1
|
Appelbaum J, Price AE, Oda K, Zhang J, Leung WH, Tampella G, Xia D, So PP, Hilton SK, Evandy C, Sarkar S, Martin U, Krostag AR, Leonardi M, Zak DE, Logan R, Lewis P, Franke-Welch S, Ngwenyama N, Fitzgerald M, Tulberg N, Rawlings-Rhea S, Gardner RA, Jones K, Sanabria A, Crago W, Timmer J, Hollands A, Eckelman B, Bilic S, Woodworth J, Lamble A, Gregory PD, Jarjour J, Pogson M, Gustafson JA, Astrakhan A, Jensen MC. Drug-regulated CD33-targeted CAR T cells control AML using clinically optimized rapamycin dosing. J Clin Invest 2024; 134:e162593. [PMID: 38502193 PMCID: PMC11060733 DOI: 10.1172/jci162593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
Chimeric antigen receptor (CAR) designs that incorporate pharmacologic control are desirable; however, designs suitable for clinical translation are needed. We designed a fully human, rapamycin-regulated drug product for targeting CD33+ tumors called dimerizaing agent-regulated immunoreceptor complex (DARIC33). T cell products demonstrated target-specific and rapamycin-dependent cytokine release, transcriptional responses, cytotoxicity, and in vivo antileukemic activity in the presence of as little as 1 nM rapamycin. Rapamycin withdrawal paused DARIC33-stimulated T cell effector functions, which were restored following reexposure to rapamycin, demonstrating reversible effector function control. While rapamycin-regulated DARIC33 T cells were highly sensitive to target antigen, CD34+ stem cell colony-forming capacity was not impacted. We benchmarked DARIC33 potency relative to CD19 CAR T cells to estimate a T cell dose for clinical testing. In addition, we integrated in vitro and preclinical in vivo drug concentration thresholds for off-on state transitions, as well as murine and human rapamycin pharmacokinetics, to estimate a clinically applicable rapamycin dosing schedule. A phase I DARIC33 trial has been initiated (PLAT-08, NCT05105152), with initial evidence of rapamycin-regulated T cell activation and antitumor impact. Our findings provide evidence that the DARIC platform exhibits sensitive regulation and potency needed for clinical application to other important immunotherapy targets.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Immunotherapy, Adoptive
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Receptors, Chimeric Antigen/immunology
- Sialic Acid Binding Ig-like Lectin 3/immunology
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- Sirolimus/pharmacology
- Sirolimus/administration & dosage
- T-Lymphocytes/immunology
- T-Lymphocytes/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jacob Appelbaum
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
- Division of Hematology/Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Seattle Children’s Hospital, Seattle, Washington, USA
| | | | - Kaori Oda
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Joy Zhang
- 2seventy bio, Cambridge, Massachusetts, USA
| | | | - Giacomo Tampella
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Dong Xia
- 2seventy bio, Cambridge, Massachusetts, USA
| | | | | | - Claudya Evandy
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Semanti Sarkar
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | | | - Marissa Leonardi
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | - Rachael Logan
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | | | | | - Michael Fitzgerald
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Niklas Tulberg
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Stephanie Rawlings-Rhea
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rebecca A. Gardner
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kyle Jones
- Inhibrx, Torrey Pines Science Park, La Jolla, California, USA
| | | | - William Crago
- Inhibrx, Torrey Pines Science Park, La Jolla, California, USA
| | - John Timmer
- Inhibrx, Torrey Pines Science Park, La Jolla, California, USA
| | - Andrew Hollands
- Inhibrx, Torrey Pines Science Park, La Jolla, California, USA
| | | | | | | | - Adam Lamble
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
- Seattle Children’s Hospital, Seattle, Washington, USA
| | | | | | | | - Joshua A. Gustafson
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | - Michael C. Jensen
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, USA
| |
Collapse
|
2
|
Munoz AM, Urak R, Taus E, Hsieh HJ, Awuah D, Vyas V, Lim L, Jin K, Lin SH, Priceman SJ, Clark MC, Goldberg L, Forman SJ, Wang X. Dexamethasone potentiates chimeric antigen receptor T cell persistence and function by enhancing IL-7Rα expression. Mol Ther 2024; 32:527-539. [PMID: 38140726 PMCID: PMC10861975 DOI: 10.1016/j.ymthe.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023] Open
Abstract
Dexamethasone (dex) is a glucocorticoid that is a mainstay for the treatment of inflammatory pathologies, including immunotherapy-associated toxicities, yet the specific impact of dex on the activity of CAR T cells is not fully understood. We assessed whether dex treatment given ex vivo or as an adjuvant in vivo with CAR T cells impacted the phenotype or function of CAR T cells. We demonstrated that CAR T cell expansion and function were not inhibited by dex. We confirmed this observation using multiple CAR constructs and tumor models, suggesting that this is a general phenomenon. Moreover, we determined that dex upregulated interleukin-7 receptor α on CAR T cells and increased the expression of genes involved in activation, migration, and persistence when supplemented ex vivo. Direct delivery of dex and IL-7 into tumor-bearing mice resulted in increased persistence of adoptively transferred CAR T cells and complete tumor regression. Overall, our studies provide insight into the use of dex to enhance CAR T cell therapy and represent potential novel strategies for augmenting CAR T cell function during production as well as following infusion into patients.
