1
|
Muscatello LV, Gobbo F, Avallone G, Innao M, Benazzi C, D'Annunzio G, Romaniello D, Orioles M, Lauriola M, Sarli G. PDL1 immunohistochemistry in canine neoplasms: Validation of commercial antibodies, standardization of evaluation, and scoring systems. Vet Pathol 2024; 61:393-401. [PMID: 37920996 DOI: 10.1177/03009858231209410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Immuno-oncology research has brought to light the paradoxical role of immune cells in the induction and elimination of cancer. Programmed cell death protein 1 (PD1), expressed by tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PDL1), expressed by tumor cells, are immune checkpoint proteins that regulate the antitumor adaptive immune response. This study aimed to validate commercially available PDL1 antibodies in canine tissue and then, applying standardized methods and scoring systems used in human pathology, evaluate PDL1 immunopositivity in different types of canine tumors. To demonstrate cross-reactivity, a monoclonal antibody (22C3) and polyclonal antibody (cod. A1645) were tested by western blot. Cross-reactivity in canine tissue cell extracts was observed for both antibodies; however, the polyclonal antibody (cod. A1645) demonstrated higher signal specificity. Canine tumor histotypes were selected based on the human counterparts known to express PDL1. Immunohistochemistry was performed on 168 tumors with the polyclonal anti-PDL1 antibody. Only membranous labeling was considered positive. PDL1 labeling was detected both in neoplastic and infiltrating immune cells. The following tumors were immunopositive: melanomas (17 of 17; 100%), renal cell carcinomas (4 of 17; 24%), squamous cell carcinomas (3 of 17; 18%), lymphomas (2 of 14; 14%), urothelial carcinomas (2 of 18; 11%), pulmonary carcinomas (2 of 20; 10%), and mammary carcinomas (1 of 31; 3%). Gastric (0 of 10; 0%) and intestinal carcinomas (0 of 24; 0%) were negative. The findings of this study suggest that PDL1 is expressed in some canine tumors, with high prevalence in melanomas.
Collapse
Affiliation(s)
| | | | | | | | | | - Giulia D'Annunzio
- University of Bologna, Bologna, Italy
- Experimental Zooprophylactic Institute of Lombardia and Emilia-Romagna, Brescia, Italy
| | | | | | | | | |
Collapse
|
2
|
Tian T, Li Y, Li J, Xu H, Fan H, Zhu J, Wang Y, Peng F, Gong Y, Du Y, Yan X, He X, Cali Daylan AE, Pircher A, Neibart SS, Okuma Y, Hong MH, Huang M, Lu Y. Immunotherapy for patients with advanced non-small cell lung cancer harboring oncogenic driver alterations other than EGFR: a multicenter real-world analysis. Transl Lung Cancer Res 2024; 13:861-874. [PMID: 38736501 PMCID: PMC11082706 DOI: 10.21037/tlcr-24-116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024]
Abstract
Background The administration of immune checkpoint inhibitors (ICIs) in advanced non-small cell lung cancer (NSCLC) with oncogenic driver alterations other than epidermal growth factor receptor (EGFR) aroused a heated discussion. We thus aimed to evaluate ICI treatment in these patients in real-world routine clinical practice. Methods A multicenter, retrospective study was conducted for NSCLC patients with at least one gene alteration (KRAS, HER2, BRAF, MET, RET, ALK, ROS1) receiving ICI monotherapy or combination treatment. The data regarding clinicopathologic characteristics, clinical efficacy, and safety were investigated. Results A total of 216 patients were included, the median age was 60 years, 72.7% of patients were male, and 46.8% had a smoking history. The molecular alterations involved KRAS (n=95), HER2 (n=42), BRAF (n=22), MET (n=21), RET (n=14), ALK (n=14), and ROS1 (n=8); 56.5% of patients received immunotherapy in the first-line, and the rest 43.5% were treated as a second-line and above. For the entire cohort who received immunotherapy-based regimens in the first-line, the median progression-free survival (PFS) was 7.5 months and the median overall survival (OS) was 24.8 months. For the entire cohort who received immunotherapy-based regimens in the second-line and above, the median PFS was 4.7 months and median OS was 17.1 months. KRAS mutated NSCLC treated with immunotherapy-based regimens in the first-line setting had a median PFS and OS were 7.8 and 26.1 months, respectively. Moreover, the median PFS and OS of immunotherapy-based regimens for KRAS-mutant NSCLC that progressed after chemotherapy were 5.9 and 17.1 months. Programmed death ligand 1 (PD-L1) expression level was not consistently associated with response to immunotherapy across different gene alteration subsets. In the KRAS group, PD-L1 positivity [tumor proportion score (TPS) ≥1%] was associated with better PFS and OS according to the multivariate Cox analysis. No statistically significant association was found for smoking status, age, or gender with clinical efficacy in any gene group analyses. Conclusions KRAS-mutant NSCLC could obtain clinical benefits from ICIs either for treatment-naive patients or those who have experienced progression after chemotherapy, and PD-L1 positive expression (TPS >1%) may be a potential positive predictor. For NSCLC with ALK, RET and ROS1 rearrangement, MET exon 14 skipping mutation, or BRAF V600E mutation, effectiveness of single or combined ICI therapy remains limited, therefore, targeted therapies should be considered prior to immunotherapy regimens. Future studies should address the investigation of better predictive biomarkers for immunotherapy response in oncogene-driven NSCLC.
Collapse
Affiliation(s)
- Tian Tian
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanying Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Thoracic Cancer, Medical Oncology Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongyu Xu
- Department of Oncology, 363 Hospital, Chengdu, China
| | - Hua Fan
- Department of Oncology and Hematology, Leshan People’s Hospital, Leshan, China
| | - Jiang Zhu
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Peng
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Youling Gong
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijia Du
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyan Yan
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiulan He
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Andreas Pircher
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | | | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Aazzane O, Bakhtaoui FZ, Stitou S, Fellah H, Karkouri M. Clinicopathological characteristics and tumor infiltrating immune cells associations of PD-L1 tumor expression in non-small cell lung cancer patients. LA TUNISIE MEDICALE 2024; 102:223-228. [PMID: 38746962 PMCID: PMC11358787 DOI: 10.62438/tunismed.v102i4.4688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/03/2024] [Indexed: 06/05/2024]
Abstract
AIM Our study aimed to perform on Moroccan patients' non-small cell lung carcinoma (NSCLC) concerning the relationship between PD-L1 tumor expression, clinicopathological features and tumor infiltrating immune cells (ICs). METHODS This is a retrospective study (2019 to 2021) conducted on samples from Moroccan patients with NSCLC at the Pathological Anatomy Laboratory of Ibn Rochd University Hospital in Casablanca. Eligible participants for our study had to meet the following predefined criteria: age ≥18 years, histologically confirmed NSCLC, no prior therapeutic interventions, availability of clinical and pathological data, and a usable tumor sample for determining PD-L1 status. Exclusion criteria applied to patients with other types of lung cancer and unusable tumor samples. The evaluation of tumor and immune expression of PD-L1 was performed using immunohistochemistry (IHC), with the 22C3 clone on the Dako Autostainer Link 48 platform. Tumor PD-L1 expression was categorized into 3 levels: TPS <1% (negative expression), TPS 1-49% (low expression), and TPS ≥50% (high expression). ICs infiltrating the tumor expressing PD-L1 were considered positive when more than 1% of positive ICs were present. RESULTS Among the 316 analyzed samples, 56.6% showed a negative expression of PD-L1, 16.8% displayed a low expression of PD-L1, and 26.6% exhibited a strong expression. Regarding the histological type, among patients with TPS ≥ 50%, 25.8% had adenocarcinoma. Among patients with TPS ≥ 50%, 24.81% were smokers. PD-L1 was also strongly expressed in the lung (28.2%) and bronchi (26.5%). PD-L1 expression (TPS ≥ 50%) was observed in 35.29% of early-stage patients. Concerning tumor cells (TCs), 27.5% of tumors infiltrated by ICs had TPS ≥ 50%. Furthermore, coexpression of PD-L1 on both TCs and ICs infiltrating the tumor was found in 27.8% of tumors. Statistical analysis demonstrated a significant association between tumor PD-L1 expression and smoking status (P=0.019). However, no significant difference was observed between PD-L1 expression and the presence of ICs infiltrating the tumor (P=0.652), as well as the IHC expression of PD-L1 on ICs (P=0.259). CONCLUSION Our results demonstrate a significant association between PD-L1 expression and smoking status. However, no significant association was observed between PD-L1 expression and the presence of infiltrating ICs, nor with the IHC expression of PD-L1 on ICs. Our data underscore the importance of participating in the study of specific factors influencing PD-L1 expression in patients with NSCLC.
Collapse
Affiliation(s)
- Oussama Aazzane
- Laboratory of cellular and molecular pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco
- Laboratory of pathological anatomy and cytology, CHU Ibn Rochd of Casablanca, Morocco
- Immunology laboratory, Faculty of medicine and pharmacy, Hassan II University of Casablanca, Morocco
| | | | - Saida Stitou
- Laboratory of pathological anatomy and cytology, CHU Ibn Rochd of Casablanca, Morocco
| | - Hassan Fellah
- Laboratory of cellular and molecular pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco
- Immunology laboratory, Faculty of medicine and pharmacy, Hassan II University of Casablanca, Morocco
| | - Mehdi Karkouri
- Laboratory of cellular and molecular pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Morocco
- Laboratory of pathological anatomy and cytology, CHU Ibn Rochd of Casablanca, Morocco
| |
Collapse
|
4
|
Krizova L, Benesova I, Zemanova P, Spacek J, Strizova Z, Humlova Z, Mikulova V, Petruzelka L, Vocka M. Immunophenotyping of peripheral blood in NSCLC patients discriminates responders to immune checkpoint inhibitors. J Cancer Res Clin Oncol 2024; 150:99. [PMID: 38383923 PMCID: PMC10881622 DOI: 10.1007/s00432-024-05628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) dramatically changed the prognosis of patients with NSCLC. Unfortunately, a reliable predictive biomarker is still missing. Commonly used biomarkers, such as PD-L1, MSI, or TMB, are not quite accurate in predicting ICI efficacy. METHODS In this prospective observational cohort study, we investigated the predictive role of erythrocytes, thrombocytes, innate and adaptive immune cells, complement proteins (C3, C4), and cytokines from peripheral blood of 224 patients with stage III/IV NSCLC treated with ICI alone (pembrolizumab, nivolumab, and atezolizumab) or in combination (nivolumab + ipilimumab) with chemotherapy. These values were analyzed for associations with the response to the treatment and survival endpoints. RESULTS Higher baseline Tregs, MPV, hemoglobin, and lower monocyte levels were associated with favorable PFS and OS. Moreover, increased baseline basophils and lower levels of C3 predicted significantly improved PFS. The levels of the baseline immature granulocytes, C3, and monocytes were significantly associated with the occurrence of partial regression at the first restaging. Multiple studied parameters (n = 9) were related to PFS benefit at the time of first restaging as compared to baseline values. In addition, PFS nonbenefit group showed a decrease in lymphocyte count after three months of therapy. The OS benefit was associated with higher levels of lymphocytes, erythrocytes, hemoglobin, MCV, and MPV, and a lower value of NLR after three months of treatment. CONCLUSION Our work suggests that parameters from peripheral venous blood may be potential biomarkers in NSCLC patients on ICI. The baseline values of Tregs, C3, monocytes, and MPV are especially recommended for further investigation.
Collapse
Affiliation(s)
- Ludmila Krizova
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University in Prague and University Hospital in Motol, Prague, Czech Republic
| | - Petra Zemanova
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Jan Spacek
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University in Prague and University Hospital in Motol, Prague, Czech Republic
| | - Zuzana Humlova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Mikulova
- Institute of Medical Biochemistry and Laboratory Diagnostics, Laboratory of Clinical Immunology and Allergology, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic
| | - Michal Vocka
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
5
|
Chang WC, Zhang YZ, Nicholson AG. Pulmonary invasive mucinous adenocarcinoma. Histopathology 2024; 84:18-31. [PMID: 37867404 DOI: 10.1111/his.15064] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/24/2023]
Abstract
Invasive mucinous adenocarcinoma (IMA) is a relatively rare subtype of lung adenocarcinoma, composed of goblet and/or columnar tumour cells containing abundant intracytoplasmic mucin vacuoles. While a majority of IMAs are driven by KRAS mutations, recent studies have identified distinct genomic alterations, such as NRG1 and ERBB2 fusions. IMAs also more frequently present as a pneumonic-like pattern with multifocal and multilobar involvement, and comparative genomic profiling predominantly shows a clonal relationship, suggesting intrapulmonary metastases rather than synchronous primary tumours. Accordingly, these unique features require different therapeutic approaches when compared to nonmucinous adenocarcinomas in general. In this article, we review recent updates on the histopathological, clinical, and molecular features of IMAs, and also highlight some unresolved issues for future studies.
