1
|
Zhao XL, Cao ZJ, Li KD, Tang F, Xu LY, Zhang JN, Liu D, Peng C, Ao H. Gallic acid: a dietary metabolite's therapeutic potential in the management of atherosclerotic cardiovascular disease. Front Pharmacol 2025; 15:1515172. [PMID: 39840111 PMCID: PMC11747375 DOI: 10.3389/fphar.2024.1515172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) causes significant morbidity and mortality globally. Most of the chemicals specifically target certain pathways and minimally impact other diseases associated with ASCVD. Moreover, interactions of these drugs can cause toxic reactions. Consequently, the exploration of multi-targeted and safe medications for treating and preventing ASCVD has become an increasingly popular trend. Gallic acid (GA), a natural secondary metabolite found in various fruits, plants, and nuts, has demonstrated potentials in preventing and treating ASCVD, in addition to its known antioxidant and anti-inflammatory effects. It alleviates the entire process of atherosclerosis (AS) by reducing oxidative stress, improving endothelial dysfunction, and inhibiting platelet activation and aggregation. Additionally, GA can treat ASCVD-related diseases, such as coronary heart disease (CHD) and cerebral ischemia. However, the pharmacological actions of GA in the prevention and treatment of ASCVD have not been comprehensively reviewed, which limits its clinical development. This review primarily summarizes the in vitro and in vivo pharmacological actions of GA on the related risk factors of ASCVD, AS, and ASCVD. Additionally, it provides a comprehensive overview of the toxicity, extraction, synthesis, pharmacokinetics, and pharmaceutics of GA,aimed to enhance understanding of its clinical applications and further research and development.
Collapse
Affiliation(s)
- Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang-Jing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke-Di Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Sun Y, Xu C, Luo J, Li S, Chen S, Cen Y, Xu P. Comprehensive analysis of differential long non-coding RNA and messenger RNA expression in cholelithiasis using high-throughput sequencing and bioinformatics. Front Genet 2024; 15:1375019. [PMID: 38808330 PMCID: PMC11130440 DOI: 10.3389/fgene.2024.1375019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
Background The etiology of gallstone disease (GSD) has not been fully elucidated. Consequently, the primary objective of this study was to scrutinize and provisionally authenticate the distinctive expression profiles of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in GSD. Methods RiboNucleic Acid (RNA) sequencing was used on four paired human gallbladder samples for the purpose of this study. Differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were identified and subjected to analysis of their biological functions. The Pearson's correlation coefficients between DElncRNAs and DEmRNAs were computed to construct a co-expression network delineating their associations. Furthermore, both cis- and trans-regulatory networks of selected lncRNAs were established and visualized. Additionally, a competing endogenous RNA (ceRNA) regulatory network was constructed. To validate the RNA-sequencing data, we performed a Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) on 10 paired human gallbladder samples, assessing the expressions of the top 4 DEmRNAs and DElncRNAs in gallstone and control samples. Results A total of 934 DEmRNAs and 304DElncRNAs were successfully identified. Functional enrichment analysis indicated a predominant involvement in metabolic-related biological functions. Correlation analysis revealed a strong association between the expressions of 597 DEmRNAs and 194 DElncRNAs. Subsequently, both a cis-lncRNA-mRNA and a trans-lncRNA-Transcription Factor (TF)-mRNA regulatory network were meticulously constructed. Additionally, a ceRNA network, comprising of 24 DElncRNAs, 201 DEmRNAs, and 120 predicted miRNAs, was established. Furthermore, using RT-qPCR, we observed significant upregulation of AC004692.4, HECW1-IT1, SFRP4, and COMP, while LINC01564, SLC26A3, RP1-27K12.2, and GSTA2 exhibited marked downregulation in gallstone samples. Importantly, these findings were consistent with the sequencing. Conclusion We conducted a screening process to identify DElncRNAs and DEmRNAs in GSD. This approach contributes to a deeper understanding of the genetic factors involved in the etiology of gallstones.