Collapse
Affiliation(s)
- Ashlie M Munoz
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Ellie Taus
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Hui-Ju Hsieh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Dennis Awuah
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Vibhuti Vyas
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Laura Lim
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Katherine Jin
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Shu-Hong Lin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Mary C Clark
- Department of Clinical Translational Project Development, City of Hope, Duarte, CA 91010, USA
| | - Lior Goldberg
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Liu L, Li Y, Song Y, Sun Z, Li W, Li B, Wang Y, Wang H, Wang B. One-step shotgun approach for antigenic specific pMHCs capture stimulated CD8 + T cell activation and proliferation. Cell Immunol 2023; 393-394:104784. [PMID: 37984278 DOI: 10.1016/j.cellimm.2023.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Antigenic peptides play a central role in immune surveillance in cancer, infectious disease, autoimmunity, and allergy. The identification and isolation of antigenic peptides for T cell immune response are crucial for successful personalized adoptive immune cell therapy. The mainly methods includes gene sequencing and bioinformatic analysis. The antigenic peptides which identified by analysis and artificially synthesized still need antigen presenting cell (APC) to deliver to T cells. However, high costs and lengthy process times have limited its application in clinical practice. In order to overcome it, this study attempted to directly capture antigenic peptide-major histocompatibility complex (MHC) class I (pMHCs) from cell lysates using streptavidin Dynabeads and biotin-labeled antibodies, then the pMHCs was co-cultured with tumor infiltrating lymphocytes (TILs) of the same tissue origin. The results indicated that the captured pMHCs were able to enrich the tumor antigen-specific CD8+ T cells, and also effectively induce proliferation and cytotoxic responses of CD8+ T cells. This study provided a novel approach for obtaining tumor antigenic pMHCs, which could enrich antigen-specific CD8+ T cells, and could also function as artificial APCs (aAPCs) to stimulate proliferation and activation of T cells. Notably, these pMHCs can stimulate the proliferation of stem-like memory T cells. In conclusion, this study describes a time-saving and low-cost method to isolate tumour antigen peptide MHC complexs, helping tumor antigen-specific T cell enrichment, activation, and proliferation.
Collapse
Affiliation(s)
- Lili Liu
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Yateng Li
- Qingdao Sino-Cell Biomedicine Co., Ltd., Qingdao, Shandong 266200, China
| | - Yu Song
- Qingdao Sino-Cell Biomedicine Co., Ltd., Qingdao, Shandong 266200, China
| | - Zhen Sun
- Qingdao Sino-Cell Biomedicine Co., Ltd., Qingdao, Shandong 266200, China
| | - Wenjing Li
- Qingdao Sino-Cell Biomedicine Co., Ltd., Qingdao, Shandong 266200, China
| | - Bin Li
- Qingdao Sino-Cell Biomedicine Co., Ltd., Qingdao, Shandong 266200, China
| | - Yongjie Wang
- Institute of Translational Research for Solid Tumor, Qingdao University, Qingdao, Shandong 266000, China; Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266200, China.
| | - Haibo Wang
- Institute of Translational Research for Solid Tumor, Qingdao University, Qingdao, Shandong 266000, China; Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266200, China.
| | - Bin Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
4
|
Wu T, Tan JHL, Sin W, Luah YH, Tan SY, Goh M, Birnbaum ME, Chen Q, Cheow LF. Cell Granularity Reflects Immune Cell Function and Enables Selection of Lymphocytes with Superior Attributes for Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302175. [PMID: 37544893 PMCID: PMC10558660 DOI: 10.1002/advs.202302175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Indexed: 08/08/2023]
Abstract
In keeping with the rule of "form follows function", morphological aspects of a cell can reflect its role. Here, it is shown that the cellular granularity of a lymphocyte, represented by its intrinsic side scatter (SSC), is a potent indicator of its cell state and function. The granularity of a lymphocyte increases from naïve to terminal effector state. High-throughput cell-sorting yields a SSChigh population that can mediate immediate effector functions, and a highly prolific SSClow population that can give rise to the replenishment of the memory pool. CAR-T cells derived from the younger SSClow population possess desirable attributes for immunotherapy, manifested by increased naïve-like cells and stem cell memory (TSCM )-like cells together with a balanced CD4/CD8 ratio, as well as enhanced target-killing in vitro and in vivo. Altogether, lymphocyte segregation based on biophysical properties is an effective approach for label-free selection of cells that share collective functions and can have important applications for cell-based immunotherapies.
Collapse
Affiliation(s)
- Tongjin Wu
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Wei‐Xiang Sin
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| | - Yen Hoon Luah
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Myra Goh
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Michael E. Birnbaum
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Lih Feng Cheow
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| |
Collapse
|
5
|
Jin Z, Xiang R, Qing K, Li D, Liu Z, Li X, Zhu H, Zhang Y, Wang L, Xue K, Liu H, Xu Z, Wang Y, Li J. Lenalidomide overcomes the resistance to third-generation CD19-CAR-T cell therapy in preclinical models of diffuse large B-cell lymphoma. Cell Oncol (Dordr) 2023; 46:1143-1157. [PMID: 37219767 DOI: 10.1007/s13402-023-00833-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
PURPOSE Chimeric antigen receptor (CAR)-T cells against CD19 have been proven to be effective in treating B-cell hematological malignancies. However, the efficacy of this promising therapy is limited by many factors. METHODS In this study, the germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) cell line OCI-Ly1, and patient-derived xenografted (PDX) mice (CY-DLBCL) were used as the CAR-T cell-resistant model. Meanwhile, the activated B-cell-like (ABC) DLBCL cell line OCI-Ly3 and PDX mice (ZML-DLBCL) were defined as the CAR-T sensitive model. The enhancement of CAR-T cell function by lenalidomide (LEN) was examined in vitro and in vivo. RESULTS Lenalidomide effectively enhanced the function of third-generation CD19-CAR-T cells by polarizing CD8+ CAR-T cells to CD8 early-differentiated stage and Th1 type, reducing CAR-T cell exhaustion and improving cell expansion. It was further demonstrated that CAR-T cells combined with LEN substantially reduce the tumor burden and prolong the survival time in various DLBCL mouse models. LEN was also found to promote the infiltration of CD19-CAR-T cells into the tumor site by modulating the tumor microenvironment. CONCLUSION In summary, the results of the present study suggest that LEN can improve the function of CD19-CAR-T cells, providing a basis for clinical trials using this combination therapy against DLBCL.