Collapse
Affiliation(s)
- Wei-Chin Chang
- Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu Zhi Zhang
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
6
|
Tønnesen EMT, Stougaard M, Meldgaard P, Lade-Keller J. Prognostic value of KRAS mutations, TP53 mutations and PD-L1 expression among lung adenocarcinomas treated with immunotherapy. J Clin Pathol 2023; 77:54-60. [PMID: 36410939 DOI: 10.1136/jcp-2022-208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
Abstract
AIMS The aim of this study was to investigate the association between oncogenic alterations and programmed cell death ligand 1 (PD-L1) expression in lung adenocarcinomas, as well as the prognostic value of KRAS and/or TP53 mutations in patients treated with immunotherapy. METHODS This study is a retrospective cohort study of 519 patients with lung adenocarcinomas analysed for mutations and PD-L1 expression. Data were collected from electronic pathology record system, next-generation sequencing system, and clinical databases. Association between mutations and PD-L1 expression was investigated, as well as survival statistics of the 65 patients treated with immunotherapy. RESULTS 41% of the samples contained a KRAS mutation, predominantly together with mutations in TP53 (41%) or STK11 (10%). Higher expression of PD-L1 was seen among patients with KRAS mutations (p=0.002) and EGFR wild type (p=0.006). For patients treated with immunotherapy, there was no statistically significant difference for overall survival (OS) and progression-free survival (PFS) according to KRAS mutation status, TP53 mutation status or PD-L1 expression. The HR for concomitant mutations in TP53 and KRAS was 0.78 (95% CI 0.62 to 0.99) for OS and 0.43 (0.21 to 0.88) for PFS. Furthermore, concomitant TP53 and KRAS mutations predicted a better PFS (p=0.015) and OS (p=0.029) compared with no mutations or a single mutation in either TP53 or KRAS. CONCLUSION Mutations in TP53 together with KRAS may serve as a potential biomarker for survival benefits with immunotherapy.
Collapse
Affiliation(s)
- Ea Maria Tønning Tønnesen
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Pathology, Viborg Regional Hospital, Viborg, Denmark
| | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Meldgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johanne Lade-Keller
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Wang MM, Zhang Y, Wu S, Zhang SY, Shan HL, Yang XM, Xu X, Song LQ, Qu SY. Clinical outcomes of KRAS-mutant non-small cell lung cancer under untargeted therapeutic regimes in the real world: a retrospective observational study. Transl Lung Cancer Res 2023; 12:2030-2039. [PMID: 38025817 PMCID: PMC10654440 DOI: 10.21037/tlcr-23-449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Background Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation seemingly suffered less effective therapeutic regimens in the absence of widely-accepted targeted drugs compared with other mutation types in non-small cell lung cancer (NSCLC). However, whether these non-selective therapy schedules for KRAS mutation matters is still under debate. Correspondingly, we aimed to compare the long term expectancy of indicated therapeutic regimes and further explore the optimal schemes of KRAS mutated NSCLC in the absence of targeted drugs in this retrospective study cohort. Methods We conducted a single-center retrospective analysis among 66 patients diagnosed with KRAS-mutant advanced NSCLC from November 2018 to December 2020. These enrolled cases were divided into different subgroups in light of mutant isotypes, pathological characteristics, and therapeutic regimes to uncover indicated long-term survival benefits. Additionally, clinical outcomes of treatment schedules and interventional lines to KRAS-mutant NSCLC were described in detail. Results This cohort enrolled 8 patients with stage IIIB (12.1%) and 58 patients with stage IV (87.9%) with the median age 62 years, ranging from 32 to 91 years old. Genetically, G12C conducted as the most common KRAS mutation type, accounting for 30.3%. Pemetrexed combined with platinum chemotherapy seemed to be a priority (72.7%), and chemotherapy combined with immunotherapy became an alternative (15.2%) in clinic. Performing further analysis of long-term survival of patients receiving different treatment methods indicated that the median overall survival (mOS) in first-line therapy with antiangiogenesis or untreated was 13 and 12 months, respectively (P=0.79). In the first-line regimen, median survival was 17 months for patients who received combined immune checkpoint inhibitors and 12 months for those who did not (P=0.34). The mOS was 20 months for those who had used immune checkpoint inhibitors and 12 months for those who had not (P=0.11). Survival analysis results of NSCLC patients with different KRAS mutation types showed the median survival time of patients with G12C mutation type and patients without with nonG12C mutation type was 19 and 12 months, respectively (P=0.37). Conclusions In the absence of KRAS targeted drugs, available treatment plans failed to benefit KRAS mutant sufferers regardless of isotypes, making the KRAS-targeted drugs urgent.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuo Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Si-Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui-Liang Shan
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue-Min Yang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xi Xu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Li-Qiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuo-Yao Qu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Ursino C, Mouric C, Gros L, Bonnefoy N, Faget J. Intrinsic features of the cancer cell as drivers of immune checkpoint blockade response and refractoriness. Front Immunol 2023; 14:1170321. [PMID: 37180110 PMCID: PMC10169604 DOI: 10.3389/fimmu.2023.1170321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade represents the latest revolution in cancer treatment by substantially increasing patients' lifetime and quality of life in multiple neoplastic pathologies. However, this new avenue of cancer management appeared extremely beneficial in a minority of cancer types and the sub-population of patients that would benefit from such therapies remain difficult to predict. In this review of the literature, we have summarized important knowledge linking cancer cell characteristics with the response to immunotherapy. Mostly focused on lung cancer, our objective was to illustrate how cancer cell diversity inside a well-defined pathology might explain sensitivity and refractoriness to immunotherapies. We first discuss how genomic instability, epigenetics and innate immune signaling could explain differences in the response to immune checkpoint blockers. Then, in a second part we detailed important notions suggesting that altered cancer cell metabolism, specific oncogenic signaling, tumor suppressor loss as well as tight control of the cGAS/STING pathway in the cancer cells can be associated with resistance to immune checkpoint blockade. At the end, we discussed recent evidences that could suggest that immune checkpoint blockade as first line therapy might shape the cancer cell clones diversity and give rise to the appearance of novel resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Julien Faget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Univ Montpellier, Institut du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
9
|
Tumor-Intrinsic PD-L1 Exerts an Oncogenic Function through the Activation of the Wnt/β-Catenin Pathway in Human Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms231911031. [PMID: 36232331 PMCID: PMC9569632 DOI: 10.3390/ijms231911031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) strongly inhibits T cell activation, thereby aiding tumors in escaping the immune response. PD-L1 inhibitors have proven to be effective in the treatment of different types of cancer, including non-small cell lung cancer (NSCLC). Yet, the knowledge regarding the biological function of tumor-intrinsic PD-L1 in lung cancer remains obscure. In our study, we set the goal of determining the function of PD-L1 using overexpression and knockdown strategies. PD-L1 silencing resulted in decreased migratory and invasive ability of tumor cells, together with attenuated colony-forming capacity. Ectopic expression of PD-L1 showed the opposite effects, along with increased activities of MAPK and Wnt/β-catenin pathways, and the upregulation of Wnt/β-catenin target genes. Additionally, overexpression of PD-L1 was associated with dysregulated cellular and exosomal miRNAs involved in tumor progression and metastasis. In primary lung tumors, immunohistochemistry revealed that both PD1 and PD-L1 were highly expressed in squamous cell carcinoma (SCC) compared to adenocarcinoma (p = 0.045 and p = 0.036, respectively). In SCC, PD1 expression was significantly associated with tumor grading (p = 0.016). Taken together, our data suggest that PD-L1 may exert an oncogenic function in NSCLC through activating Wnt/β-catenin signaling, and may act as a potential diagnostic marker for lung SCC.
Collapse
|
10
|
Zhang C, Wang K, Lin J, Wang H. Non-small-cell lung cancer patients harboring TP53/KRAS co-mutation could benefit from a PD-L1 inhibitor. Future Oncol 2022; 18:3031-3041. [PMID: 36065989 DOI: 10.2217/fon-2022-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the association between TP53 mutation and atezolizumab in non-small-cell lung cancer (NSCLC) patients. Materials & methods: Patients with NSCLC from the POPLAR and OAK studies were included. Kaplan-Meier analysis was performed to detect progression-free survival (PFS) and overall survival (OS). PFS and OS were compared using multivariate Cox regression analysis. Results: OS was significantly longer with atezolizumab compared with docetaxel among TP53/KRAS co-mutant NSCLC patients (hazard ratio [HR]: 0.014; 95% CI: 0.000-0.721). There is no significant OS difference between atezolizumab versus docetaxel for TP53-mutant NSCLC patients (HR: 0.831; 95% CI: 0.473-1.458). There is no significant OS difference between atezolizumab versus docetaxel for KRAS-mutant NSCLC patients (HR: 1.354; 95% CI: 0.528-3.472). Conclusion: PD-L1 inhibitors may bring OS benefits for patients with NSCLC harbored TP53/KRAS co-mutation.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Kai Wang
- Key Laboratory of Epigenetics & Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Jiamao Lin
- Department of Internal Medicine Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| |
Collapse
|
11
|
Guo Q, Liu L, Chen Z, Fan Y, Zhou Y, Yuan Z, Zhang W. Current treatments for non-small cell lung cancer. Front Oncol 2022; 12:945102. [PMID: 36033435 PMCID: PMC9403713 DOI: 10.3389/fonc.2022.945102] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Despite improved methods of diagnosis and the development of different treatments, mortality from lung cancer remains surprisingly high. Non-small cell lung cancer (NSCLC) accounts for the large majority of lung cancer cases. Therefore, it is important to review current methods of diagnosis and treatments of NSCLC in the clinic and preclinic. In this review, we describe, as a guide for clinicians, current diagnostic methods and therapies (such as chemotherapy, chemoradiotherapy, targeted therapy, antiangiogenic therapy, immunotherapy, and combination therapy) for NSCLC.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Liwei Liu
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zelong Chen
- Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, China
| | - Yannan Fan
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, ; Ziqiao Yuan,
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, ; Ziqiao Yuan,
| |
Collapse
|
12
|
Weng J, Li S, Zhu Z, Liu Q, Zhang R, Yang Y, Li X. Exploring immunotherapy in colorectal cancer. J Hematol Oncol 2022; 15:95. [PMID: 35842707 PMCID: PMC9288068 DOI: 10.1186/s13045-022-01294-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy combined with or without targeted therapy is the fundamental treatment for metastatic colorectal cancer (mCRC). Due to the adverse effects of chemotherapeutic drugs and the biological characteristics of the tumor cells, it is difficult to make breakthroughs in traditional strategies. The immune checkpoint blockades (ICB) therapy has made significant progress in the treatment of advanced malignant tumors, and patients who benefit from this therapy may obtain a long-lasting response. Unfortunately, immunotherapy is only effective in a limited number of patients with microsatellite instability-high (MSI-H), and segment initial responders can subsequently develop acquired resistance. From September 4, 2014, the first anti-PD-1/PD-L1 drug Pembrolizumab was approved by the FDA for the second-line treatment of advanced malignant melanoma. Subsequently, it was approved for mCRC second-line treatment in 2017. Immunotherapy has rapidly developed in the past 7 years. The in-depth research of the ICB treatment indicated that the mechanism of colorectal cancer immune-resistance has become gradually clear, and new predictive biomarkers are constantly emerging. Clinical trials examining the effect of immune checkpoints are actively carried out, in order to produce long-lasting effects for mCRC patients. This review summarizes the treatment strategies for mCRC patients, discusses the mechanism and application of ICB in mCRC treatment, outlines the potential markers of the ICB efficacy, lists the key results of the clinical trials, and collects the recent basic research results, in order to provide a theoretical basis and practical direction for immunotherapy strategies.
