and study-provided exercise facility. Substantial improvement in visceral fat and breast cancer risk biomarkers were observed with this affordable intervention that is readily exportable to the community. Abstract Aerobic exercise reduces risk for breast cancer and recurrence and promotes visceral adipose tissue (VAT) loss in obesity. However, few breast cancer survivors achieve recommended levels of moderate to vigorous physical activity (MVPA) without supervision. In a two-cohort study, feasibility of 12 weeks of partially supervised exercise was started concomitantly with caloric restriction and effects on body composition and systemic risk biomarkers were explored. In total, 22 obese postmenopausal sedentary women (including 18 breast cancer survivors) with median age of 60 and BMI of 37 kg/m2 were enrolled. Using personal trainers twice weekly at area YMCAs, MVPA was escalated to ≥200 min/week over 9 weeks. For cohort 2, maintenance of effect was assessed when study provided trainer services were stopped but monitoring, group counseling sessions, and access to the exercise facility were continued. Median post-escalation MVPA was 219 min/week with median 12-week mass and VAT loss of 8 and 19%. MVPA was associated with VAT loss which was associated with improved adiponectin:leptin ratio. In total, 9/11 of cohort-2 women continued the behavioral intervention for another 12 weeks without trainers. High MVPA continued with median 24-week mass and VAT loss of 12 and 29%. This intervention should be further studied in obese sedentary women.
Collapse
Affiliation(s)
- Carol J. Fabian
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (C.J.F.); (J.R.K.); (J.L.N.); (T.A.P.); (A.L.K.); (L.N.); (K.R.P.)
| | - Jennifer R. Klemp
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (C.J.F.); (J.R.K.); (J.L.N.); (T.A.P.); (A.L.K.); (L.N.); (K.R.P.)
| | - Nicholas J. Marchello
- Department of Nutrition, Kinesiology, and Psychological Sciences, University of Central Missouri, P.O. Box 800, Warrensburg, MO 64093, USA;
| | - Eric D. Vidoni
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (E.D.V.); (B.H.)
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (D.K.S.); (J.M.H.-R.)
| | - Jennifer L. Nydegger
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (C.J.F.); (J.R.K.); (J.L.N.); (T.A.P.); (A.L.K.); (L.N.); (K.R.P.)
| | - Teresa A. Phillips
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (C.J.F.); (J.R.K.); (J.L.N.); (T.A.P.); (A.L.K.); (L.N.); (K.R.P.)
| | - Amy L. Kreutzjans
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (C.J.F.); (J.R.K.); (J.L.N.); (T.A.P.); (A.L.K.); (L.N.); (K.R.P.)
| | - Bill Hendry
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (E.D.V.); (B.H.)
| | - Christie A. Befort
- Department of Population Health, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA;
| | - Lauren Nye
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (C.J.F.); (J.R.K.); (J.L.N.); (T.A.P.); (A.L.K.); (L.N.); (K.R.P.)
| | - Kandy R. Powers
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (C.J.F.); (J.R.K.); (J.L.N.); (T.A.P.); (A.L.K.); (L.N.); (K.R.P.)
| | - Stephen D. Hursting
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, 235 Dauer Drive, Chapel Hill, NC 27599, USA;
| | - Erin D. Giles
- Department of Nutrition, Texas A&M University, 214 Cater-Mattil 2253 TAMU, 373 Olsen Blvd, College Station, TX 77843, USA;
| | - Jill M. Hamilton-Reeves
- Department of Dietetics and Nutrition, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (D.K.S.); (J.M.H.-R.)