Collapse
Affiliation(s)
- Yanbo Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Conghui Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- School of Medicine, Yunnan University, Kunming, China
| | - Jing Luo
- Department of Gastrointestinal Surgery, Qujing No. 1 People’s Hospital, Qujing, Yunnan, China
| | - Shumin Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shi Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunyun Cen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pengyuan Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Guan H, Xiao L, Hao K, Zhang Q, Wu D, Geng Z, Duan B, Dai H, Xu R, Feng X. SLC25A28 Overexpression Promotes Adipogenesis by Reducing ATGL. J Diabetes Res 2024; 2024:5511454. [PMID: 38736904 PMCID: PMC11088465 DOI: 10.1155/2024/5511454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.
Collapse
Affiliation(s)
- Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Lin Xiao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Kaikai Hao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Dongliang Wu
- Department of Cardiology, Xianyang Hospital of Yan'an University, Xianyang 712000, China
| | - Zhanyi Geng
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Bowen Duan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Hui Dai
- Department of Clinical Medicine, Gansu Medical College, Pingliang 744000, China
| | - Ruifen Xu
- Department of Anesthesiology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Xuyang Feng
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
- Department of Neurology, Xianyang Hospital of Yan'an University, Xianyang 712000, China
| |
Collapse
|
4
|
Xie L, Wang H, Hu J, Liu Z, Hu F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem Pharmacol 2024; 222:116104. [PMID: 38428826 DOI: 10.1016/j.bcp.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.
Collapse
Affiliation(s)
- Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinying Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuoying Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Health Law Research Center, School of Law, Central South University, Changsha, China.
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
5
|
Liu GB, Cheng YX, Li HM, Liu Y, Sun LX, Wu Q, Guo SF, Li TT, Dong CL, Sun G. Ghrelin promotes cardiomyocyte differentiation of adipose tissue‑derived mesenchymal stem cells by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis. Mol Med Rep 2023; 28:164. [PMID: 37449526 PMCID: PMC10407612 DOI: 10.3892/mmr.2023.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Adipose tissue‑derived mesenchymal stem cells (ADMSCs) differentiate into cardiomyocytes and may be an ideal cell source for myocardial regenerative medicine. Ghrelin is a gastric‑secreted peptide hormone involved in the multilineage differentiation of MSCs. To the best of our knowledge, however, the role and potential downstream regulatory mechanism of ghrelin in cardiomyocyte differentiation of ADMSCs is still unknown. The mRNA and protein levels were measured by reverse transcription‑quantitative PCR and western blotting. Immunofluorescence staining was used to show the expression and cellular localization of cardiomyocyte markers and β‑catenin. RNA sequencing was used to explore the differentially expressed genes (DEGs) that regulated by ghrelin. The present study found that ghrelin promoted cardiomyocyte differentiation of ADMSCs in a concentration‑dependent manner, as shown by increased levels of cardiomyocyte markers GATA binding protein 4, α‑myosin heavy chain (α‑MHC), ISL LIM homeobox 1, NK2 homeobox 5 and troponin T2, cardiac type. Ghrelin increased β‑catenin accumulation in nucleus and decreased the protein expression of secreted frizzled‑related protein 4 (SFRP4), an inhibitor of Wnt signaling. RNA sequencing was used to determine the DEGs regulated by ghrelin. Functional enrichment showed that DEGs were more enriched in cardiomyocyte differentiation‑associated terms and Wnt pathways. Dead‑box helicase 17 (DDX17), an upregulated DEG, showed enhanced mRNA and protein expression levels following ghrelin addition. Overexpression of DDX17 promoted protein expression of cardiac‑specific markers and β‑catenin and enhanced the fluorescence intensity of α‑MHC and β‑catenin. DDX17 upregulation inhibited protein expression of SFRP4. Rescue assay confirmed that the addition of SFRP4 partially reversed ghrelin‑enhanced protein levels of cardiac‑specific markers and the fluorescence intensity of α‑MHC. In conclusion, ghrelin promoted cardiomyocyte differentiation of ADMSCs by DDX17‑mediated regulation of the SFRP4/Wnt/β‑catenin axis.