Collapse
Affiliation(s)
- Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Shanbao Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhonglin Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Qi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Ruoxin Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Yufei Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui, Shanghai, 200032, China.
| |
Collapse
|
13
|
Gatto L, Franceschi E, Tosoni A, Nunno VD, Bartolini S, Brandes AA. Hypermutation as a potential predictive biomarker of immunotherapy efficacy in high-grade gliomas: a broken dream? Immunotherapy 2022; 14:799-813. [PMID: 35670093 DOI: 10.2217/imt-2021-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A high tumor mutational burden and mismatch repair deficiency are observed in 'hypermutated' high-grade gliomas (HGGs); however, the molecular characterization of this distinct subtype and whether it predicts the response to immune checkpoint inhibitors (ICIs) are largely unknown. Pembrolizumab is a valid therapeutic option for the treatment of hypermutated cancers of diverse origin, but only a few clinical trials have explored the activity of ICIs in hypermutated HGGs. HGGs appear to differ from other cancers, likely due to the prevalence of subclonal versus clonal neoantigens, which are unable to elicit an immune response with ICIs. The main aim of this review is to summarize the current knowledge on hypermutation in HGGs, focusing on the broken promises of tumor mutational burden and mismatch repair deficiency as potential biomarkers of response to ICIs.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Diagnostic Value and Cost-Effectiveness of Next Generation Sequencing-Based Testing for Treatment of Patients with Advanced/Metastatic Non-Squamous Non-Small Cell Lung Cancer in the United States. J Mol Diagn 2022; 24:901-914. [PMID: 35688357 DOI: 10.1016/j.jmoldx.2022.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
The study evaluated the diagnostic value and cost-effectiveness of next generation sequencing (NGS)-based testing versus various combinations of single-gene tests (SGTs) for selection of first-line treatment for patients with advanced/metastatic non-squamous non-small cell lung cancer in the United States. A dynamic decision analysis model was developed comparing NGS versus SGT from a payer perspective. Inputs were obtained from published sources and included diagnostic performance, biomarker-positive disease rates, biomarker-directed recommendations for treatment, and survival outcomes. Costs were reported in 2020 US dollars. In the base case, NGS improved the detection of actionable biomarkers by 74.4%, increased the proportion of patients receiving biomarker-driven therapy by 11.9%, and decreased the proportion of patients with biomarker-positive disease receiving non-biomarker-driven first-line treatment by 40.5%. The incremental cost-effectiveness ratio per life-year gained of NGS testing versus SGT was $7224 (excluding post-diagnostic costs); the incremental cost-effectiveness ratio for NGS-directed therapy was $148,786 versus SGT-directed therapy. Sensitivity analyses confirmed the robustness of these findings; survival outcomes and targeted therapy costs had the greatest impact on results. Testing strategies with NGS are more comprehensive in the detection of actionable biomarkers and can improve the proportion of patients receiving biomarker-driven therapies. NGS testing may provide a cost-effective strategy for advanced/metastatic non-squamous non-small cell lung cancer; however, the value of NGS-directed therapy varies by the willingness-to-pay threshold of the decision-maker.
Collapse
|
15
|
Wang G, Zheng H, Zhao X, Wang Y, Zeng Y, Du J. The Prognostic Model and Drug Sensitivity of LKB1-Mutant Lung Adenocarcinoma Based on Immune Landscape. Front Mol Biosci 2022; 9:756772. [PMID: 35720127 PMCID: PMC9201220 DOI: 10.3389/fmolb.2022.756772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Lung cancer is the most common cause of cancer-related deaths worldwide. LKB1-mutant lung adenocarcinoma (LUAD) is a unique subtype of this deadly cancer. LKB1 mutations cause functional changes in a variety of cell processes, including immune functions, that affect prognosis. To date, the potential role of immunity in the prognosis of LKB1-mutant LUAD is not well understood.Methods: We systematically analyzed immune-related genes in LUAD samples from The Cancer Genome Atlas (TCGA) database. ESTIMATE and CIBERSORT algorithms were used to explore the immune microenvironment. A prognostic risk model was constructed, and prognostic, immune function, drug sensitivity, and model specificity analyses were performed to identify the effectiveness of the model.Results: Our results showed that LKB1 mutations suppressed immune function in LUAD. A three-gene signature was constructed to stratify patients into two risk groups. The risk score was an independent predictor for overall survival (OS) in multivariate Cox regression analyses [hazard ratio (HR) > 1, p = 0.002]. Receiver operating characteristic (ROC) curve analyses confirmed that the risk score has better performance than clinicopathological characteristics. Functional analysis revealed that the immune status was different between the risk groups. ZM.447439 was an appropriate treatment for the high-risk group of patients. This risk model is only suitable for LKB1-mutant tumors; it performed poorly in LUAD patients with wild-type LKB1.Conclusion: Our findings indicate the potential role of immunity in LKB1-mutant LUAD, providing novel insights into prognosis and guiding effective immunotherapy.
Collapse
Affiliation(s)
- Guanghui Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Haotian Zheng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Yadong Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yukai Zeng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- *Correspondence: Jiajun Du,
| |
Collapse
|
16
|
Tien Cong B, Cam Phuong P, Thai PV, Thuong VL, Quang Hung N, Hang DT, Anh Tuan H, Minh Khuy D, Tuyen PV, Minh Duc N. Prognostic Significance of PD-L1 Expression and Standardized Uptake Values in the Primary Lesions of Stage IV Adenocarcinoma Lung Cancer. Front Med (Lausanne) 2022; 9:895401. [PMID: 35646945 PMCID: PMC9137395 DOI: 10.3389/fmed.2022.895401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background This study evaluated the prognostic ability of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) in patients with stage IV adenocarcinoma lung cancer to detect protein death-ligand 1 (PD-L1) expression levels. Methods In total, 86 patients with stage IV adenocarcinoma lung cancer underwent 18F-FDG PET/CT imaging and PD-L1 expression evaluation before treatment from February 2019 to November 2020 at Bach Mai Hospital, Hanoi, Vietnam. The assessed patient characteristics in this study included sex, age, smoking status, epidermal growth factor receptor (EGFR) mutation, PD-L1 expression level, survival status, tumor, node, and metastasis (TNM) stage, and metastasis locations. Results The average age was 62.23 ± 9.51 years, and men and women represented 67.4% and 32.6% of the population, respectively. The EGFR mutation rate was 36%. PD-L1 expression was negative (detected in <1% of the tumor) in 40.7% of cases and positive in 59.3% of cases (detected in 1–49% of the tumor in 32.6%; detected in ≥50% of the tumor in 26.7%). The mean maximum standardized uptake value (SUVmax) was 11.09 ± 3.94. SUVmax was significantly higher in PD-L1–positive tumors than in PD-L1–negative tumors (12.24 ± 4.01 and 9.43 ± 3.22, respectively; p = 0.001). Receiver operating characteristic curve analysis revealed an area under the curve of SUVmax was 0.681 (95% confidence interval 0.570–0.793, p = 0.004). Compared with PD-L1–negative cases, SUVmax was significantly different in all PD-L1–positive cases (p = 0.001), weakly PD-L1–positive cases (1–49%, p = 0.005), and strongly PD-L1–positive cases (≥50%, p = 0.003). PD-L1 expression levels were significantly associated with SUVmax (p = 0.001), tumor size (p = 0.022), and EGFR mutation status (p = 0.045). Conclusions SUVmax in the primary lesions was able to predict PD-L1 expression and may play a role in predicting PD-L1 immunotherapy efficacy in patients with stage IV lung adenocarcinoma.
Collapse
Affiliation(s)
- Bui Tien Cong
- Department of Nuclear Medicine, Ha Noi Medical University, Hanoi, Vietnam
- Nuclear Medicine and Oncology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Pham Cam Phuong
- Department of Nuclear Medicine, Ha Noi Medical University, Hanoi, Vietnam
- Nuclear Medicine and Oncology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Pham-Van Thai
- Department of Nuclear Medicine, Ha Noi Medical University, Hanoi, Vietnam
- Nuclear Medicine and Oncology Center, Bach Mai Hospital, Hanoi, Vietnam
- *Correspondence: Pham-Van Thai
| | - Vu-Le Thuong
- Department of Nuclear Medicine, Ha Noi Medical University, Hanoi, Vietnam
- Nuclear Medicine and Oncology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Nguyen Quang Hung
- Nuclear Medicine and Oncology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Dong-Thi Hang
- Department of Examination, Bach Mai Hospital, Hanoi, Vietnam
| | - Hoang Anh Tuan
- Pathology and Cytology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Doan Minh Khuy
- Pathology and Cytology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Pham-Van Tuyen
- Pathology and Cytology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Nguyen Minh Duc
- Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
- Nguyen Minh Duc
| |
Collapse
|
17
|
Correlation of PD-L1 Expression with Clinicopathological and Genomic Features in Chinese Non-Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1763778. [PMID: 35444698 PMCID: PMC9015849 DOI: 10.1155/2022/1763778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Programmed cell death 1 ligand 1 (PD-L1) has been approved as predictive biomarker for non-small-cell lung cancer (NSCLC) patients treated with PD-(L)1 blockade therapy. The clinical/genomic features associated with PD-L1 are not well studied. Genomic profiling of tumor biopsies from 883 Chinese NSCLC patients was performed by targeted next-generation sequencing. Immunohistochemical analysis was conducted to evaluate PD-L1 expression levels using antibodies Dako 22C3 and 28-8, respectively. Our study showed distinct correlation between PD-L1 expression and clinical/genomic characteristics when using different PD-L1 antibodies and in different histological subtypes including adenocarcinoma (ADC) and squamous cell carcinoma (SCC), respectively. PD-L1 high expression (22C3) was associated with male and lymph node metastasis only in ADC patients. Furthermore, mutations of TP53 and KRAS, KIF5B-RET fusion, copy number gains of PD-L1 and PD-L2, and arm-level amplifications of chr.12p were significantly associated with PD-L1 positive status in ADC patients. For SCC patients, the gain of EGFR and MDM2 and loss of PTPRD were negatively associated with PD-L1 expression. We also compared our results with other studies and found conflicting results presumably because of the multiplicity of antibody clones and platforms, the difference of cutoffs for assigning PD-L1 expression levels, and the variation in study populations. Our study can help to understand the utility and validity of PD-L1 as biomarker of response to immune checkpoint inhibitors.
Collapse
|
18
|
Cancer mutation profiles predict ICIs efficacy in patients with non-small cell lung cancer. Expert Rev Mol Med 2022; 24:e16. [PMID: 35373730 DOI: 10.1017/erm.2022.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although immune checkpoint inhibitors (ICIs) have produced remarkable responses in non-small cell lung cancer (NSCLC) patients, receivers still have a relatively low response rate. Initial response assessment by conventional imaging and evaluation criteria is often unable to identify whether patients can achieve durable clinical benefit from ICIs. Overall, there are sparse effective biomarkers identified to screen NSCLC patients responding to this therapy. A lot of studies have reported that patients with specific gene mutations may benefit from or resist to immunotherapy. However, the single gene mutation may be not effective enough to predict the benefit from immunotherapy for patients. With the advancement in sequencing technology, further studies indicate that many mutations often co-occur and suggest a drastic transformation of tumour microenvironment phenotype. Moreover, co-mutation events have been reported to synergise to activate or suppress signalling pathways of anti-tumour immune response, which also indicates a potential target for combining intervention. Thus, the different mutation profile (especially co-mutation) of patients may be an important concern for predicting or promoting the efficacy of ICIs. However, there is a lack of comprehensive knowledge of this field until now. Therefore, in this study, we reviewed and elaborated the value of cancer mutation profile in predicting the efficacy of immunotherapy and analysed the underlying mechanisms, to provide an alternative way for screening dominant groups, and thereby, optimising individualised therapy for NSCLC patients.