- Department of Urology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Bing Li
- Department of Pathology, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA;
| | - Bruce F. Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
- Correspondence: ; Tel.: +1-913-588-4523
| |
Collapse
|
7
|
The Tumor Promotional Role of Adipocytes in the Breast Cancer Microenvironment and Macroenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1342-1352. [PMID: 33639102 DOI: 10.1016/j.ajpath.2021.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
The role of the adipocyte in the tumor microenvironment has received significant attention as a critical mediator of the obesity-cancer relationship. Current estimates indicate that 650 million adults have obesity, and thirteen cancers, including breast cancer, are estimated to be associated with obesity. Even in people with a normal body mass index, adipocytes are key players in breast cancer progression because of the proximity of tumors to mammary adipose tissue. Outside the breast microenvironment, adipocytes influence metabolic and immune function and produce numerous signaling molecules, all of which affect breast cancer development and progression. The current epidemiologic data linking obesity, and importantly adipose tissue, to breast cancer risk and prognosis, focusing on metabolic health, weight gain, and adipose distribution as underlying drivers of obesity-associated breast cancer is presented here. Bioactive factors produced by adipocytes, both normal and cancer associated, such as cytokines, growth factors, and metabolites, and the potential mechanisms through which adipocytes influence different breast cancer subtypes are highlighted.
Collapse
|
8
|
Acar MB, Ayaz-Güner Ş, Di Bernardo G, Güner H, Murat A, Peluso G, Özcan S, Galderisi U. Obesity induced by high-fat diet is associated with critical changes in biological and molecular functions of mesenchymal stromal cells present in visceral adipose tissue. Aging (Albany NY) 2020; 12:24894-24913. [PMID: 33361524 PMCID: PMC7803587 DOI: 10.18632/aging.202423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
The mesenchymal stromal cells (MSCs) residing within the stromal component of visceral adipose tissue appear to be greatly affected by obesity, with impairment of their functions and presence of senescence. To gain further insight into these phenomena, we analyzed the changes in total proteome content and secretome of mouse MSCs after a high-fat diet (HFD) treatment compared to a normal diet (ND). In healthy conditions, MSCs are endowed with functions mainly devoted to vesicle trafficking. These cells have an immunoregulatory role, affecting leukocyte activation and migration, acute inflammation phase response, chemokine signaling, and platelet activities. They also present a robust response to stress. We identified four signaling pathways (TGF-β, VEGFR2, HMGB1, and Leptin) that appear to govern the cells' functions. In the obese mice, MSCs showed a change in their functions. The immunoregulation shifted toward pro-inflammatory tasks with the activation of interleukin-1 pathway and of Granzyme A signaling. Moreover, the methionine degradation pathway and the processing of capped intronless pre-mRNAs may be related to the inflammation process. The signaling pathways we identified in ND MSCs were replaced by MET, WNT, and FGFR2 signal transduction, which may play a role in promoting inflammation, cancer, and aging.
Collapse
Affiliation(s)
- Mustafa Burak Acar
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey
| | - Şerife Ayaz-Güner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | - Hüseyin Güner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey
| | - Ayşegül Murat
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey
| | | | - Servet Özcan
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey.,Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Umberto Galderisi
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey.,Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
9
|
Aparecida Silveira E, Vaseghi G, de Carvalho Santos AS, Kliemann N, Masoudkabir F, Noll M, Mohammadifard N, Sarrafzadegan N, de Oliveira C. Visceral Obesity and Its Shared Role in Cancer and Cardiovascular Disease: A Scoping Review of the Pathophysiology and Pharmacological Treatments. Int J Mol Sci 2020; 21:E9042. [PMID: 33261185 PMCID: PMC7730690 DOI: 10.3390/ijms21239042] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The association between obesity, cancer and cardiovascular disease (CVD) has been demonstrated in animal and epidemiological studies. However, the specific role of visceral obesity on cancer and CVD remains unclear. Visceral adipose tissue (VAT) is a complex and metabolically active tissue, that can produce different adipokines and hormones, responsible for endocrine-metabolic comorbidities. This review explores the potential mechanisms related to VAT that may also be involved in cancer and CVD. In addition, we discuss the shared pharmacological treatments which may reduce the risk of both diseases. This review highlights that chronic inflammation, molecular aspects, metabolic syndrome, secretion of hormones and adiponectin associated to VAT may have synergistic effects and should be further studied in relation to cancer and CVD. Reductions in abdominal and visceral adiposity improve insulin sensitivity, lipid profile and cytokines, which consequently reduce the risk of CVD and some cancers. Several medications have shown to reduce visceral and/or subcutaneous fat. Further research is needed to investigate the pathophysiological mechanisms by which visceral obesity may cause both cancer and CVD. The role of visceral fat in cancer and CVD is an important area to advance. Public health policies to increase public awareness about VAT's role and ways to manage or prevent it are needed.