Collapse
Affiliation(s)
- Zhen Jin
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rufang Xiang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of General Practice, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Qing
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lining Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zizhen Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxiao Wang
- Department of Bioengineering & Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Michelozzi IM, Gomez-Castaneda E, Pohle RVC, Cardoso Rodriguez F, Sufi J, Puigdevall Costa P, Subramaniyam M, Kirtsios E, Eddaoudi A, Wu SW, Guvenel A, Fisher J, Ghorashian S, Pule MA, Tape CJ, Castellano S, Amrolia PJ, Giustacchini A. Activation priming and cytokine polyfunctionality modulate the enhanced functionality of low-affinity CD19 CAR T cells. Blood Adv 2023; 7:1725-1738. [PMID: 36453632 PMCID: PMC10182295 DOI: 10.1182/bloodadvances.2022008490] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
We recently described a low-affinity second-generation CD19 chimeric antigen receptor (CAR) CAT that showed enhanced expansion, cytotoxicity, and antitumor efficacy compared with the high-affinity (FMC63-based) CAR used in tisagenlecleucel, in preclinical models. Furthermore, CAT demonstrated an excellent toxicity profile, enhanced in vivo expansion, and long-term persistence in a phase 1 clinical study. To understand the molecular mechanisms behind these properties of CAT CAR T cells, we performed a systematic in vitro characterization of the transcriptomic (RNA sequencing) and protein (cytometry by time of flight) changes occurring in T cells expressing low-affinity vs high-affinity CD19 CARs following stimulation with CD19-expressing cells. Our results show that CAT CAR T cells exhibit enhanced activation to CD19 stimulation and a distinct transcriptomic and protein profile, with increased activation and cytokine polyfunctionality compared with FMC63 CAR T cells. We demonstrate that the enhanced functionality of low-affinity CAT CAR T cells is a consequence of an antigen-dependent priming induced by residual CD19-expressing B cells present in the manufacture.
Collapse
Affiliation(s)
- Ilaria M. Michelozzi
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Eduardo Gomez-Castaneda
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ruben V. C. Pohle
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Pau Puigdevall Costa
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Meera Subramaniyam
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Efstratios Kirtsios
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ayad Eddaoudi
- Flow Cytometry Core Facility, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Si Wei Wu
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Aleks Guvenel
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jonathan Fisher
- Developmental Biology and Cancer Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sara Ghorashian
- Developmental Biology and Cancer Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Martin A. Pule
- Cancer Institute, University College London, London, United Kingdom
| | - Christopher J. Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Sergi Castellano
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- UCL Genomics, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom
| | - Persis J. Amrolia
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Bone Marrow Transplant, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Alice Giustacchini
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
7
|
Langan D, Wang R, Tidwell K, Mitiku S, Farrell A, Johnson C, Parks A, Suarez L, Jain S, Kim S, Jones K, Oelke M, Zeldis J. AIM™ platform: A new immunotherapy approach for viral diseases. Front Med (Lausanne) 2022; 9:1070529. [PMID: 36619639 PMCID: PMC9822776 DOI: 10.3389/fmed.2022.1070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
In addition to complications of acute diseases, chronic viral infections are linked to both malignancies and autoimmune disorders. Lack of adequate treatment options for Epstein-Barr virus (EBV), Human T-lymphotropic virus type 1 (HTLV-1), and human papillomavirus (HPV) remains. The NexImmune Artificial Immune Modulation (AIM) nanoparticle platform can be used to direct T cell responses by mimicking the dendritic cell function. In one application, AIM nanoparticles are used ex vivo to enrich and expand (E+E) rare populations of multi-antigen-specific CD8+ T cells for use of these cells as an AIM adoptive cell therapy. This study has demonstrated using E+E CD8+ T cells, the functional relevance of targeting EBV, HTLV-1, and HPV. Expanded T cells consist primarily of effector memory, central memory, and self-renewing stem-like memory T cells directed at selected viral antigen peptides presented by the AIM nanoparticle. T cells expanded against either EBV- or HPV-antigens were highly polyfunctional and displayed substantial in vitro cytotoxic activity against cell lines expressing the respective antigens. Our initial work was in the context of exploring T cells expanded from healthy donors and restricted to human leukocyte antigen (HLA)-A*02:01 serotype. AIM Adoptive Cell Therapies (ACT) are also being developed for other HLA class I serotypes. AIM adoptive cell therapies of autologous or allogeneic T cells specific to antigens associated with acute myeloid leukemia and multiple myeloma are currently in the clinic. The utility and flexibility of the AIM nanoparticle platform will be expanded as we advance the second application, an AIM injectable off-the-shelf nanoparticle, which targets multiple antigen-specific T cell populations to either activate, tolerize, or destroy these targeted CD8+ T cells directly in vivo, leaving non-target cells alone. The AIM injectable platform offers the potential to develop new multi-antigen specific therapies for treating infectious diseases, cancer, and autoimmune diseases.
Collapse
|
8
|
Yi L, Yang L. Stem-like T cells and niches: Implications in human health and disease. Front Immunol 2022; 13:907172. [PMID: 36059484 PMCID: PMC9428355 DOI: 10.3389/fimmu.2022.907172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, accumulating evidence has elucidated the important role of T cells with stem-like characteristics in long-term maintenance of T cell responses and better patient outcomes after immunotherapy. The fate of TSL cells has been correlated with many physiological and pathological human processes. In this review, we described present advances demonstrating that stem-like T (TSL) cells are central players in human health and disease. We interpreted the evolutionary characteristics, mechanism and functions of TSL cells. Moreover, we discuss the import role of distinct niches and how they affect the stemness of TSL cells. Furthermore, we also outlined currently available strategies to generate TSL cells and associated affecting factors. Moreover, we summarized implication of TSL cells in therapies in two areas: stemness enhancement for vaccines, ICB, and adoptive T cell therapies, and stemness disruption for autoimmune disorders.