Collapse
|
19
|
Sato T, Takagi K, Higuchi M, Abe H, Kojimahara M, Sagawa M, Tanaki M, Miki Y, Suzuki T, Hojo H. Immunolocalization of CD80 and CD86 in Non-Small Cell Lung Carcinoma: CD80 as a Potent Prognostic Factor. Acta Histochem Cytochem 2022; 55:25-35. [PMID: 35444349 PMCID: PMC8913274 DOI: 10.1267/ahc.21-00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
It has been demonstrated that tumor cells express programed cell death protein 1 (PD-L1) to escape T lymphocytes that express programed cell protein 1 (PD-1), and PD-1/PD-L1 immune checkpoint inhibitors have been regarded in lung cancer patients. CD80 and CD86 are members of B7 superfamily which regulates T lymphocyte activation and tolerance. However, immunolocalization of CD80 and CD86 has not been examined in the lung carcinoma tissues and their clinical significance remains unknown. Therefore, to clarify clinical significance of CD80 and CD86, we immunolocalized these in 75 non-small cell lung carcinomas (NSCLC) in this study. Immunoreactivities of CD80 and CD86 were mainly detected in tumor-infiltrating macrophages. Immunohistochemical CD80 status was high in 56% of NSCLC, and it was positively associated with stage, pathological T factor, distant metastasis, histological type and PD-L1 status. Moreover, multivariate analysis turned out that the CD80 status was an independent worse prognostic factor. CD86 status was high in 53% of the cases, but it was not significantly associated with any clinicopathological parameters. These findings suggest that CD80 is a potent worse prognostic factor possibly in association with escape from immune attack in NSCLC.
Collapse
Affiliation(s)
- Takashi Sato
- Department of Clinical Laboratory, Aizu Medical Center, Fukushima Medical University
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Mitsunori Higuchi
- Department of Thoracic Surgery, Aizu Medical Center, Fukushima Medical University
| | - Hiroko Abe
- Department of Clinical Laboratory, Aizu Medical Center, Fukushima Medical University
| | - Michie Kojimahara
- Department of Clinical Laboratory, Aizu Medical Center, Fukushima Medical University
| | - Miho Sagawa
- Department of Clinical Laboratory, Aizu Medical Center, Fukushima Medical University
| | - Megumi Tanaki
- Department of Clinical Laboratory, Aizu Medical Center, Fukushima Medical University
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science, Tohoku University
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Hiroshi Hojo
- Department of Pathology, Aizu Medical Center, Fukushima Medical University
| |
Collapse
|
20
|
Kojima K, Sakamoto T, Kasai T, Atagi S, Yoon H. A quantitative evaluation of the histological type dependence of the programmed death-ligand 1 expression in non-small cell lung cancer including various adenocarcinoma subtypes: a cross-sectional study. Jpn J Clin Oncol 2021; 52:281-285. [PMID: 34969085 PMCID: PMC8894954 DOI: 10.1093/jjco/hyab202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/01/2021] [Indexed: 12/03/2022] Open
Abstract
The association between non-small cell lung cancer histology and programmed death-ligand 1 expression remains controversial. We retrospectively analyzed histological dependence of the programmed death-ligand 1 expression by a multiple regression analysis of 356 non-small cell lung cancer patients. The programmed death-ligand 1 expression patterns of adenocarcinoma were consistent with a pathological predominant growth pattern as a reference to papillary adenocarcinoma: minimally invasive adenocarcinoma[partial regression coefficient (B), 0.17; 95% confidence interval, 0.05–0.59], lepidic adenocarcinoma (B, 0.46; 95% confidence interval, 0.23–0.90), acinar adenocarcinoma (B, 1.98; 95% confidence interval, 1.05–3.76) and solid adenocarcinoma (B, 5.11; 95% confidence interval, 2.20–11.9). In histology other than adenocarcinoma, the programmed death-ligand 1 expression tended to be high with poor differentiation: adenosquamous carcinoma (B, 4.17; 95% confidence interval, 1.05–16.6), squamous cell carcinoma (B, 4.32; 95% confidence interval, 2.45–7.62) and pleomorphic carcinoma (B, 13.0; 95% confidence interval, 4.43–38.2). We showed quantitatively that the programmed death-ligand 1 expression in non-small cell lung cancer tended to be clearly histology-dependent, with more poorly differentiated histology showing a higher expression.
Collapse
Affiliation(s)
- Kensuke Kojima
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Tetsuki Sakamoto
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Takahiko Kasai
- Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Shinji Atagi
- Department of Thoracic Oncology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Hyungeun Yoon
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| |
Collapse
|
21
|
Wen Q, Yang Z, Dai H, Feng A, Li Q. Radiomics Study for Predicting the Expression of PD-L1 and Tumor Mutation Burden in Non-Small Cell Lung Cancer Based on CT Images and Clinicopathological Features. Front Oncol 2021; 11:620246. [PMID: 34422625 PMCID: PMC8377473 DOI: 10.3389/fonc.2021.620246] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background The present study compared the predictive performance of pretreatment computed tomography (CT)-based radiomics signatures and clinicopathological and CT morphological factors for ligand programmed death-ligand 1 (PD-L1) expression level and tumor mutation burden (TMB) status and further explored predictive models in patients with advanced-stage non-small cell lung cancer (NSCLC). Methods A total of 120 patients with advanced-stage NSCLC were enrolled in this retrospective study and randomly assigned to a training dataset or validation dataset. Here, 462 radiomics features were extracted from region-of-interest (ROI) segmentation based on pretreatment CT images. The least absolute shrinkage and selection operator (LASSO) and logistic regression were applied to select radiomics features and develop combined models with clinical and morphological factors for PD-L1 expression and TMB status prediction. Ten-fold cross-validation was used to evaluate the accuracy, and the predictive performance of these models was assessed using receiver operating characteristic (ROC) and area under the curve (AUC) analyses. Results The PD-L1-positive expression level correlated with differentiation degree (p = 0.005), tumor shape (p = 0.006), and vascular convergence (p = 0.007). Stage (p = 0.023), differentiation degree (p = 0.017), and vacuole sign (p = 0.016) were associated with TMB status. Radiomics signatures showed good performance for predicting PD-L1 and TMB with AUCs of 0.730 and 0.759, respectively. Predictive models that combined radiomics signatures with clinical and morphological factors dramatically improved the predictive efficacy for PD-L1 (AUC = 0.839) and TMB (p = 0.818). The results were verified in the validation datasets. Conclusions Quantitative CT-based radiomics features have potential value in the classification of PD-L1 expression levels and TMB status. The combined model further improved the predictive performance and provided sufficient information for the guiding of immunotherapy in clinical practice, and it deserves further analysis.
Collapse
Affiliation(s)
- Qiang Wen
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Yang
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Honghai Dai
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Alei Feng
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Li
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Anti-PD-(L)1 for KRAS-mutant advanced non-small-cell lung cancers: a meta-analysis of randomized-controlled trials. Cancer Immunol Immunother 2021; 71:719-726. [PMID: 34378081 DOI: 10.1007/s00262-021-03031-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The most frequent mutation in advanced non-small-cell lung cancer (NSCLC), Kirsten rat-sarcoma viral oncogene (KRAS) is found in 20-25% of these patients' tumors. While phase III trials on therapies targeting KRAS, especially KRASG12C, are ongoing, the clinical efficacy of anti-programmed death protein-1 (PD-1) or its ligand (PD-L1) against KRAS-mutant NSCLCs remains a topic of debate. METHODS This meta-analysis examined randomized-trial data comparing first- or second-line anti-PD-(L)1 with or without chemotherapy vs. chemotherapy alone for advanced KRAS-mutant NSCLCs. Outcome measures included overall survival (OS) and progression-free survival (PFS). Analyses were computed using the Cochrane method of collaboration for meta-analyses, with Review Manager software (RevMan version 5.3; Oxford, UK). RESULTS We analyzed 3 first-line trials (IMpower-150, Keynote-189 and Keynote-042) and 3 second-line trials (Oak, Poplar and CheckMate-057) that included 1313 NSCLCs (386 KRAS-mutant and 927 KRAS wild-type tumors). For KRAS-mutant NSCLCs, anti-PD-(L)1 with or without chemotherapy was significantly associated (hazard ratio [95% confidence interval]) with prolonged OS (0.59 [0.49-0.72]; p < 0.00001) and PFS (0.58 [0.43-0.78]; p = 0.0003) compared to chemotherapy alone. OS benefited in both first- and second-line trials. OS for patients with KRAS-mutant NSCLCs was significantly longer than that for those with KRAS wild-type tumors (p = 0.001). CONCLUSIONS Anti-PD-(L)1 with or without chemotherapy seemed to achieve longer OS and PFS than chemotherapy alone for patients with KRAS-mutant and wild-type KRAS advanced NSCLCs, with an even greater OS benefit for the former.
Collapse
|
23
|
Galland L, Le Page AL, Lecuelle J, Bibeau F, Oulkhouir Y, Derangère V, Truntzer C, Ghiringhelli F. Prognostic value of Thyroid Transcription Factor-1 expression in lung adenocarcinoma in patients treated with anti PD-1/PD-L1. Oncoimmunology 2021; 10:1957603. [PMID: 34377595 PMCID: PMC8331027 DOI: 10.1080/2162402x.2021.1957603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Anti-PD1/PD-L1-directed immune checkpoint inhibitors are game changers in advanced non-small-cell lung cancer, but biomarkers are lacking. The aim of our study was to find clinically relevant biomarkers of the efficacy of ICI in non-squamous NSCLC. We conducted a retrospective study of patients receiving ICI for advanced non squamous NSCLC in two cohorts. For a subset of patients, RNAseq data were generated on tumor biopsy taken before ICI. The primary end point was progression-free survival under ICI. Secondary end point was overall survival from ICI initiation. In the cohort, we studied 231 patients. Clinico-pathological characteristics included KRAS mutant status (n = 88), TTF1-positive expression (n = 136), LIPI (Lung Immune Prognostic Index) score of 0 (n = 116). In our cohort, lack of TTF1 expression, LIPI score >0, line of treatment >1, and liver metastases were associated with poorer PFS. TTF1 and PD-L1 status could be used to stratify survival and improve the AUC for prediction of prognosis in comparison with the PD-L1 gold standard. Using an external cohort of 154 patients, we confirmed the independent prognostic role of TTF1. TTF1 expression and PD-L1 can be used to stratify risk and predict PFS and OS in patients treated with ICI for NS-NSCLC.
Collapse
Affiliation(s)
- Loïck Galland
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Medical school, University of Burgundy-Franche Comté, Maison de l'université Esplanade Erasme, Dijon, Burgundy, France.,Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France
| | - Anne Laure Le Page
- Department of Pathology, Caen University Hospital, Normandy University, Caen, France
| | - Julie Lecuelle
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France
| | - Frederic Bibeau
- Department of Pathology, Caen University Hospital, Normandy University, Caen, France
| | | | - Valentin Derangère
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Medical school, University of Burgundy-Franche Comté, Maison de l'université Esplanade Erasme, Dijon, Burgundy, France.,Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France.,Umr Inserm 1231, Dijon, France
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France.,Umr Inserm 1231, Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Medical school, University of Burgundy-Franche Comté, Maison de l'université Esplanade Erasme, Dijon, Burgundy, France.,Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France.,Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France.,Umr Inserm 1231, Dijon, France
| |
Collapse
|
24
|
Evidence to Date: Evaluating Pembrolizumab in the Treatment of Extensive-Stage Small-Cell Lung Cancer. Clin Pract 2021; 11:441-454. [PMID: 34287275 PMCID: PMC8293071 DOI: 10.3390/clinpract11030059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive subtype of lung cancer characterized by a rapid initial response and early development of resistance to systemic therapy and radiation. The management of SCLC significantly changed for the first time in decades with the introduction of immune checkpoint inhibitors. Pembrolizumab, a humanized IgG4 isotype antibody, targets the programmed cell death protein 1 (PD-1) pathway to restore anti-tumor immunity. Prospective trials of pembrolizumab in patients with previously treated SCLC showed significant durability of responses. These results led to the U.S. Food and Drug Administration (FDA) granting pembrolizumab accelerated approval as second- or third-line monotherapy for patients with extensive-stage (ES) SCLC. In a recent clinical trial that included patients with previously untreated ES-SCLC, pembrolizumab in combination with platinum/etoposide met its progression-free survival endpoint, but overall survival (OS) did not cross the threshold for superiority. With the therapeutic landscape for SCLC rapidly evolving, we review prior experience and future directions of pembrolizumab in ES-SCLC.