Collapse
Affiliation(s)
- Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Annelisa Silva de Carvalho Santos
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
- United Faculty of Campinas, Goiânia 74525-020, Goiás, Brazil
| | - Nathalie Kliemann
- Nutritional Epidemiology Group, Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran
| | - Matias Noll
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Goiás, Brazil; (A.S.d.C.S.); (M.N.)
- Instituto Federal Goiano, Ceres 76300-000, Goiás, Brazil
| | - Noushin Mohammadifard
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
| |
Collapse
|
10
|
ZhuGe DL, Javaid HMA, Sahar NE, Zhao YZ, Huh JY. Fibroblast growth factor 2 exacerbates inflammation in adipocytes through NLRP3 inflammasome activation. Arch Pharm Res 2020; 43:1311-1324. [PMID: 33245516 DOI: 10.1007/s12272-020-01295-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Chronic inflammation in adipose tissue is the hallmark of obesity and a major risk factor for the development of obesity-induced insulin resistance. NLRP3 inflammasome regulates the maturation and secretion of pro-inflammatory cytokines, such as IL-1β and IL-18, and was recently discovered to be involved in obesity-related metabolic diseases. Fibroblast growth factors (FGFs) such as FGF1, FGF10, and FGF21 are adipokines that regulate adipocyte development and metabolism, but reports on the effect of other FGFs on adipocytes are lacking. In the present study, the novel role of FGF2 in NLRP3 inflammasome activation was elucidated. Our results showed that FGF2 levels were increased during adipocyte differentiation and in the adipose tissue of high-fat diet (HFD)-induced obese mice. Recombinant FGF2 treatment upregulated inflammasome markers such as NLRP3, which was further exaggerated by TNF-ɑ treatment. Interestingly, β-Klotho, a co-receptor of FGF21, was significantly decreased by FGF2 treatment. Results from mice confirmed the positive correlation between FGF2 and NLRP3 expression in epididymal and subcutaneous adipose tissue, while exercise training effectively reversed HFD-induced NLRP3 expression as well as FGF2 levels in both adipose depots. Our results suggest that FGF2 is an adipokine that may exacerbate the inflammatory response in adipocytes through NLRP3 inflammasome activation.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes/drug effects
- Adipocytes/immunology
- Adipocytes/metabolism
- Adipogenesis/drug effects
- Animals
- Disease Models, Animal
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Inflammasomes/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Klotho Proteins
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Obesity/genetics
- Obesity/immunology
- Obesity/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/agonists
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/agonists
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Signal Transduction
- Subcutaneous Fat/drug effects
- Subcutaneous Fat/immunology
- Subcutaneous Fat/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- De-Li ZhuGe
- College of Pharmacy, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hafiz Muhammad Ahmad Javaid
- College of Pharmacy, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Namood E Sahar
- College of Pharmacy, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ying-Zheng Zhao
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
11
|
Boothby-Shoemaker W, Benham V, Paithankar S, Shankar R, Chen B, Bernard JJ. The Relationship between Leptin, the Leptin Receptor and FGFR1 in Primary Human Breast Tumors. Cells 2020; 9:E2224. [PMID: 33019728 PMCID: PMC7600295 DOI: 10.3390/cells9102224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
Obesity is associated with increased breast cancer risk and poorer cancer outcomes; however, the precise etiology of these observations has not been fully identified. Our previous research suggests that adipose tissue-derived fibroblast growth factor-2 (FGF2) promotes the malignant transformation of epithelial cells through the activation of fibroblast growth factor receptor-1 (FGFR1). FGF2 is increased in the context of obesity, and increased sera levels have been associated with endocrine-resistant breast cancer. Leptin is a marker of obesity and promotes breast carcinogenesis through several mechanisms. In this study, we leverage public gene expression datasets to evaluate the associations between FGFR1, leptin, and the leptin receptor (LepR) in breast cancer. We show a positive association between FGFR1 and leptin protein copy number in primary breast tumors. These observations coincided with a positive association between Janus kinase 2 (Jak2) mRNA with both leptin receptor (LepR) mRNA and FGFR1 mRNA. Moreover, two separate Jak2 inhibitors attenuated both leptin+FGF2-stimulated and mouse adipose tissue-stimulated MCF-10A transformation. These results demonstrate how elevated sera FGF2 and leptin in obese patients may promote cancer progression in tumors that express elevated FGFR1 and LepR through Jak2 signaling. Therefore, Jak2 is a potential therapeutic target for FGFR1 amplified breast cancer, especially in the context of obesity.
