1
|
Korbecki J, Bosiacki M, Stasiak P, Snarski E, Brodowska A, Chlubek D, Baranowska-Bosiacka I. Clinical Aspects and Significance of β-Chemokines, γ-Chemokines, and δ-Chemokines in Molecular Cancer Processes in Acute Myeloid Leukemia (AML) and Myelodysplastic Neoplasms (MDS). Cancers (Basel) 2024; 16:3246. [PMID: 39409868 PMCID: PMC11476337 DOI: 10.3390/cancers16193246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute myeloid leukemia (AML) is a type of leukemia with a very poor prognosis. Consequently, this neoplasm is extensively researched to discover new therapeutic strategies. One area of investigation is the study of intracellular communication and the impact of the bone marrow microenvironment on AML cells, with chemokines being a key focus. The roles of β-chemokines, γ-chemokines, and δ-chemokines in AML processes have not yet been sufficiently characterized. METHODS This publication summarizes all available knowledge about these chemotactic cytokines in AML and myelodysplastic neoplasm (MDS) processes and presents potential therapeutic strategies to combat the disease. The significance of β-chemokines, γ-chemokines, and δ-chemokines is detailed, including CCL2 (MCP-1), CCL3 (MIP-1α), CCL5 (RANTES), CCL23, CCL28, and CX3CL1 (fractalkine). Additionally, the importance of atypical chemokine receptors in AML is discussed, specifically ACKR1, ACKR2, ACKR4, and CCRL2. RESULTS/CONCLUSIONS The focus is on the effects of these chemokines on AML cells, particularly their influence on proliferation and resistance to anti-leukemic drugs. Intercellular interactions with non-AML cells, such as mesenchymal stem cells (MSC), macrophages, and regulatory T cells (Treg), are also characterized. The clinical aspects of chemokines are thoroughly explained, including their effect on overall survival and the relationship between their blood levels and AML characteristics.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland; (J.K.); (P.S.)
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland; (J.K.); (P.S.)
| | - Emilian Snarski
- Institute of Medical Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland;
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| |
Collapse
|
2
|
González MDR, Chakraborty S, Hernández-Sánchez JM, Diez Campelo M, Park CY, Hernández Rivas JM. Molecular profiling of pre- and post- 5-azacytidine myelodysplastic syndrome samples identifies predictors of response. Front Oncol 2024; 14:1438052. [PMID: 39376992 PMCID: PMC11456566 DOI: 10.3389/fonc.2024.1438052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
Treatment with the hypomethylating agent 5-azacytidine (AZA) increases survival in high-risk (HR) myelodysplastic syndrome (MDS) patients, but predicting patient response and overall survival remains challenging. To address these issues, we analyzed mutational and transcriptional profiles in CD34+ hematopoietic stem/progenitor cells (HSPCs) before and following AZA therapy in MDS patients. AZA treatment led to a greater reduction in the mutational burden in both blast and hematological responders than non-responders. Blast and hematological responders showed transcriptional evidence of pre-treatment enrichment for pathways such as oxidative phosphorylation, MYC targets, and mTORC1 signaling. While blast non-response was associated with TNFa signaling and leukemia stem cell signature, hematological non-response was associated with cell-cycle related pathways. AZA induced similar transcriptional responses in MDS patients regardless of response type. Comparison of blast responders and non-responders to normal controls, allowed us to generate a transcriptional classifier that could predict AZA response and survival. This classifier outperformed a previously developed gene signature in a second MDS patient cohort, but signatures of hematological responses were unable to predict survival. Overall, these studies characterize the molecular consequences of AZA treatment in MDS HSPCs and identify a potential tool for predicting AZA therapy responses and overall survival prior to initiation of therapy.