Collapse
|
25
|
Nam CH, Koh J, Ock CY, Kim M, Keam B, Kim TM, Jeon YK, Kim DW, Chung DH, Heo DS. Temporal evolution of programmed death-ligand 1 expression in patients with non-small cell lung cancer. Korean J Intern Med 2021; 36:975-984. [PMID: 32872743 PMCID: PMC8273838 DOI: 10.3904/kjim.2020.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/12/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/AIMS Programmed death-ligand 1 (PD-L1) expression, a validated predictive biomarker for anti-PD-1/PD-L1 inhibitors, is reported to change over time. This poses challenges during clinical application in non-small cell lung cancer. METHODS This study included patients with non-small cell lung cancer who underwent surgery or biopsy and evaluation of PD-L1 expression in tumor cells via immunohistochemistry more than twice. We set the threshold of PD-L1 positivity to 10% and categorized patients into four groups according to changes in PD-L1 expression. Clinicopathologic information was collected from medical records. Statistical analyses, including Fisher's exact test and log-rank test, were performed. RESULTS Of 109 patients, 38 (34.9%) and 45 (41.3%) had PD-L1 positivity in archival and recent samples, respectively. PD-L1 status was maintained in 78 (71.6%) patients, but changed in 31 (28.4%), with 19 (17.4%) from negative to positive. There were no significant differences in characteristics between patients who maintained PD-L1 negativity and whose PD-L1 status changed from negative to positive. Patients harboring PD-L1 positivity in either archival or recent samples achieved better responses (p = 0.129) and showed longer overall survival than those who maintained PD-L1 negativity when they received immune checkpoint inhibitors after platinum failure (median overall survival 14.4 months vs. 4.93 months; hazard ratio, 0.43; 95% confidence interval, 0.20 to 0.93). CONCLUSION PD-L1 status changed in about one-fourth of patients. PD-L1 positivity in either archival or recent samples was predictive of better responses to immune checkpoint inhibitors. Therefore, archival samples could be used for assessment of PD-L1 status. The need for new biopsies should be decided individually.
Collapse
Affiliation(s)
- Chang Hyun Nam
- Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul,
Korea
| | - Chan-Young Ock
- Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul,
Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University Hospital, Seoul,
Korea
| | - Dae Seog Heo
- Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Melatonin Downregulates PD-L1 Expression and Modulates Tumor Immunity in KRAS-Mutant Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms22115649. [PMID: 34073318 PMCID: PMC8199131 DOI: 10.3390/ijms22115649] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) patients harboring a KRAS mutation have unfavorable therapeutic outcomes with chemotherapies, and the mutation also renders tolerance to immunotherapies. There is an unmet need for a new strategy for overcoming immunosuppression in KRAS-mutant NSCLC. The recently discovered role of melatonin demonstrates a wide spectrum of anticancer impacts; however, the effect of melatonin on modulating tumor immunity is largely unknown. In the present study, melatonin treatment significantly reduced cell viability accompanied by inducing cell apoptosis in KRAS-mutant NSCLC cell lines including A549, H460, and LLC1 cells. Mechanistically, we found that lung cancer cells harboring the KRAS mutation exhibited a higher level of programmed death ligand 1 (PD-L1). However, treatment with melatonin substantially downregulated PD-L1 expressions in both the presence and absence of interferon (IFN)-γ stimulation. Moreover, KRAS-mutant lung cancer cells exhibited higher Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) levels, and PD-L1 expression was positively correlated with YAP and TAZ in lung cancer cells. Treatment with melatonin effectively suppressed YAP and TAZ, which was accompanied by downregulation of YAP/TAZ downstream gene expressions. The combination of melatonin and an inhibitor of YAP/TAZ robustly decreased YAP and PD-L1 expressions. Clinical analysis using public databases revealed that PD-L1 expression was positively correlated with YAP and TAZ in patients with lung cancer, and PD-L1 overexpression suggested poor survival probability. An animal study further revealed that administration of melatonin significantly inhibited tumor growth and modulated tumor immunity in a syngeneic mouse model. Together, our data revealed a novel antitumor mechanism of melatonin in modulating the immunosuppressive tumor microenvironment by suppressing the YAP/PD-L1 axis and suggest the therapeutic potential of melatonin for treating NSCLC.
Collapse
|
27
|
Multi-Omics Perspective Reveals the Different Patterns of Tumor Immune Microenvironment Based on Programmed Death Ligand 1 (PD-L1) Expression and Predictor of Responses to Immune Checkpoint Blockade across Pan-Cancer. Int J Mol Sci 2021; 22:ijms22105158. [PMID: 34068143 PMCID: PMC8153013 DOI: 10.3390/ijms22105158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapies have shown great promise in cancer treatment. However, the intra-heterogeneity is a major barrier to reasonably classifying the potential benefited patients. Comprehensive heterogeneity analysis is needed to solve these clinical issues. In this study, the samples from pan-cancer and independent breast cancer datasets were divided into four tumor immune microenvironment (TIME) subtypes based on tumor programmed death ligand 1 (PD-L1) expression level and tumor-infiltrating lymphocyte (TIL) state. As the combination of the TIL Z score and PD-L1 expression showed superior prediction of response to ICI in multiple data sets compared to other methods, we used the TIL Z score and PD-L1 to classify samples. Therefore, samples were divided by combined TIL Z score and PD-L1 to identify four TIME subtypes, including type I (3.24%), type II (43.24%), type III (6.76%), and type IV (46.76%). Type I was associated with favorable prognosis with more T and DC cells, while type III had the poorest condition and composed a higher level of activated mast cells. Furthermore, TIME subtypes exhibited a distinct genetic and transcriptional feature: type III was observed to have the highest mutation rate (77.92%), while co-mutations patterns were characteristic in type I, and the PD-L1 positive subgroup showed higher carbohydrates, lipids, and xenobiotics metabolism compared to others. Overall, we developed a robust method to classify TIME and analyze the divergence of prognosis, immune cell composition, genomics, and transcriptomics patterns among TIME subtypes, which potentially provides insight for classification of TIME and a referrable theoretical basis for the screening benefited groups in the ICI immunotherapy.
Collapse
|
28
|
Gu M, Xu T, Chang P. KRAS/LKB1 and KRAS/TP53 co-mutations create divergent immune signatures in lung adenocarcinomas. Ther Adv Med Oncol 2021; 13:17588359211006950. [PMID: 33995590 PMCID: PMC8072935 DOI: 10.1177/17588359211006950] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Lung adenocarcinomas exhibit various patterns of genomic alterations. During the development of this cancer, KRAS serves as a driver oncogene with a relatively high mutational frequency. Emerging data suggest that lung adenocarcinomas with KRAS mutations can show enhanced PD-L1 expression and additional somatic mutations, thus linking the prospect of applying immune checkpoint blockade therapy to this disease. However, the responses of KRAS-mutant lung adenocarcinomas to this therapy are distinct, which is largely attributed to the heterogeneity in the tumoral immune milieus. Recently, it was revealed that KRAS-mutant lung adenocarcinomas simultaneously expressing either a LKB1 or TP53 mutation typically have different immune profiles of their tumours: tumours with a KRAS/TP53 co-mutation generally present with a significant upregulation of PD-L1 expression and tumoricidal T-cell accumulation, and those with a KRAS/LKB1 co-mutation are frequently negative for PD-L1 expression and have few tumoricidal immune infiltrates. In this regard, interrogating TP53 or LKB1 mutation in addition to PD-L1 expression will be promising in guiding clinical use of immune checkpoint blockade therapy for KRAS-mutant lung adenocarcinomas.
Collapse
Affiliation(s)
- Meichen Gu
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Tiankai Xu
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Pengyu Chang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, No.71, Xinmin Str, Changchun, 130021, P.R. China
| |
Collapse
|
29
|
Addeo A, Passaro A, Malapelle U, Luigi Banna G, Subbiah V, Friedlaender A. Immunotherapy in non-small cell lung cancer harbouring driver mutations. Cancer Treat Rev 2021; 96:102179. [PMID: 33798954 DOI: 10.1016/j.ctrv.2021.102179] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Alfredo Addeo
- Oncology Department, University Hospital, Geneva, Switzerland.
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Umberto Malapelle
- Department of Haematology/Oncology, Queen Alexandra Hospital, Portsmouth, United Kingdom
| | | | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
30
|
Briere DM, Li S, Calinisan A, Sudhakar N, Aranda R, Hargis L, Peng DH, Deng J, Engstrom LD, Hallin J, Gatto S, Fernandez-Banet J, Pavlicek A, Wong KK, Christensen JG, Olson P. The KRAS G12C Inhibitor MRTX849 Reconditions the Tumor Immune Microenvironment and Sensitizes Tumors to Checkpoint Inhibitor Therapy. Mol Cancer Ther 2021; 20:975-985. [PMID: 33722854 DOI: 10.1158/1535-7163.mct-20-0462] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
KRASG12C inhibitors, including MRTX849, are promising treatment options for KRAS-mutant non-small cell lung cancer (NSCLC). PD-1 inhibitors are approved in NSCLC; however, strategies to enhance checkpoint inhibitor therapy (CIT) are needed. KRASG12C mutations are smoking-associated transversion mutations associated with high tumor mutation burden, PD-L1 positivity, and an immunosuppressive tumor microenvironment. To evaluate the potential of MRTX849 to augment CIT, its impact on immune signaling and response to CIT was evaluated. In human tumor xenograft models, MRTX849 increased MHC class I protein expression and decreased RNA and/or plasma protein levels of immunosuppressive factors. In a KrasG12C -mutant CT26 syngeneic mouse model, MRTX849 decreased intratumoral myeloid-derived suppressor cells and increased M1-polarized macrophages, dendritic cells, CD4+, and CD8+ T cells. Similar results were observed in lung KrasG12C -mutant syngeneic and a genetically engineered mouse (GEM) model. In the CT26 KrasG12C model, MRTX849 demonstrated marked tumor regression when tumors were established in immune-competent BALB/c mice; however, the effect was diminished when tumors were grown in T-cell-deficient nu/nu mice. Tumors progressed following anti-PD-1 or MRTX849 single-agent treatment in immune-competent mice; however, combination treatment demonstrated durable, complete responses (CRs). Tumors did not reestablish in the same mice that exhibited durable CRs when rechallenged with tumor cell inoculum, demonstrating these mice developed adaptive antitumor immunity. In a GEM model, treatment with MRTX849 plus anti-PD-1 led to increased progression-free survival compared with either single agent alone. These data demonstrate KRAS inhibition reverses an immunosuppressive tumor microenvironment and sensitizes tumors to CIT through multiple mechanisms.
Collapse
Affiliation(s)
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York City, New York
| | | | | | - Ruth Aranda
- Mirati Therapeutics, Inc., San Diego, California
| | | | - David H Peng
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York City, New York
| | - Jiehui Deng
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York City, New York
| | | | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, California
| | - Sole Gatto
- Monoceros Biosystems LLC, San Diego, California
| | | | | | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York City, New York
| | | | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California.
| |
Collapse
|
31
|
Wang S, Qu X, Li Z, Che X, Cao L, Yang X, Hu X, Xu L, Hou K, Fan Y, Wen T, Liu Y. Distinct prognostic values of programmed death-ligand 1 and programmed cell death protein 1 in lung adenocarcinoma and squamous cell carcinoma patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:397. [PMID: 33842618 PMCID: PMC8033326 DOI: 10.21037/atm-20-968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background Although immunotherapy has demonstrated similar clinical activities in the treatment of lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC), several studies have shown programmed death-ligand 1 (PD-L1) to have different predictive roles in ADC and SCC. This study was conducted to compare the different functions of PD-L1/programmed cell death protein 1 (PD-1) pathway in these malignancies. Methods A multi-dimensional analysis based on public databases and 2 independent cohorts including 262 patients with lung cancer was performed. Immunohistochemistry (IHC) and fluorescence-based multiplexed staining were used to detect the immune factors. Results PD-L1 was observed to have different expressions and regulatory mechanisms between SCC and ADC. PD-L1 was significantly increased from the messenger RNA (mRNA) to protein levels in the SCC group compared with the ADC group. Also, PD-L1 on tumor cells (TCs) was positively correlated with CD8+ tumor lymphocyte infiltrates in ADC, but not in SCC. More importantly, PD-L1 was considered to be an independent predictor of overall survival (OS) for ADC patients. In contrast, in SCC patients, PD-1+ tumor-infiltrating lymphocytes (TILs) were considered a poor prognostic predictor. Conclusions These findings showed that PD-L1 in ADC and PD-1+ TILs in SCC respectively indicates T-cell function, which plays a crucial role in determining prognosis. The distinct functions of the biomarkers between ADC and SCC might provide potential avenues for guiding anti-PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China
| | - Lili Cao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuejun Hu
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China
| | - Yibo Fan
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, Shenyang, China
| |
Collapse
|
32
|
Li Y, Chen Z, Tao W, Sun N, He J. Tumor mutation score is more powerful than tumor mutation burden in predicting response to immunotherapy in non-small cell lung cancer. Cancer Immunol Immunother 2021; 70:2367-2378. [PMID: 33533944 DOI: 10.1007/s00262-021-02868-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Tumor mutation burden (TMB) predicts response to immunotherapy in non-small cell lung cancer (NSCLC). The current TMB evaluation is expensive and not satisfactory. Here, novel tumor mutation score (TMS) was defined as the number of genes with mutations in candidate genes and compared with TMB and PD-L1 in 240 NSCLC patients and validated in 34 NSCLC patients. Eighteen genes were significantly associated with longer progression-free survival (PFS) or better response. The number of mutated genes within 18 favorable genes were defined as TMS18. TMS18 (HR = 0.307, P < 0.001) had smaller hazard ratio and P value than TMB (HR = 0.455, P = 0.004) and PD-L1 expression (HR = 0.403, P = 0.005) in survival analysis. Moreover, TMS18 had significantly higher AUC than TMB and TMS18 combined with PD-L1 improved the accuracy. Universal cutoff of TMS18 enriched more patients with benefits. These findings were largely consistent in the validation cohort. Taken together, TMS18 was more powerful than TMB in predicting response of ICIs in NSCLC. Selective TMS was more feasible and cost-effective than unselective TMB. TMS18 combined with PD-L1 might yield better efficiency in predicting response of ICIs in NSCLC with future validation in larger cohorts.