Collapse
Affiliation(s)
- Wyatt Boothby-Shoemaker
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (W.B.-S.); (V.B.); (B.C.)
| | - Vanessa Benham
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (W.B.-S.); (V.B.); (B.C.)
| | - Shreya Paithankar
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (S.P.); (R.S.)
| | - Rama Shankar
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (S.P.); (R.S.)
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (W.B.-S.); (V.B.); (B.C.)
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (S.P.); (R.S.)
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (W.B.-S.); (V.B.); (B.C.)
- Nicolas V. Perricone Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Kang T, Yau C, Wong CK, Sanborn JZ, Newton Y, Vaske C, Benz SC, Krings G, Camarda R, Henry JE, Stuart J, Powell M, Benz CC. A risk-associated Active transcriptome phenotype expressed by histologically normal human breast tissue and linked to a pro-tumorigenic adipocyte population. Breast Cancer Res 2020; 22:81. [PMID: 32736587 PMCID: PMC7395362 DOI: 10.1186/s13058-020-01322-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023] Open
Abstract
Background Previous studies have identified and validated a risk-associated Active transcriptome phenotype commonly expressed in the cancer-adjacent and histologically normal epithelium, stroma, and adipose containing peritumor microenvironment of clinically established invasive breast cancers, conferring a 2.5- to 3-fold later risk of dying from recurrent breast cancer. Expression of this Active transcriptome phenotype has not yet been evaluated in normal breast tissue samples unassociated with any benign or malignant lesions; however, it has been associated with increased peritumor adipocyte composition. Methods Detailed histologic and transcriptomic (RNAseq) analyses were performed on normal breast biopsy samples from 151 healthy, parous, non-obese (mean BMI = 29.60 ± 7.92) women, ages 27–66 who donated core breast biopsy samples to the Komen Tissue Bank, and whose average breast cancer risk estimate (Gail score) at the time of biopsy (1.27 ± 1.34) would not qualify them for endocrine prevention therapy. Results Full genome RNA sequencing (RNAseq) identified 52% (78/151) of these normal breast samples as expressing the Active breast phenotype. While Active signature genes were found to be most variably expressed in mammary adipocytes, donors with the Active phenotype had no difference in BMI but significantly higher Gail scores (1.46 vs. 1.18; p = 0.007). Active breast samples possessed 1.6-fold more (~ 80%) adipocyte nuclei, larger cross-sectional adipocyte areas (p < 0.01), and 0.5-fold fewer stromal and epithelial cell nuclei (p < 1e−6). Infrequent low-level expression of cancer gene hotspot mutations was detected but not enriched in the Active breast samples. Active samples were enriched in gene sets associated with adipogenesis and fat metabolism (FDR q ≤ 10%), higher signature scores for cAMP-dependent lipolysis known to drive breast cancer progression, white adipose tissue browning (Wilcoxon p < 0.01), and genes associated with adipocyte activation (leptin, adiponectin) and remodeling (CAV1, BNIP3), adipokine growth factors (IGF-1, FGF2), and pro-inflammatory fat signaling (IKBKG, CCL13). Conclusions The risk-associated Active transcriptome phenotype first identified in cancer-adjacent breast tissues also occurs commonly in healthy women without breast disease who do not qualify for breast cancer chemoprevention, and independently of breast expressed cancer-associated mutations. The risk-associated Active phenotype appears driven by a pro-tumorigenic adipocyte microenvironment that can predate breast cancer development.