Collapse
|
9
|
Yang J, He J, Zhang X, Li J, Wang Z, Zhang Y, Qiu L, Wu Q, Sun Z, Ye X, Yin W, Cao W, Shen L, Sersch M, Lu P. Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-in-human clinical study. Blood Cancer J 2022; 12:104. [PMID: 35798714 PMCID: PMC9262977 DOI: 10.1038/s41408-022-00694-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
To improve clinical outcomes and shorten the vein-to-vein time of chimeric antigen receptor T (CAR-T) cells, we developed the FasT CAR-T (F-CAR-T) next-day manufacturing platform. We report the preclinical and first-in-human clinical studies evaluating the safety, feasibility, and preliminary efficacy of CD19 F-CAR-T in B-cell acute lymphoblastic leukemia (B-ALL). CD19 F-CAR-T cells demonstrated excellent proliferation with a younger cellular phenotype, less exhaustion, and more effective tumor elimination compared to conventional CAR-T cells in the preclinical study. In our phase I study (NCT03825718), F-CAR-T cells were successfully manufactured and infused in all of the 25 enrolled pediatric and adult patients with B-ALL. CD19 F-CAR-T safety profile was manageable with 24% grade 3 cytokine release syndrome (CRS) and 28% grade 3/4 neurotoxicity occurring predominantly in pediatric patients. On day 14, 23/25 patients achieved minimal residual disease (MRD)-negative complete remission (CR), and 20 subsequently underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) within 3 months post F-CAR-T therapy. Fifteen of 20 patients were disease-free with a median remission duration of 734 days. One patient relapsed and 4/20 died from transplant-related mortality. Of the three patients who did not undergo allo-HSCT, two remained in CR until 10 months post-F-CAR-T. Our data indicate that anti-CD19 FasT CAR-T shows promising early efficacy for B-ALL. Further evaluations in larger clinical studies are needed.
Collapse
Affiliation(s)
- Junfang Yang
- Hebei Yanda Lu Daopei Hospital, Langfang, Hebei, China.,Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Jiaping He
- Gracell Biotechnologies Co., Ltd, Shanghai, China
| | - Xian Zhang
- Hebei Yanda Lu Daopei Hospital, Langfang, Hebei, China.,Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Jingjing Li
- Hebei Yanda Lu Daopei Hospital, Langfang, Hebei, China.,Beijing Lu Daopei Institute of Hematology, Beijing, China
| | | | | | - Liyuan Qiu
- Hebei Yanda Lu Daopei Hospital, Langfang, Hebei, China
| | - Qionglu Wu
- Gracell Biotechnologies Co., Ltd, Shanghai, China
| | - Zhe Sun
- Gracell Biotechnologies Co., Ltd, Shanghai, China
| | - Xun Ye
- Gracell Biotechnologies Co., Ltd, Shanghai, China
| | - Wenjie Yin
- Gracell Biotechnologies Co., Ltd, Shanghai, China
| | - Wei Cao
- Gracell Biotechnologies Co., Ltd, Shanghai, China
| | - Lianjun Shen
- Gracell Biotechnologies Co., Ltd, Shanghai, China.
| | | | - Peihua Lu
- Hebei Yanda Lu Daopei Hospital, Langfang, Hebei, China. .,Beijing Lu Daopei Institute of Hematology, Beijing, China.
| |
Collapse
|
10
|
Novel CD19 chimeric antigen receptor T cells manufactured next-day for acute lymphoblastic leukemia. Blood Cancer J 2022; 12:96. [PMID: 35750687 PMCID: PMC9232607 DOI: 10.1038/s41408-022-00688-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
Chimeric antigen receptor-engineered T (CAR-T) cells have shown promising efficacy in patients with relapsed/refractory B cell acute lymphoblastic leukemia (R/R B-ALL). However, challenges remain including long manufacturing processes that need to be overcome. We presented the CD19-targeting CAR-T cell product GC007F manufactured next-day (FasTCAR-T cells) and administered to patients with R/R B-ALL. A total of 21 patients over 14 years of age with CD19+ R/R B-ALL were screened, enrolled and infused with a single infusion of GC007F CAR-T at three different dose levels. The primary objective of the study was to assess safety, secondary objectives included pharmacokinetics of GC007F cells in patients with R/R B-ALL and preliminary efficacy. We were able to demonstrate in preclinical studies that GC007F cells exhibited better proliferation and tumor killing than conventional CAR-T (C-CAR-T) cells. In this investigator-initiated study all 18 efficacy-evaluable patients achieved a complete remission (CR) (18/18, 100.00%) by day 28, with 17 of the patients (94.4%) achieving CR with minimal residual disease (MRD) negative. Fifteen (83.3%) remained disease free at the 3-month assessment, 14 patients (77.8%) maintaining MRD negative at month 3. Among all 21 enrolled patients, the median peak of CAR-T cell was on day 10, with a median peak copy number of 104899.5/µg DNA and a median persistence period of 56 days (range: 7–327 days). The incidence of cytokine release syndrome (CRS) was 95.2% (n = 20), with severe CRS occurring in 52.4% (n = 11) of the patients. Six patients (28.6%) developed neurotoxicity of any grade. GC007F demonstrated superior expansion capacity and a less exhausted phenotype as compared to (C-CAR-T) cells. Moreover, this first-in-human clinical study showed that the novel, next-day manufacturing FasTCAR-T cells was feasible with a manageable toxicity profile in patients with R/R B-ALL.
Collapse
|
11
|
Pietrobon V, Todd LA, Goswami A, Stefanson O, Yang Z, Marincola F. Improving CAR T-Cell Persistence. Int J Mol Sci 2021; 22:ijms221910828. [PMID: 34639168 PMCID: PMC8509430 DOI: 10.3390/ijms221910828] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Over the last decade remarkable progress has been made in enhancing the efficacy of CAR T therapies. However, the clinical benefits are still limited, especially in solid tumors. Even in hematological settings, patients that respond to CAR T therapies remain at risk of relapsing due to several factors including poor T-cell expansion and lack of long-term persistence after adoptive transfer. This issue is even more evident in solid tumors, as the tumor microenvironment negatively influences the survival, infiltration, and activity of T-cells. Limited persistence remains a significant hindrance to the development of effective CAR T therapies due to several determinants, which are encountered from the cell manufacturing step and onwards. CAR design and ex vivo manipulation, including culture conditions, may play a pivotal role. Moreover, previous chemotherapy and lymphodepleting treatments may play a relevant role. In this review, the main causes for decreased persistence of CAR T-cells in patients will be discussed, focusing on the molecular mechanisms underlying T-cell exhaustion. The approaches taken so far to overcome these limitations and to create exhaustion-resistant T-cells will be described. We will also examine the knowledge gained from several key clinical trials and highlight the molecular mechanisms determining T-cell stemness, as promoting stemness may represent an attractive approach to improve T-cell therapies.
