1
|
Xing C, Du Y, Duan T, Nim K, Chu J, Wang HY, Wang RF. Interaction between microbiota and immunity and its implication in colorectal cancer. Front Immunol 2022; 13:963819. [PMID: 35967333 PMCID: PMC9373904 DOI: 10.3389/fimmu.2022.963819] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the world. Besides genetic causes, colonic inflammation is one of the major risk factors for CRC development, which is synergistically regulated by multiple components, including innate and adaptive immune cells, cytokine signaling, and microbiota. The complex interaction between CRC and the gut microbiome has emerged as an important area of current CRC research. Metagenomic profiling has identified a number of prominent CRC-associated bacteria that are enriched in CRC patients, linking the microbiota composition to colitis and cancer development. Some microbiota species have been reported to promote colitis and CRC development in preclinical models, while a few others are identified as immune modulators to induce potent protective immunity against colitis and CRC. Mechanistically, microbiota regulates the activation of different immune cell populations, inflammation, and CRC via crosstalk between innate and adaptive immune signaling pathways, including nuclear factor kappa B (NF-κB), type I interferon, and inflammasome. In this review, we provide an overview of the potential interactions between gut microbiota and host immunity and how their crosstalk could synergistically regulate inflammation and CRC, thus highlighting the potential roles and mechanisms of gut microbiota in the development of microbiota-based therapies to prevent or alleviate colitis and CRC.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kelly Nim
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Junjun Chu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Michiyuki S, Tomita N, Mori Y, Kanda H, Tashiro K, Notomi T. Discrimination of a single nucleotide polymorphism in the haptoglobin promoter region, rs5472, using a competitive fluorophore-labeled probe hybridization assay following loop-mediated isothermal amplification. Biosci Biotechnol Biochem 2021; 85:359-368. [PMID: 33604636 DOI: 10.1093/bbb/zbaa012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
Personalized peptide vaccination, which involves activation of the host immune system against cancer cells using personalized peptide vaccines (PPVs), can improve overall survival in multiple cancer types. However, the clinical efficacies of PPVs vary for unknown reasons. Recently, a single nucleotide polymorphism (NG_012651.1:g.4461_5460[4960A>G]) in the haptoglobin promoter region, rs5472, was significantly associated with clinical response of PPV. Therefore, rs5472 is expected to be a predictive biomarker for PPV therapy. Here, we described a single nucleotide discrimination method for rs5472 analysis by combining the loop-mediated isothermal amplification and quenching probe methods. In evaluation of saliva samples, this method showed high concordance with the results of Sanger sequencing (100%, n = 36). Importantly, this method did not require calculation of melting temperature for single nucleotide discrimination and could therefore be carried out on a simple instrument. Accordingly, this method may be more robust and applicable to near-patient testing.
Collapse
Affiliation(s)
- Satoru Michiyuki
- Biochemical Research Laboratory, Eiken Chemical Co., Ltd., Otawara, Tochigi, Japan
| | - Norihiro Tomita
- Biochemical Research Laboratory, Eiken Chemical Co., Ltd., Otawara, Tochigi, Japan
| | - Yasuyoshi Mori
- Biochemical Research Laboratory, Eiken Chemical Co., Ltd., Otawara, Tochigi, Japan
| | - Hidetoshi Kanda
- Biochemical Research Laboratory, Eiken Chemical Co., Ltd., Otawara, Tochigi, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Nishi-Ku, Fukuoka, Japan
| | - Tsugunori Notomi
- Biochemical Research Laboratory, Eiken Chemical Co., Ltd., Otawara, Tochigi, Japan
| |
Collapse
|
5
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Rezaei-Kalat A, Parizadeh SMR, Javanbakht A, Hassanian SM, Ferns GA, Khazaei M, Avan A. Personalized Peptide-based Vaccination for Treatment of Colorectal Cancer: Rational and Progress. Curr Drug Targets 2019; 20:1486-1495. [DOI: 10.2174/1389450120666190619121658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally and is associated with
a high rate of morbidity and mortality. A large proportion of patients with early stage CRC, who undergo
conventional treatments develop local recurrence or distant metastasis and in this group of advanced
disease, the survival rate is low. Furthermore there is often a poor response and/or toxicity associated
with chemotherapy and chemo-resistance may limit continuing conventional treatment alone.
Choosing novel and targeted therapeutic approaches based on clinicopathological and molecular features
of tumors in combination with conventional therapeutic approach could be used to eradicate residual
micrometastasis and therefore improve patient prognosis and also be used preventively. Peptide-
based vaccination therapy is one class of cancer treatment that could be used to induce tumorspecific
immune responses, through the recognition of specific antigen-derived peptides in tumor
cells, and this has emerged as a promising anti-cancer therapeutic strategy. The aim of this review was
to summarize the main findings of recent studies in exciting field of peptide-based vaccination therapy
in CRC patients as a novel therapeutic approach in the treatment of CRC.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Rezaei-Kalat
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afsane Javanbakht
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Kather JN, Halama N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br J Cancer 2019; 120:871-882. [PMID: 30936499 PMCID: PMC6734657 DOI: 10.1038/s41416-019-0441-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Significant progress in the development of new immunotherapies has led to successful clinical trials for malignant melanoma and non-small cell lung cancer; however, for the majority of solid tumours of the gastrointestinal tract, little or no progress has been seen. The efficacy of immunotherapies is limited by the complexities of a diverse set of immune cells, and interactions between the tumour cells and all other cells in the local microenvironment of solid tumours. A large fraction of immune cells present in and around solid tumours derive from the innate arm of the immune system and using these cells against tumours offers an alternative immunotherapeutic option, especially as current strategies largely harness the adaptive arm of the immune system. This option is currently being investigated and attempts at using the innate immune system for gastrointestinal cancers are showing initial results. Several important factors, including cytokines, chemotherapeutics and the microbiome, influence the plasticity and functionality of innate (myeloid) cells in the microenvironment, and this complexity of regulation has limited translation into successful trials so far. In this review, current concepts of the immunobiology of the innate arm in the tumour microenvironment are presented in the context of clinical translation.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,German Translational Cancer Consortium (DKTK), Heidelberg, Germany.,Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany. .,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany. .,Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany.