Collapse
Affiliation(s)
- Taekyu Kang
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Christina Yau
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | | | | | | | | | | | | | - Roman Camarda
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Jill E Henry
- Susan G. Komen Tissue Bank at the Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Josh Stuart
- University of California, Genomics Institute, Santa Cruz, CA, USA
| | - Mark Powell
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Christopher C Benz
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| |
Collapse
|
13
|
Venniyoor A. PTEN: A Thrifty Gene That Causes Disease in Times of Plenty? Front Nutr 2020; 7:81. [PMID: 32582754 PMCID: PMC7290048 DOI: 10.3389/fnut.2020.00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
The modern obesity epidemic with associated disorders of metabolism and cancer has been attributed to the presence of "thrifty genes". In the distant past, these genes helped the organism to improve energy efficiency and store excess energy safely as fat to survive periods of famine, but in the present day obesogenic environment, have turned detrimental. I propose PTEN as the likely gene as it has functions that span metabolism, cancer and reproduction, all of which are deranged in obesity and insulin resistance. The activity of PTEN can be calibrated in utero by availability of nutrients by the methylation arm of the epigenetic pathway. Deficiency of protein and choline has been shown to upregulate DNA methyltransferases (DNMT), especially 1 and 3a; these can then methylate promoter region of PTEN and suppress its expression. Thus, the gene is tuned like a metabolic rheostat proportional to the availability of specific nutrients, and the resultant "dose" of the protein, which sits astride and negatively regulates the insulin-PI3K/AKT/mTOR pathway, decides energy usage and proliferation. This "fixes" the metabolic capacity of the organism periconceptionally to a specific postnatal level of nutrition, but when faced with a discordant environment, leads to obesity related diseases.
Collapse
Affiliation(s)
- Ajit Venniyoor
- Department of Medical Oncology, National Oncology Centre, The Royal Hospital, Muscat, Oman
| |
Collapse
|
14
|
Identifying chemopreventive agents for obesity-associated cancers using an efficient, 3D high-throughput transformation assay. Sci Rep 2019; 9:10278. [PMID: 31311976 PMCID: PMC6635484 DOI: 10.1038/s41598-019-46531-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity is associated with ~40% of cancer diagnoses but there are currently no effective preventive strategies, illustrating a need for chemoprevention. We previously demonstrated that fibroblast growth factor 2 (FGF2) from adipose tissue stimulates malignant transformation, as measured by growth in soft agar, the gold-standard in vitro transformation assay. Because the soft agar assay is unsuitable for high throughput screens (HTS), we developed a novel method using 3D growth in ultra-low attachment conditions as an alternative to growth in agar to discover compounds that inhibit transformation. Treating non-tumorigenic, skin epithelial JB6 P+ cells with FGF2 stimulates growth in ultra-low attachment conditions analogous to growth in the soft agar. This transformation HTS identified picropodophyllin, an insulin growth factor 1 receptor (IGF1R) inhibitor, and fluvastatin, an HMG-CoA reductase inhibitor, as potential chemopreventive agents. These compounds were validated for efficacy using two non-tumorigenic cell lines in soft agar. Another IGF1R inhibitor and other statins were also tested and several were able to inhibit growth in soft agar. This novel 3D HTS platform is fast, robust and has the potential to identify agents for obesity-associated cancer prevention.
Collapse
|