Collapse
Affiliation(s)
- Violena Pietrobon
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
- Correspondence: (V.P.); (F.M.)
| | - Lauren Anne Todd
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anghsumala Goswami
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
| | - Ofir Stefanson
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
| | - Zhifen Yang
- Refuge Biotechnologies, Inc., Menlo Park, CA 94025, USA; (A.G.); (O.S.); (Z.Y.)
| | - Francesco Marincola
- Kite Pharma, Inc., Santa Monica, CA 90404, USA
- Correspondence: (V.P.); (F.M.)
| |
Collapse
|
12
|
Michelozzi IM, Kirtsios E, Giustacchini A. Driving CAR T Stem Cell Targeting in Acute Myeloid Leukemia: The Roads to Success. Cancers (Basel) 2021; 13:2816. [PMID: 34198742 PMCID: PMC8201025 DOI: 10.3390/cancers13112816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Current treatment outcome for acute myeloid leukemia (AML) patients is unsatisfactory and characterized by high rates of relapse and poor overall survival. Increasing evidence points to a crucial role of leukemic stem cells (LSC) and the bone marrow (BM) leukemic niche, in which they reside, in AML evolution and chemoresistance. Thus, future strategies aiming at improving AML therapeutic protocols are likely to be directed against LSC and their niche. Chimeric antigen receptor (CAR) T-cells have been extremely successful in the treatment of relapsed/refractory acute lymphoblastic leukemia and B-cell non-Hodgkin lymphoma and comparable results in AML are highly desirable. At present, we are at the dawn of CAR T-cell application in AML, with several preclinical studies and few early phase clinical trials. However, the lack of leukemia-specific targets and the genetic and phenotypic heterogeneity of the disease combined with the leukemia-induced remodeling of the BM microenvironment are limiting CAR T-cell exploitation in AML. Here, we reviewed AML-LSC and AML-BM niche features in the context of their therapeutic targeting using CAR T-cells. We summarized recent progress in CAR T-cell application to the treatment of AML, and we discussed the remaining therapeutic challenges and promising novel strategies to overcome them.
Collapse
Affiliation(s)
- Ilaria M. Michelozzi
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK;
| | | | - Alice Giustacchini
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK;
| |
Collapse
|
13
|
Suarez L, Wang R, Carmer S, Bednarik D, Myint H, Jones K, Oelke M. AIM Platform: A Novel Nano Artificial Antigen-Presenting Cell-Based Clinical System Designed to Consistently Produce Multi-Antigen-Specific T-Cell Products with Potent and Durable Anti-Tumor Properties. Transfus Med Hemother 2021; 47:464-471. [PMID: 33442341 DOI: 10.1159/000512788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022] Open
Abstract
Over the last decade, tremendous progress has been made in the field of adoptive cell therapy. The two prevailing modalities include endogenous non-engineered approaches and genetically engineered T-cell approaches. Endogenous non-engineered approaches include dendritic cell-based systems and tumor-infiltrating lymphocytes (TIL) that are used to produce multi-antigen-specific T-cell products. Genetically engineered approaches, such as T-cell receptor engineered cells and chimeric antigen receptor T cells are used to produce single antigen-specific T-cell products. It is noted by the authors that there are alternative methods to sort for antigen-specific T cells such as peptide multimer sorting or cytokine secretion assay-based sorting, both of which are potentially challenging for broad development and commercialization. In this review, we are focusing on a novel nanoparticle technology that generates a non-engineered product from the endogenous T-cell repertoire. The most common approaches for ex vivo activation and expansion of endogenous, non-genetically engineered cell therapy products rely on dendritic cell-based systems or IL-2 expanded TIL. Hurdles remain in developing efficient, consistent, controlled processes; thus, these processes still have limited access to broad patient populations. Here, we describe a novel approach to produce cellular therapies at clinical scale, using proprietary nanoparticles combined with a proprietary manufacturing process to enrich and expand antigen-specific CD8+ T-cell products with consistent purity, identity, and composition required for effective and durable anti-tumor response.
Collapse
Affiliation(s)
| | | | | | | | - Han Myint
- NexImmune, Gaithersburg, Maryland, USA
| | | | | |
Collapse
|
14
|
Lee KH, Gowrishankar K, Street J, McGuire HM, Luciani F, Hughes B, Singh M, Clancy LE, Gottlieb DJ, Micklethwaite KP, Blyth E. Ex vivo enrichment of PRAME antigen-specific T cells for adoptive immunotherapy using CD137 activation marker selection. Clin Transl Immunology 2020; 9:e1200. [PMID: 33101678 PMCID: PMC7577233 DOI: 10.1002/cti2.1200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022] Open
Abstract
Objective Adoptive immunotherapy with ex vivo expanded tumor‐specific T cells has potential as anticancer therapy. Preferentially expressed antigen in melanoma (PRAME) is an attractive target overexpressed in several cancers including melanoma and acute myeloid leukaemia (AML), with low expression in normal tissue outside the gonads. We developed a GMP‐compliant manufacturing method for PRAME‐specific T cells from healthy donors for adoptive immunotherapy. Methods Mononuclear cells were pulsed with PRAME 15‐mer overlapping peptide mix. After 16 h, activated cells expressing CD137 were isolated with immunomagnetic beads and cocultured with irradiated CD137neg fraction in medium supplemented with interleukin (IL)‐2, IL‐7 and IL‐15. Cultured T cells were restimulated with antigen‐pulsed autologous cells after 10 days. Cellular phenotype and cytokine response following antigen re‐exposure were assessed with flow cytometry, enzyme‐linked immunospot (ELISPOT) and supernatant cytokine detection. Detailed phenotypic and functional analysis with mass cytometry and T‐cell receptor (TCR) beta clonality studies were performed on selected cultures. Results PRAME‐stimulated cultures (n = 10) had mean expansion of 2500‐fold at day 18. Mean CD3+ percentage was 96% with CD4:CD8 ratio of 4:1. Re‐exposure to PRAME peptide mixture showed enrichment of CD4 cells expressing interferon (IFN)‐γ (mean: 12.2%) and TNF‐α (mean: 19.7%). Central and effector memory cells were 23% and 72%, respectively, with 24% T cells expressing PD1. Mass cytometry showed predominance of Th1 phenotype (CXCR3+/CCR4neg/CCR6neg/Tbet+, mean: 73%) and cytokine production including IL‐2, IL‐4, IL‐8, IL‐13 and GM‐CSF (2%, 6%, 8%, 4% and 11%, respectively). Conclusion PRAME‐specific T cells for adoptive immunotherapy were enriched from healthy donor mononuclear cells. The products were oligoclonal, exhibited Th1 phenotype and produced multiple cytokines.