Collapse
Affiliation(s)
- Mónica del Rey González
- Institute for Biomedical Research of Salamanca (IBSAL), Institute of Cancer Molecular and Cellular Biology (IBMCC)-Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Sohini Chakraborty
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jesús María Hernández-Sánchez
- Institute for Biomedical Research of Salamanca (IBSAL), Institute of Cancer Molecular and Cellular Biology (IBMCC)-Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - María Diez Campelo
- Hematology Department, Hospital Universitario Salamanca, Salamanca, Spain
| | - Christopher Y. Park
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jesús María Hernández Rivas
- Institute for Biomedical Research of Salamanca (IBSAL), Institute of Cancer Molecular and Cellular Biology (IBMCC)-Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
- Hematology Department, Hospital Universitario Salamanca, Salamanca, Spain
| |
Collapse
|
3
|
Tentori CA, Zhao LP, Tinterri B, Strange KE, Zoldan K, Dimopoulos K, Feng X, Riva E, Lim B, Simoni Y, Murthy V, Hayes MJ, Poloni A, Padron E, Cardoso BA, Cross M, Winter S, Santaolalla A, Patel BA, Groarke EM, Wiseman DH, Jones K, Jamieson L, Manogaran C, Daver N, Gallur L, Ingram W, Ferrell PB, Sockel K, Dulphy N, Chapuis N, Kubasch AS, Olsnes AM, Kulasekararaj A, De Lavellade H, Kern W, Van Hemelrijck M, Bonnet D, Westers TM, Freeman S, Oelschlaegel U, Valcarcel D, Raddi MG, Grønbæk K, Fontenay M, Loghavi S, Santini V, Almeida AM, Irish JM, Sallman DA, Young NS, van de Loosdrecht AA, Adès L, Della Porta MG, Cargo C, Platzbecker U, Kordasti S. Immune-monitoring of myelodysplastic neoplasms: Recommendations from the i4MDS consortium. Hemasphere 2024; 8:e64. [PMID: 38756352 PMCID: PMC11096644 DOI: 10.1002/hem3.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/03/2024] [Indexed: 05/18/2024] Open
Abstract
Advancements in comprehending myelodysplastic neoplasms (MDS) have unfolded significantly in recent years, elucidating a myriad of cellular and molecular underpinnings integral to disease progression. While molecular inclusions into prognostic models have substantively advanced risk stratification, recent revelations have emphasized the pivotal role of immune dysregulation within the bone marrow milieu during MDS evolution. Nonetheless, immunotherapy for MDS has not experienced breakthroughs seen in other malignancies, partly attributable to the absence of an immune classification that could stratify patients toward optimally targeted immunotherapeutic approaches. A pivotal obstacle to establishing "immune classes" among MDS patients is the absence of validated accepted immune panels suitable for routine application in clinical laboratories. In response, we formed International Integrative Innovative Immunology for MDS (i4MDS), a consortium of multidisciplinary experts, and created the following recommendations for standardized methodologies to monitor immune responses in MDS. A central goal of i4MDS is the development of an immune score that could be incorporated into current clinical risk stratification models. This position paper first consolidates current knowledge on MDS immunology. Subsequently, in collaboration with clinical and laboratory specialists, we introduce flow cytometry panels and cytokine assays, meticulously devised for clinical laboratories, aiming to monitor the immune status of MDS patients, evaluating both immune fitness and identifying potential immune "risk factors." By amalgamating this immunological characterization data and molecular data, we aim to enhance patient stratification, identify predictive markers for treatment responsiveness, and accelerate the development of systems immunology tools and innovative immunotherapies.
Collapse
Affiliation(s)
- Cristina A. Tentori
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Comprehensive Cancer Centre, King's CollegeLondonUK
| | - Lin P. Zhao
- Hématologie seniorsHôpital Saint‐Louis, Assistance Publique des Hôpitaux de Paris (APHP)ParisFrance
- INSERM UMR_S1160, Institut de Recherche Saint LouisUniversité Paris CitéParisFrance
| | - Benedetta Tinterri
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | - Kathryn E. Strange
- Comprehensive Cancer Centre, King's CollegeLondonUK
- Research Group of Molecular ImmunologyFrancis Crick InstituteLondonUK
| | - Katharina Zoldan
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Konstantinos Dimopoulos
- Department of Clinical BiochemistryBispebjerg and Frederiksberg HospitalCopenhagenDenmark
- Department of Pathology, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Elena Riva
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | | | - Yannick Simoni
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
| | - Vidhya Murthy
- Centre for Clinical Haematology, University Hospitals of BirminghamBirminghamUK
| | - Madeline J. Hayes
- Cell & Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Antonella Poloni
- Department of Clinical and Molecular SciencesUniversità Politecnica delle MarcheAnconaItaly
| | - Eric Padron
- Moffitt Cancer Center, Malignant Hematology DepartmentTampaUSA
| | - Bruno A. Cardoso
- Universidade Católica PortuguesaFaculdade de MedicinaPortugal
- Universidade Católica Portuguesa, Centro de Investigação Interdisciplinar em SaúdePortugal
| | - Michael Cross
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Susann Winter
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | | | - Bhavisha A. Patel