Collapse
Affiliation(s)
- Gui-Bo Liu
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yong-Xia Cheng
- Department of Pathology, The First Clinical Medical School of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hua-Min Li
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Yong Liu
- Department of Research Platform, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Li-Xin Sun
- Office of Educational Administration, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Qi Wu
- Department of Pathology, The First Clinical Medical School of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Shang-Fu Guo
- Department of Asset Management, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Ting-Ting Li
- Department of Pathology, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Chuan-Ling Dong
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Ge Sun
- Department of Orthopedics, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157010, P.R. China
| |
Collapse
|
6
|
Guan H, Liu T, Liu M, Wang X, Shi T, Guo F. SFRP4 Reduces Atherosclerosis Plaque Formation in ApoE Deficient Mice. Cardiol Res Pract 2023; 2023:8302289. [PMID: 37143778 PMCID: PMC10154090 DOI: 10.1155/2023/8302289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 05/06/2023] Open
Abstract
Secreted frizzled related protein 4 (SFRP4), a member of the SFRPs family, contributes to a significant function in metabolic and cardiovascular diseases. However, there is not enough evidence to prove the antiatherosclerosis effect of SFRP4 in ApoE knock-out (KO) mice. ApoE KO mice were fed a western diet and injected adenovirus (Ad)-SFRP4 through the tail vein for 12 weeks. Contrasted with the control cohort, the area of atherosclerotic plaque in ApoE KO mice overexpressing SFRP4 was reduced significantly. Plasma high-density lipoprotein cholesterol was elevated in the Ad-SFRP4 group. RNA sequence analysis indicated that there were 96 differentially expressed genes enriched in 10 signaling pathways in the mRNA profile of aortic atherosclerosis lesions. The analysis data also revealed the expression of a number of genes linked to metabolism, organism system, and human disease. In summary, our data demonstrates that SFRP4 could play an important role in improving atherosclerotic plaque formation in the aorta.
Collapse
Affiliation(s)
- Hua Guan
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Ting Liu
- Department of Nephrology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi, China
| | - Miaomiao Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Tao Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fengwei Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
7
|
Chen S, Jiang Y, Qi X, Song P, Tang L, Liu H. Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery. Adipocyte 2022; 11:550-561. [PMID: 36036283 PMCID: PMC9427031 DOI: 10.1080/21623945.2022.2115212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bariatric surgery (BS) is a dependable method for managing obesity and metabolic diseases, however, the regulatory processes of lipid metabolism are still not well elucidated. Differentially expressed genes (DEGs) were analysed through three transcriptomic datasets of GSE29409, GSE59034 and GSE72158 from the GEO database regarding subcutaneous adipose tissue (SAT) after BS, and 37 DEGs were identified. The weighted gene co-expression network analysis (WGCNA), last absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms further screened four key genes involved in the regulation of STMN2, SFRP4, APOE and MXRA5. The GSE53376 dataset was used to further confirm the differential expression of SFRP4, APOE and MXRA5 in the postoperative period. GSEA analysis reveals activation of immune-related regulatory pathways after surgery. Finally, the silencing of MXRA5 was found by experimental methods to affect the expression of PPARγ and CEBPα during the differentiation of preadipocytes, as well as to affect the formation of lipid droplets. In conclusion, SAT immunoregulation was mobilized after BS, while MXRA5 was involved in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Shuai Chen
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yicheng Jiang
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoyang Qi
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Peng Song
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Liming Tang
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China,CONTACT Liming Tang
| | - Hanyang Liu
- Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China,Hanyang Liu Center of Gastrointestinal Disease, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, 68 Gehu Rd, Wujin District, Changzhou, Jiangsu, China
| |
Collapse
|
8
|
Quattrocelli M, Wintzinger M, Miz K, Panta M, Prabakaran AD, Barish GD, Chandel NS, McNally EM. Intermittent prednisone treatment in mice promotes exercise tolerance in obesity through adiponectin. J Exp Med 2022; 219:e20211906. [PMID: 35363257 PMCID: PMC8980841 DOI: 10.1084/jem.20211906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/21/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
The fat-muscle communication regulates metabolism and involves circulating signals like adiponectin. Modulation of this cross-talk could benefit muscle bioenergetics and exercise tolerance in conditions like obesity. Chronic daily intake of exogenous glucocorticoids produces or exacerbates metabolic stress, often leading to obesity. In stark contrast to the daily intake, we discovered that intermittent pulses of glucocorticoids improve dystrophic muscle metabolism. However, the underlying mechanisms, particularly in the context of obesity, are still largely unknown. Here we report that in mice with diet-induced obesity, intermittent once-weekly prednisone increased total and high-molecular weight adiponectin levels and improved exercise tolerance and energy expenditure. These effects were dependent upon adiponectin, as shown by genetic ablation of the adipokine. Upregulation of Adipoq occurred through the glucocorticoid receptor (GR), as this effect was blocked by inducible GR ablation in adipocytes. The treatment increased the muscle metabolic response of adiponectin through the CAMKK2-AMPK cascade. Our study demonstrates that intermittent glucocorticoids produce healthful metabolic remodeling in diet-induced obesity.