Collapse
Affiliation(s)
- Koon H Lee
- Westmead Institute for Medical Research Westmead NSW Australia.,Faculty of Medicine and Health Sydney Medical School Sydney NSW Australia
| | | | - Janine Street
- Westmead Institute for Medical Research Westmead NSW Australia
| | - Helen M McGuire
- Faculty of Medicine and Health Sydney Medical School Sydney NSW Australia.,Ramaciotti Facility for Human Systems Biology The University of Sydney Sydney NSW Australia.,Charles Perkins Centre University of Sydney Sydney NSW Australia.,Discipline of Pathology Faculty of Medicine and Health The University of Sydney Camperdown NSW Australia
| | - Fabio Luciani
- The Kirby Institute University of New South Wales Darlinghurst NSW Australia
| | - Brendan Hughes
- The Kirby Institute University of New South Wales Darlinghurst NSW Australia
| | - Mandeep Singh
- The Garvan Institute of Medical Research Darlinghurst NSW Australia.,St Vincent's Clinical School Faculty of Medicine UNSW Sydney Sydney NSW Australia
| | - Leighton E Clancy
- Westmead Institute for Medical Research Westmead NSW Australia.,Sydney Cellular Therapies Laboratory Westmead NSW Australia
| | - David J Gottlieb
- Westmead Institute for Medical Research Westmead NSW Australia.,Faculty of Medicine and Health Sydney Medical School Sydney NSW Australia.,Department of Haematology Westmead Hospital Westmead NSW Australia
| | - Kenneth P Micklethwaite
- Westmead Institute for Medical Research Westmead NSW Australia.,Faculty of Medicine and Health Sydney Medical School Sydney NSW Australia.,Department of Haematology Westmead Hospital Westmead NSW Australia
| | - Emily Blyth
- Westmead Institute for Medical Research Westmead NSW Australia.,Faculty of Medicine and Health Sydney Medical School Sydney NSW Australia.,Department of Haematology Westmead Hospital Westmead NSW Australia
| |
Collapse
|
15
|
Ravanpay AC, Gust J, Johnson AJ, Rolczynski LS, Cecchini M, Chang CA, Hoglund VJ, Mukherjee R, Vitanza NA, Orentas RJ, Jensen MC. EGFR806-CAR T cells selectively target a tumor-restricted EGFR epitope in glioblastoma. Oncotarget 2019; 10:7080-7095. [PMID: 31903167 PMCID: PMC6925027 DOI: 10.18632/oncotarget.27389] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
Abstract
Targeting solid tumor antigens with chimeric antigen receptor (CAR) T cell therapy requires tumor specificity and tolerance toward variability in antigen expression levels. Given the relative paucity of unique cell surface proteins on tumor cells for CAR targeting, we have focused on identifying tumor-specific epitopes that arise as a consequence of target protein posttranslational modification. We designed a CAR using a mAb806-based binder, which recognizes tumor-specific untethered EGFR. The mAb806 epitope is also exposed in the EGFRvIII variant transcript. By varying spacer domain elements of the CAR, we structurally tuned the CAR to recognize low densities of EGFR representative of non-gene amplified expression levels in solid tumors. The appropriately tuned short-spacer 2nd generation EGFR806-CAR T cells showed efficient in vitro cytokine secretion and glioma cell lysis, which was competitively blocked by a short peptide encompassing the mAb806 binding site. Unlike the nonselective Erbitux-based CAR, EGFR806-CAR T cells did not target primary human fetal brain astrocytes expressing wild-type EGFR, but showed a similar level of activity compared to Erbitux-CAR when the tumor-specific EGFRvIII transcript variant was overexpressed in astrocytes. EGFR806-CAR T cells successfully treated orthotopic U87 glioma implants in NSG mice, with 50% of animals surviving to 90 days. With additional IL-2 support, all tumors were eradicate without recurrence after 90 days. In a novel human induced pluripotent stem cell (iPSC)-derived teratoma xenograft model, EGFR806-CAR T cells infiltrated but were not activated in EGFR+ epidermal cell nests as assessed by Granzyme B expression. These results indicate that EGFR806-CAR T cells effectively and selectively target EGFR-expressing tumor cells.
Collapse
Affiliation(s)
- Ali C Ravanpay
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Neurological Surgery, Seattle, WA, U.S.A
| | - Juliane Gust
- University of Washington, Department of Neurology, Seattle, WA, U.S.A.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Adam J Johnson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Lisa S Rolczynski
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Michelle Cecchini
- University of Washington, Department of Neurological Surgery, Seattle, WA, U.S.A
| | - Cindy A Chang
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Virginia J Hoglund
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Rithun Mukherjee
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Nicholas A Vitanza
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Pediatrics, Seattle, WA, U.S.A
| | - Rimas J Orentas
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Pediatrics, Seattle, WA, U.S.A
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Pediatrics, Seattle, WA, U.S.A.,University of Washington, Department of Bioengineering, Seattle, WA, U.S.A
| |
Collapse
|
16
|
Eisenberg V, Hoogi S, Shamul A, Barliya T, Cohen CJ. T-cells "à la CAR-T(e)" - Genetically engineering T-cell response against cancer. Adv Drug Deliv Rev 2019; 141:23-40. [PMID: 30653988 DOI: 10.1016/j.addr.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients. Moreover, they are amenable to genetic engineering to improve their function and specificity. In the present review, we will give an overview of the most recent developments in the field of T-cell genetic engineering including TCR-gene transfer and CAR T-cells strategies. We will also elaborate on the development of other types of genetic modifications to enhance their anti-tumor immune response such as the use of co-stimulatory chimeric receptors (CCRs) and unconventional CARs built on non-antibody molecules. Finally, we will discuss recent advances in genome editing and synthetic biology applied to T-cell engineering and comment on the next challenges ahead.