Collapse
Affiliation(s)
- Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuhua Chen
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Weiping Tao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.18 Panjiayuannanli, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.18 Panjiayuannanli, Beijing, 100021, China.
| |
Collapse
|
33
|
Salgia R, Pharaon R, Mambetsariev I, Nam A, Sattler M. The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC). Cell Rep Med 2021; 2:100186. [PMID: 33521700 PMCID: PMC7817862 DOI: 10.1016/j.xcrm.2020.100186] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
KRAS is a frequent oncogenic driver in solid tumors, including non-small cell lung cancer (NSCLC). It was previously thought to be an "undruggable" target due to the lack of deep binding pockets for specific small-molecule inhibitors. A better understanding of the mechanisms that drive KRAS transformation, improved KRAS-targeted drugs, and immunological approaches that aim at yielding immune responses against KRAS neoantigens have sparked a race for approved therapies. Few treatments are available for KRAS mutant NSCLC patients, and several approaches are being tested in clinicals trials to fill this void. Here, we review promising therapeutics tested for KRAS mutant NSCLC.
Collapse
Affiliation(s)
- Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Rebecca Pharaon
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Pan LN, Ma YF, Li Z, Hu JA, Xu ZH. KRAS G12V mutation upregulates PD-L1 expression via TGF-β/EMT signaling pathway in human non-small-cell lung cancer. Cell Biol Int 2021; 45:795-803. [PMID: 33325140 DOI: 10.1002/cbin.11524] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022]
Abstract
Although clinical data suggest remarkable promise for targeting programmed cell death protein-1 (PD-1) and ligand (PD-L1) signaling in non-small-cell lung cancer (NSCLC), it is still largely undetermined which subtype of patients will be responsive to checkpoint blockade. In the present study, we explored whether PD-L1 was regulated by mutant Kirsten rat sarcoma viral oncogene homolog (KRAS), which is frequently mutated in NSCLC and results in poor prognosis and low survival rates. We verified that PD-L1 levels were dramatically increased in KRAS mutant cell lines, particularly in NCI-H441 cells with KRAS G12V mutation. Overexpression of KRAS G12V remarkably elevated PD-L1 messenger RNA and protein levels, while suppression of KRAS G12V led to decreased PD-L1 levels in NCI-H441 cells. Consistently, higher levels of PD-L1 were observed in KRAS-mutated tissues as well as tumor tissues-derived CD4+ and CD8+ T cells using a tumor xenograft in B-NDG mice. Mechanically, both in vitro and in vivo assays found that KRAS G12V upregulated PD-L1 via regulating the progression of epithelial-to-mesenchymal transition (EMT). Moreover, pembrolizumab activated the antitumor activity and decreased tumor growth with KRAS G12V mutated NSCLC. This study demonstrates that KRAS G12V mutation could induce PD-L1 expression and promote immune escape via transforming growth factor-β/EMT signaling pathway in KRAS-mutant NSCLC, providing a potential therapeutic approach for NSCLC harboring KRAS mutations.
Collapse
Affiliation(s)
- Li-Na Pan
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yun-Fang Ma
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Li
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jia-An Hu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhi-Hong Xu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
35
|
The potential of programmed death ligand-1 expression in ovarian malignant germ cell tumors as a prognostic factor. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Background: Ovarian malignant germ cell tumors (OMGCT) that fail to recover with conventional management have a poor prognosis. Several recurrent events after chemotherapy have been found. Programmed death ligand-1 (PD-L1) is expressed in various malignancies and tumor infiltrating lymphocytes (TILs) with a known role as a prognostic factor.
Objective: To determine the role of PD-L1 expression in OMGCT in determining overall survival (OS) and progression-free survival (PFS).
Methods: Expression of PD-L1 was assessed from PD-L1 immunohisto-chemistry in paraffin block preparations from 40 patients diagnosed with OMGCT who met the inclusion criteria. The relationship between clinicopathological characteristics and OS and PFS was analyzed using the Kaplan-Meier method and multivariate analysis using the Cox regression model.
Results: No significant relationship was found between PD-L1 expression in tumor cells with 2-year OS (p=0.275) and PFS (p=0.421) in OMGCT. A significant association was found between histopathologic types with 2-year OS (p=0.002), and cancer stage with 2- year OS (p=0.028) and PFS (p=0.014).
Conclusion: PD-L1 expression in tumor cells was not related to OS and PFS in OMGCT patients. There is a tendency for death and recurrence in patients OMGCTs with low PD-L1 expression in tumor cells.
Collapse
|
36
|
Li C, Liu J, Xie Z, Zhu F, Cheng B, Liang H, Li J, Xiong S, Chen Z, Liu Z, Zhao Y, Ou L, Zhong R, Wang W, Huang J, Sun J, Zhang C, Weng L, He J, Liang W, Pan Z. PD-L1 expression with respect to driver mutations in non-small cell lung cancer in an Asian population: a large study of 1370 cases in China. Ther Adv Med Oncol 2020; 12:1758835920965840. [PMID: 33403009 PMCID: PMC7745563 DOI: 10.1177/1758835920965840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background Programmed cell death ligand 1 (PD-L1) expression with respect to genetic alternations has not been well established in non-small cell lung cancer (NSCLC), especially in the Asian population. Methods We reviewed 1370 NSCLC patients from a prospectively maintained database. Immunohistochemistry was performed on tumor cells and tumor-infiltrating lymphocytes (TILs) using the VENTANA (SP142) anti-PD-L1 antibody. The tumor proportion score (TPS) cutoff values were set at ⩾1% and ⩾50%, and the immune proportion score (IPS) cutoff values were set at ⩾1% and ⩾10%. Results In tumor cells, PD-L1 positivity was observed in 405 (29.6%), 122 (8.9%), and 27 (2.0%) patients with TPS cutoff values at ⩾1% and ⩾50%. Contrastingly, TILs of 1154 (84.2%) and 346 (25.3%) patients stained positive at IPS cutoff values of ⩾1% and ⩾50%, respectively. PD-L1 expression was more common in patients who were mutation-negative irrespective of the TPS cutoff values and tumor size. PD-L1 expression in tumor cells was less frequent in patients harboring EGFR mutations (18.8% TPS ⩾ 1% and 4.6% TPS ⩾ 50%). Conversely, PD-L1 expression was high in the presence of KRAS mutations (47.3% TPS ⩾ 1% and 22.5% TPS ⩾ 50%). Overall, KRAS, BRAF, PICK3A, MET mutations and ROS1 and RET translocations were more frequent, while EGFR and HER2 mutations and ALK translocations were less frequent compared with the overall PD-L1 expression levels. Although the difference between TILs among the PD-L1-positive cases was comparatively small, PD-L1 positivity was less prevalent in EGFR-mutated tumors and more common in those with KRAS mutations, ROS1 translocations, BRAF mutations, or MET mutations. Conclusion Our study showed the heterogeneity in PD-L1 expression with respect to nine major oncogenic drivers in China. Future studies are warranted to further clarify the association between PD-L1 expression and driver mutations in NSCLC.
Collapse
Affiliation(s)
- Caichen Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Zhanhong Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Feng Zhu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Bo Cheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Jianfu Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Shan Xiong
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Zisheng Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Zhichao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhao
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Limin Ou
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Wei Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Jun Huang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Jinyun Sun
- Medical Affairs, LinkDoc Technology Co., Ltd., Beijing, China
| | - Chunya Zhang
- Medical Affairs, LinkDoc Technology Co., Ltd., Beijing, China
| | - Landong Weng
- Medical Affairs, LinkDoc Technology Co., Ltd., Beijing, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, No. 151, Yanjiang Road, Guangzhou, Guangdong Province, China
| | - Zhenkui Pan
- Department of Oncology, Qingdao Municipal Hospital, No. 1 Jiaozhou Road, Qingdao, ShanDong Province, China
| |
Collapse
|
37
|
Chen H, Zhao J. KRAS oncogene may be another target conquered in non-small cell lung cancer (NSCLC). Thorac Cancer 2020; 11:3425-3435. [PMID: 33022831 PMCID: PMC7705909 DOI: 10.1111/1759-7714.13538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/31/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the most common mutant oncogenes in non‐small cell lung cancer (NSCLC). The survival of patients with KRAS mutations may be much lower than patients without KRAS mutations. However, due to the complex structure and diverse biological properties, it is difficult to achieve specific inhibitors for the direct elimination of KRAS activity, making KRAS a challenging therapeutic target. At present, with the tireless efforts of medical research, including KRAS G12C inhibitors, immunotherapy and other combination strategies, this dilemma is expected to an end. In addition, inhibition of the downstream signaling pathways of KRAS may be a promising combination strategy. Given the rapid development of treatments, understanding the details will be important to determine the individualized treatment options, including combination therapy and potential resistance mechanisms. The survival of patients with KRAS mutations may be much lower than patients without KRAS mutations. At present, with the tireless efforts of medical research, including KRAS G12C inhibitors, immunotherapy and other combination strategy, this dilemma of KRAS mutated NSCLC is expected to an end.
Collapse
Affiliation(s)
- Hanxiao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Departments of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Departments of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
38
|
Amanam I, Mambetsariev I, Gupta R, Achuthan S, Wang Y, Pharaon R, Massarelli E, Koczywas M, Reckamp K, Salgia R. Role of immunotherapy and co-mutations on KRAS-mutant non-small cell lung cancer survival. J Thorac Dis 2020; 12:5086-5095. [PMID: 33145085 PMCID: PMC7578487 DOI: 10.21037/jtd.2020.04.18] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background KRAS mutations reported in non-small cell lung cancer (NSCLC) represent a significant percentage of patients diagnosed with NSCLC. However, there still remains no therapeutic option designed to target KRAS. In an era with immunotherapy as a dominant treatment option in metastatic NSCLC, the role of immunotherapy in KRAS mutated patients is not clear. Methods Eligible patients diagnosed with NSCLC and found to have a KRAS mutation were identified in an institutional lung cancer database. Demographic, clinical, and molecular data was collected and analyzed. Results A total of 60 patients were identified for this retrospective analysis. Majority of patients were Caucasian (73%), diagnosed with stage IV (70%) adenocarcinoma (87%), and had a KRAS codon 12 mutation (78%). Twenty percent of patients were treated with immunotherapy. Median overall survival was 28 months in the cohort and patients who received immunotherapy were found to have better survival versus those who did not (33 vs. 22 months, P=0.31). Furthermore, there was an association between high survival and patients who received immunotherapy (P=0.007). Conclusions Patients with KRAS mutations have a unique co-mutation phenotype that requires further investigation. Immunotherapy seems to be an effective choice of treatment for KRAS positive patients in any treatment-line setting and yields better outcomes than conventional chemotherapy. The relationship between immunotherapy and KRAS mutations requires further studies to confirm survival advantage.