| |
Collapse
|
7
|
Löffler MW, Chandran PA, Laske K, Schroeder C, Bonzheim I, Walzer M, Hilke FJ, Trautwein N, Kowalewski DJ, Schuster H, Günder M, Carcamo Yañez VA, Mohr C, Sturm M, Nguyen HP, Riess O, Bauer P, Nahnsen S, Nadalin S, Zieker D, Glatzle J, Thiel K, Schneiderhan-Marra N, Clasen S, Bösmüller H, Fend F, Kohlbacher O, Gouttefangeas C, Stevanović S, Königsrainer A, Rammensee HG. Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient. J Hepatol 2016; 65:849-855. [PMID: 27397612 PMCID: PMC5756536 DOI: 10.1016/j.jhep.2016.06.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS We report a novel experimental immunotherapeutic approach in a patient with metastatic intrahepatic cholangiocarcinoma. In the 5year course of the disease, the initial tumor mass, two local recurrences and a lung metastasis were surgically removed. Lacking alternative treatment options, aiming at the induction of anti-tumor T cells responses, we initiated a personalized multi-peptide vaccination, based on in-depth analysis of tumor antigens (immunopeptidome) and sequencing. METHODS Tumors were characterized by immunohistochemistry, next-generation sequencing and mass spectrometry of HLA ligands. RESULTS Although several tumor-specific neo-epitopes were predicted in silico, none could be validated by mass spectrometry. Instead, a personalized multi-peptide vaccine containing non-mutated tumor-associated epitopes was designed and applied. Immunomonitoring showed vaccine-induced T cell responses to three out of seven peptides administered. The pulmonary metastasis resected after start of vaccination showed strong immune cell infiltration and perforin positivity, in contrast to the previous lesions. The patient remains clinically healthy, without any radiologically detectable tumors since March 2013 and the vaccination is continued. CONCLUSIONS This remarkable clinical course encourages formal clinical studies on adjuvant personalized peptide vaccination in cholangiocarcinoma. LAY SUMMARY Metastatic cholangiocarcinomas, cancers that originate from the liver bile ducts, have very limited treatment options and a fatal prognosis. We describe a novel therapeutic approach in such a patient using a personalized multi-peptide vaccine. This vaccine, developed based on the characterization of the patient's tumor, evoked detectable anti-tumor immune responses, associating with long-term tumor-free survival.
Collapse
Affiliation(s)
- Markus W Löffler
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany.
| | - P Anoop Chandran
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Karoline Laske
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; Current address: Immatics Biotechnologies GmbH, Paul Ehrlich Str. 15, 72076 Tübingen, Germany
| | - Christopher Schroeder
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Irina Bonzheim
- University Hospital Tübingen, Institute of Pathology, Liebermeisterstr. 8, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Mathias Walzer
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Dept. of Computer Science, Sand 14, 72076 Tübingen, Germany
| | - Franz J Hilke
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Nico Trautwein
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Daniel J Kowalewski
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; Current address: Immatics Biotechnologies GmbH, Paul Ehrlich Str. 15, 72076 Tübingen, Germany
| | - Heiko Schuster
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Marc Günder
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Viviana A Carcamo Yañez
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Christopher Mohr
- University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Dept. of Computer Science, Sand 14, 72076 Tübingen, Germany
| | - Marc Sturm
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Huu-Phuc Nguyen
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Olaf Riess
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Peter Bauer
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Sven Nahnsen
- University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Quantitative Biology Center (QBiC), Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Silvio Nadalin
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Derek Zieker
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Jörg Glatzle
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; Current address: Klinikum Konstanz, Luisenstr. 7, 78464 Konstanz, Germany
| | - Karolin Thiel
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Stephan Clasen
- University Hospital Tübingen, Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Hans Bösmüller
- University Hospital Tübingen, Institute of Pathology, Liebermeisterstr. 8, 72076 Tübingen, Germany
| | - Falko Fend
- University Hospital Tübingen, Institute of Pathology, Liebermeisterstr. 8, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Oliver Kohlbacher
- University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Dept. of Computer Science, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Quantitative Biology Center (QBiC), Auf der Morgenstelle 10, 72076 Tübingen, Germany; Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Cécile Gouttefangeas
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Stefan Stevanović
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Alfred Königsrainer
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Hans-Georg Rammensee
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| |
Collapse
|