Collapse
|
17
|
Campbell JD, Fraser AR. Flow cytometric assays for identity, safety and potency of cellular therapies. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 94:569-579. [DOI: 10.1002/cyto.b.21735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
|
18
|
Ghassemi S, Nunez-Cruz S, O'Connor RS, Fraietta JA, Patel PR, Scholler J, Barrett DM, Lundh SM, Davis MM, Bedoya F, Zhang C, Leferovich J, Lacey SF, Levine BL, Grupp SA, June CH, Melenhorst JJ, Milone MC. Reducing Ex Vivo Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunol Res 2018; 6:1100-1109. [PMID: 30030295 PMCID: PMC8274631 DOI: 10.1158/2326-6066.cir-17-0405] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/22/2017] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
The success of chimeric antigen receptor (CAR)-mediated immunotherapy in acute lymphoblastic leukemia (ALL) highlights the potential of T-cell therapies with directed cytotoxicity against specific tumor antigens. The efficacy of CAR T-cell therapy depends on the engraftment and persistence of T cells following adoptive transfer. Most protocols for T-cell engineering routinely expand T cells ex vivo for 9 to 14 days. Because the potential for engraftment and persistence is related to the state of T-cell differentiation, we hypothesized that reducing the duration of ex vivo culture would limit differentiation and enhance the efficacy of CAR T-cell therapy. We demonstrated that T cells with a CAR-targeting CD19 (CART19) exhibited less differentiation and enhanced effector function in vitro when harvested from cultures at earlier (day 3 or 5) compared with later (day 9) timepoints. We then compared the therapeutic potential of early versus late harvested CART19 in a murine xenograft model of ALL and showed that the antileukemic activity inversely correlated with ex vivo culture time: day 3 harvested cells showed robust tumor control despite using a 6-fold lower dose of CART19, whereas day 9 cells failed to control leukemia at limited cell doses. We also demonstrated the feasibility of an abbreviated culture in a large-scale current good manufacturing practice-compliant process. Limiting the interval between T-cell isolation and CAR treatment is critical for patients with rapidly progressing disease. Generating CAR T cells in less time also improves potency, which is central to the effectiveness of these therapies. Cancer Immunol Res; 6(9); 1100-9. ©2018 AACR.
Collapse
Affiliation(s)
- Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Selene Nunez-Cruz
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Prachi R Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Barrett
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stefan M Lundh
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Megan M Davis
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Felipe Bedoya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Changfeng Zhang
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Leferovich
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simon F Lacey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephan A Grupp
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael C Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Srivastava S, Riddell SR. Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-to-Bedside Efficacy. THE JOURNAL OF IMMUNOLOGY 2018; 200:459-468. [PMID: 29311388 DOI: 10.4049/jimmunol.1701155] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/29/2017] [Indexed: 12/23/2022]
Abstract
Immunotherapy with T cells genetically modified to express chimeric Ag receptors (CARs) that target tumor-associated molecules have impressive efficacy in hematological malignancies. The field has now embraced the challenge of applying this approach to treat common epithelial malignancies, which make up the majority of cancer cases but evade immunologic attack by a variety of subversive mechanisms. In this study, we review the principles that have guided CAR T cell design and the extraordinary clinical results being achieved in B cell malignancies targeting CD19 with a single infusion of engineered T cells. This success has raised expectations that CAR T cells can be applied to solid tumors, but numerous obstacles must be overcome to achieve the success observed in hematologic cancers. Potential solutions driven by advances in genetic engineering, synthetic biology, T cell biology, and improved tumor models that recapitulate the obstacles in human tumors are discussed.
Collapse
Affiliation(s)
- Shivani Srivastava
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Stanley R Riddell
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
20
|
Overcoming Resistance of Human Non-Hodgkin's Lymphoma to CD19-CAR CTL Therapy by Celecoxib and Histone Deacetylase Inhibitors. Cancers (Basel) 2018; 10:cancers10060200. [PMID: 29904021 PMCID: PMC6025421 DOI: 10.3390/cancers10060200] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Patients with B-cell non-Hodgkin’s lymphoma (B-NHL) who fail to respond to first-line treatment regimens or develop resistance, exhibit poor prognosis. This signifies the need to develop alternative treatment strategies. CD19-chimeric antigen receptor (CAR) T cell-redirected immunotherapy is an attractive and novel option, which has shown encouraging outcomes in phase I clinical trials of relapsed/refractory NHL. However, the underlying mechanisms of, and approaches to overcome, acquired anti-CD19CAR CD8+ T cells (CTL)-resistance in NHL remain elusive. CD19CAR transduced primary human CTLs kill CD19+ human NHLs in a CD19- and caspase-dependent manner, mainly via the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) apoptotic pathway. To understand the dynamics of the development of resistance, we analyzed several anti-CD19CAR CTL-resistant NHL sublines (R-NHL) derived by serial exposure of sensitive parental lines to excessive numbers of anti-CD19CAR CTLs followed by a limiting dilution analysis. The R-NHLs retained surface CD19 expression and were efficiently recognized by CD19CAR CTLs. However, R-NHLs developed cross-resistance to CD19CAR transduced human primary CTLs and the Jurkat human T cell line, activated Jurkat, and lymphokine activated killer (LAK) cells, suggesting the acquisition of resistance is independent of CD19-loss and might be due to aberrant apoptotic machinery. We hypothesize that the R-NHL refractoriness to CD19CAR CTL killing could be partially rescued by small molecule sensitizers with apoptotic-gene regulatory effects. Chromatin modifiers and Celecoxib partially reversed the resistance of R-NHL cells to the cytotoxic effects of anti-CD19CAR CTLs and rhTRAIL. These in vitro results, though they require further examination, may provide a rational biological basis for combination treatment in the management of CD19CAR CTL-based therapy of NHL.