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Karen Miz
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Manoj Panta
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Ashok D. Prabakaran
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Grant D. Barish
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Navdeep S. Chandel
- Department of Medicine and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
9
|
Savva C, Helguero LA, González-Granillo M, Melo T, Couto D, Buyandelger B, Gustafsson S, Liu J, Domingues MR, Li X, Korach-André M. Maternal high-fat diet programs white and brown adipose tissue lipidome and transcriptome in offspring in a sex- and tissue-dependent manner in mice. Int J Obes (Lond) 2022; 46:831-842. [PMID: 34997206 PMCID: PMC8960419 DOI: 10.1038/s41366-021-01060-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The prevalence of overweight and obesity among children has drastically increased during the last decades and maternal obesity has been demonstrated as one of the ultimate factors. Nutrition-stimulated transgenerational regulation of key metabolic genes is fundamental to the developmental origins of the metabolic syndrome. Fetal nutrition may differently influence female and male offspring. METHODS Mice dam were fed either a control diet or a high-fat diet (HFD) for 6-week prior mating and continued their respective diet during gestation and lactation. At weaning, female and male offspring were fed the HFD until sacrifice. White (WAT) and brown (BAT) adipose tissues were investigated in vivo by nuclear magnetic resonance at two different timepoints in life (midterm and endterm) and tissues were collected at endterm for lipidomic analysis and RNA sequencing. We explored the sex-dependent metabolic adaptation and gene programming changes by maternal HFD in visceral AT (VAT), subcutaneous AT (SAT) and BAT of offspring. RESULTS We show that the triglyceride profile varies between adipose depots, sexes and maternal diet. In female offspring, maternal HFD remodels the triglycerides profile in SAT and BAT, and increases thermogenesis and cell differentiation in BAT, which may prevent metabolic complication later in life. Male offspring exhibit whitening of BAT and hyperplasia in VAT when born from high-fat mothers, with impaired metabolic profile. Maternal HFD differentially programs gene expression in WAT and BAT of female and male offspring. CONCLUSION Maternal HFD modulates metabolic profile in offspring in a sex-dependent manner. A sex- and maternal diet-dependent gene programming exists in VAT, SAT, and BAT which may be key player in the sexual dimorphism in the metabolic adaptation later in life.
Collapse
Affiliation(s)
- Christina Savva
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Marcela González-Granillo
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Byambajav Buyandelger
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sonja Gustafsson
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jianping Liu
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Xidan Li
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Marion Korach-André
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden.
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden.
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
10
|
Bai Z, Hao X. Downregulation of secreted frizzled-related protein 4 inhibits hypoxia/reoxygenation injury in diabetic cardiomyocytes by protein tyrosine phosphatase nonreceptor type 12. Bioengineered 2022; 13:7697-7708. [PMID: 35290144 PMCID: PMC9278962 DOI: 10.1080/21655979.2022.2034706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Myocardial ischemia-reperfusion injury in diabetic patients leads to an increased incidence of complications and mortality. Secreted frizzled-related protein 4 (SFRP4) plays a critical role in diabetic myocardial ischemia-reperfusion. This paper aims to uncover the underlying mechanisms of SFRP4 in hypoxia/reoxygenation (H/R) injury of diabetic myocardial cells. An in vitro ischemia/reperfusion (I/R) injury model was established using high glucose-induced H9c2 cardiomyocytes. Expression of SFRP4 was detected by real-time reverse transcriptase-polymerase chain reaction and Western blotting. After transfection of SFRP4, the binding of SFRP4 to protein tyrosine phosphatase nonreceptor type 12 (PTPN12) was predicted by database and verified by co-immunoprecipitation assay. P13 K/AKT protein levels were examined by Western blotting. PTPN12 levels were tested by RT-qPCR and Western blotting, cell viability by Cell Counting Kit-8, lactose dehydrogenase kit, terminal dUTP nick-end labeling assay, and cell inflammation and oxidative stress by Western blotting and enzyme linked immunosorbent assay. After overexpression of PTPN12, the experiments for cell viability, inflammation and oxidative stress were repeated once more. SFRP4 expression was upregulated in a high-glucose-stimulated H/R cardiomyocyte model. The interference of SFRP4 promoted cell viability, inhibited the inflammatory and oxidative stress response of H/R cardiomyocytes induced by high glucose. SFRP4 interacted with PTPN12 and inhibited the PI3K/AKT signaling pathway. PTPN12 overexpression reversed the inhibitory effect of sh-SFRP4 on H/R cardiomyocyte damage induced by high glucose. Downregulation of SFRP4 inhibited H/R cell damage in diabetic cardiomyocytes by binding to PTPN12.
