1
|
Purinergic receptor: a crucial regulator of adipose tissue functions. Purinergic Signal 2023; 19:273-281. [PMID: 36515790 PMCID: PMC9984650 DOI: 10.1007/s11302-022-09907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity is a public-health challenge resulting from an imbalance between energy expenditure and calorie intake. This health problem exacerbates a variety of metabolic complications worldwide. Adipose tissue is an essential regulator of energy homeostasis, and the functions within it are regulated by purinergic receptors. A1R, P2X7R, and P2YR mainly mediate energy homeostasis primarily through regulating energy storage and adipokines secretion in white adipose tissue (WAT). P2X5R is a novel-specific cell surface marker in brown/beige adipocytes. A2R is a promising therapeutic target for stimulating energy expenditure in brown adipose tissue (BAT) and also mediating WAT browning. Based on these features, purinergic receptors may be an appropriate target in treating obesity. In this review, the role of purinergic receptors in different types of adipose tissue is summarized. An improved understanding of purinergic receptor functions in adipose tissue may lead to more effective treatment interventions for obesity and its related metabolic disorders.
Collapse
|
2
|
Díaz-Chamorro S, Garrido-Jiménez S, Barrera-López JF, Mateos-Quirós CM, Cumplido-Laso G, Lorenzo MJ, Román ÁC, Bernardo E, Sabio G, Carvajal-González JM, Centeno F. Title: p38δ Regulates IL6 Expression Modulating ERK Phosphorylation in Preadipocytes. Front Cell Dev Biol 2022; 9:708844. [PMID: 35111744 PMCID: PMC8802314 DOI: 10.3389/fcell.2021.708844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
IL6 is an essential cytokine in metabolism regulation and for intercommunication among different organs and tissues. IL6 produced by different tissues has different functions and therefore it is very important to understand the mechanism of its expression in adipose tissue. In this work we demonstrated that IL6 expression in mouse preadipocytes, like in human, is partially dependent on Wnt5a and JNK. Using mouse preadipocytes lacking each one of the p38 SAPK family members, we have shown that IL6 expression is also p38γ and p38δ dependent. In fact, the lack of some of these two kinases increases IL6 expression without altering that of Wnt5a. Moreover, we show that the absence of p38δ promotes greater ERK1/2 phosphorylation in a MEK1/2 independent manner, and that this increased ERK1/2 phosphorylation state is contributing to the higher IL6 expression in p38δ−/- preadipocytes. These results suggest a new crosstalk between two MAPK signaling pathway, p38δ and ERK1/2, where p38δ modulates the phosphorylation state of ERK1/2.
Collapse
Affiliation(s)
- Selene Díaz-Chamorro
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Sergio Garrido-Jiménez
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Juan Francisco Barrera-López
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Clara María Mateos-Quirós
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Guadalupe Cumplido-Laso
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - María Jesús Lorenzo
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Cáceres, Spain
| | - Ángel Carlos Román
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Edgar Bernardo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - José María Carvajal-González
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| | - Francisco Centeno
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Badajoz, Spain
| |
Collapse
|
3
|
Domfeh SA, Narkwa PW, Quaye O, Kusi KA, Awandare GA, Ansah C, Salam A, Mutocheluh M. Cryptolepine inhibits hepatocellular carcinoma growth through inhibiting interleukin-6/STAT3 signalling. BMC Complement Med Ther 2021; 21:161. [PMID: 34078370 PMCID: PMC8170807 DOI: 10.1186/s12906-021-03326-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diverse signalling pathways are involved in carcinogenesis and one of such pathways implicated in many cancers is the interleukin 6/signal transducer and activator of transcription 3 (IL-6/STAT3) signalling pathway. Therefore, inhibition of this pathway is targeted as an anti-cancer intervention. This study aimed to establish the effect of cryptolepine, which is the main bioactive alkaloid in the medicinal plant Cryptolepis sanguinolenta, on the IL-6/STAT3 signalling pathway. METHODS First, the effect of cryptolepine on the IL-6/STAT3 pathway in human hepatoma cells (HepG2 cells) was screened using the Cignal Finder Multi-Pathway Reporter Array. Next, to confirm the effect of cryptolepine on the IL-6/STAT3 signalling pathway, the pathway was activated using 200 ng/mL IL-6 in the presence of 0.5-2 μM cryptolepine. The levels of total STAT3, p-STAT3 and IL-23 were assessed by ELISA. RESULTS Cryptolepine downregulated 12 signalling pathways including the IL-6/STAT3 signalling pathway and upregulated 17 signalling pathways. Cryptolepine, in the presence of IL-6, decreased the levels of p-STAT3 and IL-23 in a dose-dependent fashion. CONCLUSION Our results demonstrated that cryptolepine inhibits the IL-6/STAT3 signalling pathway, and therefore cryptolepine-based remedies such as Cryptolepis sanguinolenta could potentially be used as an effective immunotherapeutic agent for hepatocellular carcinoma and other cancers.
Collapse
Affiliation(s)
- Seth A Domfeh
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Legon, Ghana
| | - Patrick W Narkwa
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo A Kusi
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Legon, Ghana.,Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Legon, Ghana
| | - Charles Ansah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Mohamed Mutocheluh
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
4
|
Mitochondria at Work: New Insights into Regulation and Dysregulation of Cellular Energy Supply and Metabolism. Biomedicines 2020; 8:biomedicines8110526. [PMID: 33266387 PMCID: PMC7700424 DOI: 10.3390/biomedicines8110526] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are of great relevance to health, and their dysregulation is associated with major chronic diseases. Research on mitochondria-156 brand new publications from 2019 and 2020-have contributed to this review. Mitochondria have been fundamental for the evolution of complex organisms. As important and semi-autonomous organelles in cells, they can adapt their function to the needs of the respective organ. They can program their function to energy supply (e.g., to keep heart muscle cells going, life-long) or to metabolism (e.g., to support hepatocytes and liver function). The capacity of mitochondria to re-program between different options is important for all cell types that are capable of changing between a resting state and cell proliferation, such as stem cells and immune cells. Major chronic diseases are characterized by mitochondrial dysregulation. This will be exemplified by cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, immune system disorders, and cancer. New strategies for intervention in chronic diseases will be presented. The tumor microenvironment can be considered a battlefield between cancer and immune defense, competing for energy supply and metabolism. Cancer cachexia is considered as a final stage of cancer progression. Nevertheless, the review will present an example of complete remission of cachexia via immune cell transfer. These findings should encourage studies along the lines of mitochondria, energy supply, and metabolism.
Collapse
|