Collapse
Affiliation(s)
- Idoroenyi Amanam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Rohan Gupta
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Srisairam Achuthan
- Center for Informatics, City of Hope National Medical Center, Duarte, CA, USA
| | - Yingyu Wang
- Center for Informatics, City of Hope National Medical Center, Duarte, CA, USA
| | - Rebecca Pharaon
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Erminia Massarelli
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Marianna Koczywas
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Karen Reckamp
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
39
|
Soffietti R, Ahluwalia M, Lin N, Rudà R. Management of brain metastases according to molecular subtypes. Nat Rev Neurol 2020; 16:557-574. [PMID: 32873927 DOI: 10.1038/s41582-020-0391-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
The incidence of brain metastases has markedly increased in the past 20 years owing to progress in the treatment of malignant solid tumours, earlier diagnosis by MRI and an ageing population. Although local therapies remain the mainstay of treatment for many patients with brain metastases, a growing number of systemic options are now available and/or are under active investigation. HER2-targeted therapies (lapatinib, neratinib, tucatinib and trastuzumab emtansine), alone or in combination, yield a number of intracranial responses in patients with HER2-positive breast cancer brain metastases. New inhibitors are being investigated in brain metastases from ER-positive or triple-negative breast cancer. Several generations of EGFR and ALK inhibitors have shown activity on brain metastases from EGFR and ALK mutant non-small-cell lung cancer. Immune-checkpoint inhibitors (ICIs) hold promise in patients with non-small-cell lung cancer without druggable mutations and in patients with triple-negative breast cancer. The survival of patients with brain metastases from melanoma has substantially improved after the advent of BRAF inhibitors and ICIs (ipilimumab, nivolumab and pembrolizumab). The combination of targeted agents or ICIs with stereotactic radiosurgery could further improve the response rates and survival but the risk of radiation necrosis should be monitored. Advanced neuroimaging and liquid biopsy will hopefully improve response evaluation.
Collapse
Affiliation(s)
- Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy.
| | - Manmeet Ahluwalia
- Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Center Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nancy Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
40
|
Patel RR, Ramkissoon SH, Ross J, Weintraub L. Tumor mutational burden and driver mutations: Characterizing the genomic landscape of pediatric brain tumors. Pediatr Blood Cancer 2020; 67:e28338. [PMID: 32386112 DOI: 10.1002/pbc.28338] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tumor mutational burden (TMB) and driver mutations are potential biomarkers to guide targeted therapy selection. Malignant gliomas with high TMB in children may preferentially benefit from treatment with immune checkpoint inhibitors (ICPIs). Higher TMB may relate to lower incidence of driver mutations, but this relationship has not been studied in pediatric brain tumors. PROCEDURE Comprehensive genomic profiling was performed on 723 pediatric (≤21 years) brain tumor samples using DNA extracted from formalin-fixed paraffin-embedded tissue. TMB was calculated as mutations per megabase and categorized as low (0-6), intermediate (6-20), or high (>20). Analysis included 80 clinically relevant driver mutations; genomic alterations known to confer a selective growth advantage. RESULTS Of 723 brain tumors, TMB was low in 91.8%, intermediate in 6.1%, and high in 2.1%. In the high TMB cohort, 93% of tumors harbored a driver mutation; 70% and 63% in the intermediate and low TMB cohorts, respectively (P < 0.05). However, when excluding tumor suppressor genes, high TMB tumors had a decreased incidence of driver mutations (P < 0.001). BRAF alterations were not identified in high TMB tumors, but were enriched in low TMB tumors (P < 0.01). Conversely, there was an association between high TMB tumors and TP53 mutations (P < 10-13 ). Of the 15 tumors with high TMB, 14 were high-grade gliomas and 13 had alterations in TP53. Three homozygous mismatch repair deletions identified were associated with a higher TMB (P < 0.01). CONCLUSIONS Specific driver mutations appear to have a relationship with TMB. These represent populations in which ICPIs may be more or less effective.
Collapse
Affiliation(s)
- Roshal R Patel
- Department of Pediatric Hematology/Oncology, Albany Medical College, Albany Medical Center, Albany, New York
| | - Shakti H Ramkissoon
- Pathology and Diagnostic Medicine, Foundation Medicine, Inc., Morrisville, North Carolina.,Department of Pathology, Wake Forest School of Medicine, Wake Forest Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Jeffrey Ross
- Pathology and Diagnostic Medicine, Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Lauren Weintraub
- Department of Pediatric Hematology/Oncology, Albany Medical Center, Albany, New York
| |
Collapse
|
41
|
Qian J, Nie W, Lu J, Zhang L, Zhang Y, Zhang B, Wang S, Hu M, Xu J, Lou Y, Dong Y, Niu Y, Yan B, Zhong R, Zhang W, Chu T, Zhong H, Han B. Racial differences in characteristics and prognoses between Asian and white patients with nonsmall cell lung cancer receiving atezolizumab: An ancillary analysis of the POPLAR and OAK studies. Int J Cancer 2020; 146:3124-3133. [PMID: 31583695 DOI: 10.1002/ijc.32717] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/22/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Qian
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Emergency Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Nie
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lele Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanwei Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyuan Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minjuan Hu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlin Xu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Lou
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Dong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Niu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Yan
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Runbo Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tianqing Chu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Romano F, Giannone AG, Siragusa S, Porcasi R, Florena AM. Immunoistochemical expression of PD-1 and PD-L1 in bone marrow biopsies of patients with acute myeloid leukemia. Hematol Rep 2020. [DOI: 10.4081/hr.2020.8211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
tumor immunotherapy is a rapidly evolving field. The discovery of the ability of neoplasms to evade the immune response has shifted the attention of the medical community to the underlying mechanisms of the immune response to tumors, highlighting the importance of so-called immune check points, including CTLA4, TIM-3 and PD-1. an immune escape mechanism is the activation of the immune checkpoint pathway that contributes to the creation of an immunosuppressive microenvironment and therefore to tumor proliferation.although immune checkpoints have been extensively investigated in solid tumors, the same is not true for hematologic neoplasms, particularly for myeloid malignancies. our study is based on the evaluation of the activation of the PD-1 and PD-L1 pathway in the context of the bone marrow tumor microenvironment of patients with acute myeloid leukemia. To do so we evaluated 34 bone marrow biopsies of patients with acute myeloid leukemia comparing them to 10 controls using immunohistochemical methods.
Collapse
|
43
|
Li Y, Chen Z, Wu L, Tao W. Novel tumor mutation score versus tumor mutation burden in predicting survival after immunotherapy in pan-cancer patients from the MSK-IMPACT cohort. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:446. [PMID: 32395490 PMCID: PMC7210182 DOI: 10.21037/atm.2020.03.163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Tumor mutation burden (TMB) may predict the immune checkpoint inhibitor (ICI) response. The TMB calculation includes all nonsynonymous somatic mutations, but not all mutations are favorable, and the efficiency of TMB is attenuated by including adverse mutations. Moreover, no universal cutoff value of a high TMB hinders its application in practice. Methods Tumor mutation score (TMS), defined as the number of genes with nonsynonymous somatic mutations, TMS55, defined as the TMS of 55 favorable prognostic genes, and TMB were calculated and compared in 1,661 advanced cancer patients treated with ICIs and 3,840 matched advanced cancer patients not treated with ICIs among ten cancer types. Results TMS55 was significantly associated with TMB. In 1,661 ICI-treated patients, 55 genes were significantly associated with prolonged overall survival (OS), and a high TMS55 (TMS55 >5) was associated with a smaller hazard ratio (HR) and P value than a high TMB (highest 20% in each histology group) in predicting OS. The C-index of TMS55 was significantly higher than that of TMB (TMS55 0.65 vs. TMB 0.54, P<0.001). Moreover, TMS55 was significantly associated with improved survival in more tumor types than TMB, especially in non-small cell lung cancer (NSCLC), melanoma, bladder cancer and colorectal cancer. In 3,840 non-ICI-treated patients, a high TMS55 and TMB predicted poor OS. Conclusions The novel TMS55 might be better than TMB as a biomarker for patients treated with ICIs. The easy calculation and universal cutoff value of TMS55 will not be affected across platforms and is feasible in clinical settings, which may greatly promote its application in the clinic with further validation.
Collapse
Affiliation(s)
- Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zuhua Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Long Wu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weiping Tao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
44
|
Remon J, Passiglia F, Ahn MJ, Barlesi F, Forde PM, Garon EB, Gettinger S, Goldberg SB, Herbst RS, Horn L, Kubota K, Lu S, Mezquita L, Paz-Ares L, Popat S, Schalper KA, Skoulidis F, Reck M, Adjei AA, Scagliotti GV. Immune Checkpoint Inhibitors in Thoracic Malignancies: Review of the Existing Evidence by an IASLC Expert Panel and Recommendations. J Thorac Oncol 2020; 15:914-947. [PMID: 32179179 DOI: 10.1016/j.jtho.2020.03.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
In the past 10 years, a deeper understanding of the immune landscape of cancers, including immune evasion processes, has allowed the development of a new class of agents. The reactivation of host antitumor immune response offers the potential for long-term survival benefit in a portion of patients with thoracic malignancies. The advent of programmed cell death protein 1/programmed death ligand-1 immune checkpoint inhibitors (ICIs), both as single agents and in combination with chemotherapy, and more recently, the combination of ICI, anti-programmed cell death protein 1, and anticytotoxic T-lymphocyte antigen 4 antibody, have led to breakthrough therapeutic advances for patients with advanced NSCLC, and to a lesser extent, patients with SCLC. Encouraging activity has recently emerged in pretreated patients with thymic carcinoma (TC). Conversely, in malignant pleural mesothelioma, pivotal positive signs of activity have not been fully confirmed in randomized trials. The additive effects of chemoradiation and immunotherapy suggested intriguing potential for therapeutic synergy with combination strategies. This has led to the introduction of ICI consolidation therapy in stage III NSCLC, creating a platform for future therapeutic developments in earlier-stage disease. Despite the definitive clinical benefit observed with ICI, primary and acquired resistance represent well-known biological phenomena, which may affect the therapeutic efficacy of these agents. The development of innovative strategies to overcome ICI resistance, standardization of new patterns of ICI progression, identification of predictive biomarkers of response, optimal treatment duration, and characterization of ICI efficacy in special populations, represent crucial issues to be adequately addressed, with the aim of improving the therapeutic benefit of ICI in patients with thoracic malignancies. In this article, an international panel of experts in the field of thoracic malignancies discussed these topics, evaluating currently available scientific evidence, with the final aim of providing clinical recommendations, which may guide oncologists in their current practice and elucidate future treatment strategies and research priorities.