Collapse
Affiliation(s)
- Zhifeng Bai
- Second Department of Cardiovascular Medicine, The First People's Hospital of Shangqiu City, Shangqiu, China
| | - Xiuhong Hao
- Second Department of Cardiovascular Medicine, The First People's Hospital of Shangqiu City, Shangqiu, China
| |
Collapse
|
11
|
MED1 Deficiency in Macrophages Accelerates Intimal Hyperplasia via ROS Generation and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3010577. [PMID: 34853629 PMCID: PMC8629658 DOI: 10.1155/2021/3010577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/17/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022]
Abstract
Mediator complex subunit 1 (MED1) is a component of the mediator complex and functions as a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Previously, we showed that MED1 in macrophages has a protective effect on atherosclerosis; however, the effect of MED1 on intimal hyperplasia and mechanisms regulating proinflammatory cytokine production after macrophage MED1 deletion are still unknown. In this study, we report that MED1 macrophage-specific knockout (MED1 ΔMac) mice showed aggravated neointimal hyperplasia, vascular smooth muscle cells (VSMCs), and macrophage accumulation in injured arteries. Moreover, MED1 ΔMac mice showed increased proinflammatory cytokine production after an injury to the artery. After lipopolysaccharide (LPS) treatment, MED1 ΔMac macrophages showed increased generation of reactive oxygen species (ROS) and reduced expression of peroxisome proliferative activated receptor gamma coactivator-1α (PGC1α) and antioxidant enzymes, including catalase and glutathione reductase. The overexpression of PGC1α attenuated the effects of MED1 deficiency in macrophages. In vitro, conditioned media from MED1 ΔMac macrophages induced more proliferation and migration of VSMCs. To explore the potential mechanisms by which MED1 affects inflammation, macrophages were treated with BAY11-7082 before LPS treatment, and the results showed that MED1 ΔMac macrophages exhibited increased expression of phosphorylated-p65 and phosphorylated signal transducer and activator of transcription 1 (p-STAT1) compared with the control macrophages, suggesting the enhanced activation of NF-κB and STAT1. In summary, these data showed that MED1 deficiency enhanced inflammation and the proliferation and migration of VSMCs in injured vascular tissue, which may result from the activation of NF-κB and STAT1 due to the accumulation of ROS.
Collapse
|
12
|
Han T, Fan Y, Gao J, Fatima M, Zhang Y, Ding Y, Bai L, Wang C. Sodium glucose cotransporter 2 inhibitor dapagliflozin depressed adiposity and ameliorated hepatic steatosis in high-fat diet induced obese mice. Adipocyte 2021; 10:446-455. [PMID: 34550043 PMCID: PMC8475578 DOI: 10.1080/21623945.2021.1979277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the increasing obesity prevalence, the rates of obesity-related diseases, including type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases, have increased dramatically. Dapagliflozin, one of the sodium glucose cotransporter inhibitors, not only exerts hypoglycaemic effects through increasing urinary glucose excretion but alsoreprograms the metabolic system, leading to benefits in metabolic and cardiovascular diseases. In this study, pre-established obese mice on a high-fat diet were given dapagliflozin by gavage for fourweeks. It showed that dapagliflozin can enhance fat utilization and browning of adipose tissue and improve local oxidative stress, thus inhibiting fat accumulation and hepatic steatosis without disturbance in body weight or plasma glycolipid level. Overall, our study highlights the potential clinical application of SGLT2 inhibition in the prevention of obesity and related metabolic diseases, such as insulin resistance, NAFLD, and diabetes.