Collapse
|
21
|
Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nat Med 2017; 23:18-27. [PMID: 28060797 DOI: 10.1038/nm.4241] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
Abstract
T memory stem (TSCM) cells are a rare subset of memory lymphocytes endowed with the stem cell-like ability to self-renew and the multipotent capacity to reconstitute the entire spectrum of memory and effector T cell subsets. Cumulative evidence in mice, nonhuman primates and humans indicates that TSCM cells are minimally differentiated cells at the apex of the hierarchical system of memory T lymphocytes. Here we describe emerging findings demonstrating that TSCM cells, owing to their extreme longevity and robust potential for immune reconstitution, are central players in many physiological and pathological human processes. We also discuss how TSCM cell stemness could be leveraged therapeutically to enhance the efficacy of vaccines and adoptive T cell therapies for cancer and infectious diseases or, conversely, how it could be disrupted to treat TSCM cell driven and sustained diseases, such as autoimmunity, adult T cell leukemia and HIV-1.
Collapse
Affiliation(s)
- Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel E Speiser
- Department of Oncology, Ludwig Cancer Research, Lausanne University Hospital, Lausanne, Switzerland
| | - Mathias Lichterfeld
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology Transplantation and Infectious Diseases, Leukemia Unit, San Raffaele Scientific Institute, Milan, Italy.,Hematology Department, Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
22
|
Boudousquie C, Bossi G, Hurst JM, Rygiel KA, Jakobsen BK, Hassan NJ. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8 + and CD4 + T cells. Immunology 2017. [PMID: 28640942 PMCID: PMC5629433 DOI: 10.1111/imm.12779] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8+ and CD4+ T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8+ and CD4+ repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8+ T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4+ effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8+ and CD4+ repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-β, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8+ T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma.
Collapse
|
23
|
Urak R, Walter M, Lim L, Wong CW, Budde LE, Thomas S, Forman SJ, Wang X. Ex vivo Akt inhibition promotes the generation of potent CD19CAR T cells for adoptive immunotherapy. J Immunother Cancer 2017; 5:26. [PMID: 28331616 PMCID: PMC5359873 DOI: 10.1186/s40425-017-0227-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/17/2017] [Indexed: 01/22/2023] Open
Abstract
Background Insufficient persistence and effector function of chimeric antigen receptor (CAR)-redirected T cells have been challenging issues for adoptive T cell therapy. Generating potent CAR T cells is of increasing importance in the field. Studies have demonstrated the importance of the Akt pathway in the regulation of T cell differentiation and memory formation. We now investigate whether inhibition of Akt signaling during ex vivo expansion of CAR T cells can promote the generation of CAR T cells with enhanced antitumor activity following adoptive therapy in a murine leukemia xenograft model. Methods Various T cell subsets including CD8+ T cells, bulk T cells, central memory T cells and naïve/memory T cells were isolated from PBMC of healthy donors, activated with CD3/CD28 beads, and transduced with a lentiviral vector encoding a second-generation CD19CAR containing a CD28 co-stimulatory domain. The transduced CD19CAR T cells were expanded in the presence of IL-2 (50U/mL) and Akt inhibitor (Akti) (1 μM) that were supplemented every other day. Proliferative/expansion potential, phenotypical characteristics and functionality of the propagated CD19CAR T cells were analyzed in vitro and in vivo after 17-21 day ex vivo expansion. Anti-tumor activity was evaluated after adoptive transfer of the CD19CAR T cells into CD19+ tumor-bearing immunodeficient mice. Tumor signals were monitored with biophotonic imaging, and survival rates were analyzed by the end of the experiments. Results We found that Akt inhibition did not compromise CD19CAR T cell proliferation and expansion in vitro, independent of the T cell subsets, as comparable CD19CAR T cell expansion was observed after culturing in the presence or absence of Akt inhibitor. Functionally, Akt inhibition did not dampen cell-mediated effector function, while Th1 cytokine production increased. With respect to phenotype, Akti-treated CD19CAR T cells expressed higher levels of CD62L and CD28 as compared to untreated CD19CAR T cells. Once adoptively transferred into CD19+ tumor-bearing mice, Akti treated CD19CAR T cells exhibited more antitumor activity than did untreated CD19CAR T cells. Conclusions Inhibition of Akt signaling during ex vivo priming and expansion gives rise to CD19CAR T cell populations that display comparatively higher antitumor activity. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0227-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan Urak
- T cell Therapeutics Research Laboratory, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010 USA
| | - Miriam Walter
- T cell Therapeutics Research Laboratory, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010 USA
| | - Laura Lim
- T cell Therapeutics Research Laboratory, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010 USA
| | - ChingLam W Wong
- T cell Therapeutics Research Laboratory, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010 USA
| | - Lihua E Budde
- T cell Therapeutics Research Laboratory, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010 USA
| | - Sandra Thomas
- T cell Therapeutics Research Laboratory, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010 USA
| | - Stephen J Forman
- T cell Therapeutics Research Laboratory, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010 USA
| | - Xiuli Wang
- T cell Therapeutics Research Laboratory, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010 USA
| |
Collapse
|
24
|
Chimeric antigen receptors for treatment of glioblastoma: a practical review of challenges and ways to overcome them. Cancer Gene Ther 2016; 24:121-129. [PMID: 27767090 DOI: 10.1038/cgt.2016.46] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is by far the most common and the most aggressive of all the primary brain malignancies. No curative therapy exists, and median life expectancy hovers at around 1 year after diagnosis, with a minute fraction surviving beyond 5 years. The difficulty in treating GBM lies in the cancer's protected niche within the blood-brain barrier and the heterogeneity of the cancer cells, which possess varying degrees of susceptibility to various common modalities of treatment. Over time, it is the tumor heterogeneity of GBM and the ability of the cancer stem cells to evolve in response treatment that renders the cancer refractory to conventional treatment. Therefore, research has increasingly focused on treatment that incorporates knowledge of GBM molecular biology to therapeutic strategies. One type of therapy that shows great promise is the area of T-cell immunotherapy to target GBM-specific tumor antigens. One attractive strategy is to use T cells that have undergone genetic modification to express a chimeric antigen receptor capable of interacting with tumor antigens. In this article, we will review chimeric antigen receptor T-cell therapy, their advantages, drawbacks, challenges facing their use and how those challenges may be overcome.
Collapse
|