Collapse
Affiliation(s)
- Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal (HM-CIOCC), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Francesco Passiglia
- Department of Oncology, University of Torino, AOU S. Luigi Gonzaga, Orbassano, Italy
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Fabrice Barlesi
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille University, CNRS, INSERM, CRCM, APHM, Marseille, France
| | - Patrick M Forde
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward B Garon
- David Geffen School of Medicine at University of California Los Angeles, Translational Research in Oncology US Network, Los Angeles, California
| | - Scott Gettinger
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Sarah B Goldberg
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Roy S Herbst
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Leora Horn
- Department of Hematology and Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Laura Mezquita
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Luis Paz-Ares
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sanjay Popat
- Medical Oncology Department, The Royal Marsden Hospital, London, United Kingdom; Medical Oncology Department, The Institute of Cancer Research, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kurt A Schalper
- Departments of Pathology and Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Ferdinandos Skoulidis
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany
| | - Alex A Adjei
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Giorgio V Scagliotti
- Department of Oncology, University of Torino, AOU S. Luigi Gonzaga, Orbassano, Italy.
| |
Collapse
|
45
|
Jiang H, Zhang R, Jiang H, Zhang M, Guo W, Zhang J, Zhou X, Pan W, Zhao S, Li P. Retrospective analysis of the prognostic value of PD-L1 expression and 18F-FDG PET/CT metabolic parameters in colorectal cancer. J Cancer 2020; 11:2864-2873. [PMID: 32226504 PMCID: PMC7086272 DOI: 10.7150/jca.38689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background: It has been rarely reported whether 18F-fluorodeoxyglucose (18F-FDG) uptake in colorectal cancer cells is associated with the expression of PD-L1. We performed a clinical pathology study to evaluate PD-L1 expression in patients undergoing surgical resection of colorectal cancer with preoperative 18F-FDG PET/CT imaging, with the aim of predicting the response of CRC patients to immune checkpoint inhibitors. Material and Methods: A retrospective analysis of patients with CRC who underwent FDG-PET imaging before surgery was performed to measure the parameters of FDG-PET imaging: the maximum standardized uptake value (SUVmax), the metabolic tumor volume (MTV), and the total lesion glycolysis (TLG) were evaluated to determine whether each parameter was associated with clinical pathology. Tumor specimens were subjected to PD-L1 staining by immunohistochemistry. Analysis of whether there is a correlation between PD-L1 expression and 18F-FDG uptake parameters in CRC. Results: PD-L1 expression level was significantly correlated with SUVmax, MTV3.0 and TLG3.0. Multivariate analysis showed that PD-L1 and TLG3.0 were independent predictors of poor DFS in patients with CRC (P=0.009; P=0.016), PD-L1 expression is closely related to the patient's lesion (TLG3.0) (P<0.01). Conclusion: The results of this study indicate that there was a significant correlation between PD-L1 expression and TLG3.0 which suggested that FDG-PET could serve as a noninvasive tool to assess the tumor microenvironment and as a predictor of PD-L1 inhibitor activity to determine the optimal therapeutic strategy for CRC. High PD-L1 expression levels and high TLG3.0 are independent risk factors for DFS differences in CRC patients.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyu Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Affiliated to Capital Medical University, Beijing, China
| | - Wei Guo
- Department of Ultrasound, Harbin the First Hospital, Harbin, China
| | - Jifeng Zhang
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglu Zhou
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenbin Pan
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ping Li
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
46
|
Chen YM, Chih-Hsin Yang J, Su WC, Chong IW, Hsia TC, Lin MC, Chang GC, Chiu CH, Ho CC, Wu SY, Hung JY, Wang CC, Yang TY, Yu CJ. Nivolumab safety and efficacy in advanced, platinum-resistant, non-small cell lung cancer, radical radiotherapy-ineligible patients: A phase II study in Taiwan. J Formos Med Assoc 2020; 119:1817-1826. [PMID: 32094063 DOI: 10.1016/j.jfma.2020.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/PURPOSE There is a lack of data on nivolumab treatment outcomes in Taiwanese patients with advanced or recurrent non-small cell lung cancer (NSCLC) ineligible for radical radiotherapy and resistant to platinum-based chemotherapy. We investigated the safety and efficacy of nivolumab in this population. METHODS In this ongoing, multicenter, open-label, single-arm, phase II study, patients aged ≥20 years with a performance status of 0-1 and stage IIIB/IV or recurrent NSCLC received nivolumab 3 mg/kg every 2 weeks in 6-week cycles. Interim data obtained between 27 January 2016 and 21 May 2017 were analyzed. Safety, based on adverse event (AE) reporting, was the primary endpoint. Efficacy assessment parameters included overall response rate (ORR), overall survival (OS), and progression-free survival (PFS). RESULTS Among 53 treated patients with advanced NSCLC (median age 61.0 years; 62.3% male), mean treatment duration was 99.7 days. AEs (any grade) and serious AEs were reported by 92.5% and 47.2% of patients, respectively. Adverse drug reactions (ADRs; any) occurred in 58.5% of patients; grade ≥3 ADRs occurred in 13.2% of patients. Five deaths occurred; two cases (neoplasm progression and septic shock) were considered treatment-emergent. Common ADRs were fatigue (17.0%) and rash (13.2%). Common immune-related treatment-emergent AEs were rash (17.0%) and pruritus (13.2%). The centrally assessed ORR was 9.4% (5/53). The median OS and median PFS were 11.5 months and 1.4 months, respectively. CONCLUSION Nivolumab appeared to be safe and effective in Taiwanese patients. These interim results suggest that nivolumab is a suitable treatment option for this population. CLINICAL TRIAL REGISTRATION NCT02582125.
Collapse
Affiliation(s)
- Yuh-Min Chen
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Te-Chun Hsia
- China Medical University Hospital and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - Meng-Chih Lin
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Gee-Chen Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chao-Hua Chiu
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shang-Yin Wu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Ying Yang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
47
|
Zhu C, Zhuang W, Chen L, Yang W, Ou WB. Frontiers of ctDNA, targeted therapies, and immunotherapy in non-small-cell lung cancer. Transl Lung Cancer Res 2020; 9:111-138. [PMID: 32206559 PMCID: PMC7082279 DOI: 10.21037/tlcr.2020.01.09] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022]
Abstract
Non-small-cell lung cancer (NSCLC), a main subtype of lung cancer, is one of the most common causes of cancer death in men and women worldwide. Circulating tumor DNA (ctDNA), tyrosine kinase inhibitors (TKIs) and immunotherapy have revolutionized both our understanding of NSCLC, from its diagnosis to targeted NSCLC therapies, and its treatment. ctDNA quantification confers convenience and precision to clinical decision making. Furthermore, the implementation of TKI-based targeted therapy and immunotherapy has significantly improved NSCLC patient quality of life. This review provides an update on the methods of ctDNA detection and its impact on therapeutic strategies; therapies that target epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) using TKIs such as osimertinib and lorlatinib; the rise of various resistant mechanisms; and the control of programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4) by immune checkpoint inhibitors (ICIs) in immunotherapy; blood tumor mutational burden (bTMB) calculated by ctDNA assay as a novel biomarker for immunotherapy. However, NSCLC patients still face many challenges. Further studies and trials are needed to develop more effective drugs or therapies to treat NSCLC.
Collapse
Affiliation(s)
- Chennianci Zhu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weihao Zhuang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Limin Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenyu Yang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
48
|
Karatrasoglou EA, Chatziandreou I, Sakellariou S, Stamopoulos K, Kavantzas N, Lazaris AC, Korkolopoulou P, Saetta AA. Association between PD-L1 expression and driver gene mutations in non-small cell lung cancer patients: correlation with clinical data. Virchows Arch 2020; 477:207-217. [PMID: 31989260 DOI: 10.1007/s00428-020-02756-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Recently, promising therapies have emerged based on PD-1/PD-L1 immune checkpoint inhibitors, which have been approved even as frontline treatment for patients with non-small cell lung cancer (NSCLC). We examined the association between PD-L1 expression and clinicopathological parameters as well as overall survival in 220 NSCLC patients. PD-L1 expression was estimated by immunohistochemistry using 22C3 PharmDx Dako assay and was defined as high, if TPS was ≥ 50%, low, if TPS was 1%-49%, and absent, if TPS was < 1%. EGFR mutations were detected by COBAS while KRAS and BRAF mutations by pyrosequencing. ROS1 and ALK rearrangements were estimated by immunohistochemistry with positive cases being confirmed by CISH and FISH, respectively. Data analysis was performed using SPSS v25.0. PD-L1 expression was positively correlated with KRAS mutations. Anti-PD-1 therapy (pembrolizumab) prolonged overall survival compared to any other treatment. This effect was more pronounced in KRAS-mutated cases compared to KRAS wild-type ones. Patients with positive PD-L1 expression - high or low - who had been treated with pembrolizumab, showed significant survival benefit compared to positive or negative PD-L1 expressors who did not receive immunotherapy. In multivariate analysis, PD-L1 status, stage and pembrolizumab treatment were independent variables for overall survival. PD-L1 expression (TPS ≥ 1%) by itself emerged as a poor prognostic factor, while treatment with pembrolizumab prolonged overall survival. KRAS mutations may affect tumour microenvironment and patient's response to immunotherapy. Immune checkpoint inhibitors could represent an alternative therapeutic option particularly for KRAS-mutated NSCLC patients. Further investigation into this notion is warranted in order to validate this observation.
Collapse
Affiliation(s)
- Eleni A Karatrasoglou
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ilenia Chatziandreou
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Stratigoula Sakellariou
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolaos Kavantzas
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelica A Saetta
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
49
|
Rothschild SI. KRAS and Immune Checkpoint Inhibitors-Serendipity Raising Expectations. J Thorac Oncol 2020; 14:951-954. [PMID: 31122556 DOI: 10.1016/j.jtho.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 10/26/2022]
|
50
|
Yao J, Gong Y, Zhao W, Han Z, Guo S, Liu H, Peng X, Xiao W, Li Y, Dang S, Liu G, Li L, Huang T, Chen S, Song L. Comprehensive analysis of POLE and POLD1 Gene Variations identifies cancer patients potentially benefit from immunotherapy in Chinese population. Sci Rep 2019; 9:15767. [PMID: 31673068 PMCID: PMC6823448 DOI: 10.1038/s41598-019-52414-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
POLE/POLD1 gene variants have been suggested as potential markers for immunotherapy due to their significant association with the tumor mutational burden (TMB), an effective indicator for response prediction in immunotherapy. However, the correlation of POLE/POLD1 variants with MSI, MMR, TMB, MMR-related and key driver gene mutations needs to be defined to support patient recruitment and therapeutic effect assessment in immunotherapy. 1,392 Chinese cancer patients were recruited, and the correlation of POLE/POLD1 variants with existing immunotherapeutic markers and cancer pathways was investigated. A next-generation sequencing panel including 605 cancer-related genes was used for variant sequencing. It was found that the frequency of POLE variants was not statistically different from that in COSMIC database, while the frequency of POLD1 variants was significantly higher in lung cancer. c.857 C > G and c.2091dupC were potential high frequency variants in Chinese cancer patients. Patients carrying POLE damaging variants were significantly younger than POLE/POLD1 WT patients. Patients carrying POLE/POLD1 damaging variants exhibited significantly higher TMB and frequency of MMR gene variants than POLE/POLD1 WT patients. Patients with POLE damaging variants also exhibited significantly higher frequency of driver gene variants than POLE/POLD1 WT patients. Further analysis showed that POLE damaging variants may affect the cancer development through MMR, TGFβ and RTK/RAS/RAF signaling pathways, and POLD1 through MMR pathways. In conclusion, this study identified key characteristics and regions of POLE/POLD1 genes that correlates with TMB, MMR gene mutations and key driver gene mutations, and provided theoretical and practical basis for patient selection based on POLE/POLD1 gene status in immunotherapy.
Collapse
Affiliation(s)
- Jianfei Yao
- HaploX Biotechnology, Co., Ltd, Shenzhen, P.R. China
| | - Yuan Gong
- Department of Gastroenterology, the Chinese PLA General Hospital, Beijing, P.R. China
| | - Wei Zhao
- Department of Thoracic Surgery, Sino-Japanese Friendship Hospital, Jilin University, Changchun, Jilin Province, P.R. China
| | - Zhifeng Han
- Department of Thoracic Surgery, Sino-Japanese Friendship Hospital, Jilin University, Changchun, Jilin Province, P.R. China
| | - Shaohua Guo
- Department of General Surgery, the Chinese PLA General Hospital, Beijing, P.R. China
| | - Hongyi Liu
- Department of General Surgery, the Chinese PLA General Hospital, Beijing, P.R. China
| | - Xiumei Peng
- Department of Oncology, the Fourth Medical Center of the Chinese PLA General Hospital, Beijing, P.R. China
| | - Wenhua Xiao
- Department of Oncology, the Fourth Medical Center of the Chinese PLA General Hospital, Beijing, P.R. China
| | - Yuemin Li
- Department of Radiotherapy, the Eighth Medical Center of the Chinese PLA General Hospital, Beijing, P.R. China
| | - Shiying Dang
- HaploX Biotechnology, Co., Ltd, Shenzhen, P.R. China
| | - Guifeng Liu
- HaploX Biotechnology, Co., Ltd, Shenzhen, P.R. China
| | - Lifeng Li
- HaploX Biotechnology, Co., Ltd, Shenzhen, P.R. China
| | - Tanxiao Huang
- HaploX Biotechnology, Co., Ltd, Shenzhen, P.R. China
| | - Shifu Chen
- HaploX Biotechnology, Co., Ltd, Shenzhen, P.R. China
| | - Lele Song
- HaploX Biotechnology, Co., Ltd, Shenzhen, P.R. China.
- Department of Radiotherapy, the Eighth Medical Center of the Chinese PLA General Hospital, Beijing, P.R. China.
| |
Collapse
|