Collapse
Affiliation(s)
- Tuo Han
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Yajie Fan
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jie Gao
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Mahreen Fatima
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Yali Zhang
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Yiming Ding
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Liang Bai
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
| | - Congxia Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
13
|
Li N, Zhang T, He M, Mu Y. MeCP2 attenuates cardiomyocyte hypoxia/reperfusion-induced injury via regulation of the SFRP4/Wnt/β-catenin axis. Biomarkers 2021; 26:363-370. [PMID: 33726573 DOI: 10.1080/1354750x.2021.1903999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective: Methylated CpG binding protein 2 (MeCP2) is closely associated with heart failure, but its role in I/R injury remains unclear. The purpose of this study was to explore the role and underling mechanism of MeCP2 in myocardial I/R injury.Methods: Hypoxia/reperfusion (H/R)-induced H9c2 cardiomyocytes was used to establish an in vitro I/R injury model. Oxidative stress was assessed by measuring reactive oxygen species (ROS) generation, malondialdehyde (MDA) content and superoxide dismutase (SOD) activity. Cell viability and cell cycle arrest were evaluated by the Cell Counting Kit-8 assay and cell cycle assay, respectively. Apoptosis was determined using flow cytometry analysis.Results: The expression of MeCP2 in H9c2 cells was decreased after H/R treatment. The overexpression of MeCP2 inhibited H/R-induced oxidative stress, cell cycle arrest and apoptosis of H9c2 cells. Moreover, MeCP2 inhibited the activation of secreted frizzled related protein 4 (SFRP4)/Wnt/β-catenin axis, and SFRP4 relieved the effect of MeCP2 on oxidative stress, cell cycle arrest and apoptosis in H/R-induced H9c2 cells.Conclusions: MeCP2 attenuated H/R-induced injury in H9c2 cardiomyocytes by modulating the SFRP4/Wnt/β-catenin axis, which suggested that MeCP2 might serve as a therapeutic target of patients with AMI after reperfusion.
Collapse
Affiliation(s)
- Nan Li
- Department of Cardiology, Xi'an Central Hospital, Xi'an, China
| | - Tao Zhang
- Department of Cardiology, Xi'an Central Hospital, Xi'an, China
| | - Mengying He
- Department of Center sterile supply, Xi'an Hospital of Traditional Chinese Medicine, Shaanxi, China
| | - Yudong Mu
- Department of Clinical Laboratory, Shaanxi Provincial Tumor Hospital, Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Farkhondeh T, Llorens S, Pourbagher-Shahri AM, Ashrafizadeh M, Talebi M, Shakibaei M, Samarghandian S. An Overview of the Role of Adipokines in Cardiometabolic Diseases. Molecules 2020; 25:E5218. [PMID: 33182462 PMCID: PMC7665135 DOI: 10.3390/molecules25215218] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity as an independent risk factor for cardiovascular diseases (CVDs) leads to an increase in morbidity, mortality, and a shortening of life span. The changes in heart structure and function as well as metabolic profile are caused by obese people, including those free of metabolic disorders. Obesity alters heart function structure and affects lipid and glucose metabolism, blood pressure, and increase inflammatory cytokines. Adipokines, specific cytokines of adipocytes, are involved in the progression of obesity and the associated co-morbidities. In the current study, we review the scientific evidence on the effects of obesity on CVDs, focusing on the changes in adipokines. Several adipokines have anti-inflammatory and cardioprotective effects comprising omentin, apelin, adiponectin, and secreted frizzled-related protein (Sfrp-5). Other adipokines have pro-inflammatory impacts on the cardiovascular system and obesity including leptin, tumor necrosis factor (TNF), retinol-binding protein4 (RBP-4), visfatin, resistin, and osteopontin. We found that obesity is associated with multiple CVDs, but can only occur in unhealthy metabolic patients. However, more studies should be designed to clarify the association between obesity, adipokine changes, and the occurrence of CVDs.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Silvia Llorens
- Department of Medical Sciences, Faculty of Medicine of Albacete, Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, 02008 Albacete, Spain;
| | | | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| |
Collapse
|