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Emma M. Groarke
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Daniel H. Wiseman
- Division of Cancer SciencesThe University of ManchesterManchesterUK
- The Christie NHS Foundation TrustManchesterUK
| | - Katy Jones
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Lauren Jamieson
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Charles Manogaran
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Naval Daver
- University of TexasMD Anderson Cancer CenterHouston, TexasUSA
| | - Laura Gallur
- Hematology Department, Vall d'hebron University Hospital, Vall d'hebron Institut of Oncology (VHIO)Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Wendy Ingram
- Department of HaematologyUniversity Hospital of WalesCardiffUK
| | - P. Brent Ferrell
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Katja Sockel
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | - Nicolas Dulphy
- INSERM UMR_S1160, Institut de Recherche Saint LouisUniversité Paris CitéParisFrance
- Laboratoire d'Immunologie et d‘Histocompatibilité, Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Saint‐LouisParisFrance
- Institut Carnot OPALE, Institut de Recherche Saint‐Louis, Hôpital Saint‐LouisParisFrance
| | - Nicolas Chapuis
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
- Assistance Publique‐Hôpitaux de Paris Centre, Hôpital CochinParisFrance
| | - Anne S. Kubasch
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Astrid M. Olsnes
- Section for Hematology, Department of MedicineHaukeland University HospitalBergenNorway
- Department of Clinical ScienceFaculty of Medicine, University of BergenBergenNorway
| | | | | | | | | | - Dominique Bonnet
- Hematopoietic Stem Cell LaboratoryFrancis Crick InstituteLondonUK
| | - Theresia M. Westers
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, location VU University Medical CenterAmsterdamThe Netherlands
| | - Sylvie Freeman
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Uta Oelschlaegel
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | - David Valcarcel
- Hematology Department, Vall d'hebron University Hospital, Vall d'hebron Institut of Oncology (VHIO)Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Marco G. Raddi
- Myelodysplastic Syndrome Unit, Hematology DivisionAzienda Ospedaliero‐Universitaria Careggi, University of FlorenceFlorenceItaly
| | - Kirsten Grønbæk
- Department of Hematology, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Biotech Research and Innovation Center (BRIC)University of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Michaela Fontenay
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
- Assistance Publique‐Hôpitaux de Paris Centre, Hôpital CochinParisFrance
| | - Sanam Loghavi
- University of TexasMD Anderson Cancer CenterHouston, TexasUSA
| | - Valeria Santini
- Myelodysplastic Syndrome Unit, Hematology DivisionAzienda Ospedaliero‐Universitaria Careggi, University of FlorenceFlorenceItaly
| | - Antonio M. Almeida
- Hematology DepartmentHospital da Luz LisboaLisboaPortugal
- DeaneryFaculdade de Medicina, UCPLisboaPortugal
| | - Jonathan M. Irish
- Cell & Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Neal S. Young
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, location VU University Medical CenterAmsterdamThe Netherlands
| | - Lionel Adès
- Hématologie seniorsHôpital Saint‐Louis, Assistance Publique des Hôpitaux de Paris (APHP)ParisFrance
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
| | - Matteo G. Della Porta
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | | | - Uwe Platzbecker
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Shahram Kordasti
- Comprehensive Cancer Centre, King's CollegeLondonUK
- Department of Clinical and Molecular SciencesUniversità Politecnica delle MarcheAnconaItaly
- Haematology DepartmentGuy's and St Thomas NHS TrustLondonUK
| | | |
Collapse
|
4
|
Ramachandra N, Gupta M, Schwartz L, Todorova T, Shastri A, Will B, Steidl U, Verma A. Role of IL8 in myeloid malignancies. Leuk Lymphoma 2023; 64:1742-1751. [PMID: 37467070 DOI: 10.1080/10428194.2023.2232492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Aberrant overexpression of Interleukin-8 (IL8) has been reported in Myelodysplastic Syndromes (MDS), Acute Myeloid Leukemia (AML), Myeloproliferative Neoplasms (MPNs) and other myeloid malignancies. IL8 (CXCL8) is a CXC chemokine that is secreted by aberrant hematopoietic stem and progenitors as well as other cells in the tumor microenvironment. IL8 can bind to CXCR1/CXCR2 receptors and activate oncogenic signaling pathways, and also increase the recruitment of myeloid derived suppressor cells to the tumor microenvironment. IL8/CXCR1/2 overexpression has been associated with poorer prognosis in MDS and AML and increased bone marrow fibrosis in Myelofibrosis. Preclinical studies have demonstrated benefit of inhibiting the IL8/CXCR1/2 pathways via restricting the growth of leukemic stem cells as well as normalizing the immunosuppressive microenvironment in tumors. Targeting the IL8-CXCR1/2 pathway is a potential therapeutic strategy in myeloid neoplasms and is being evaluated with small molecule inhibitors as well as monoclonal antibodies in ongoing clinical trials. We review the role of IL8 signaling pathway in myeloid cancers and discuss future directions on therapeutic targeting of IL8 in these diseases.
Collapse
Affiliation(s)
- Nandini Ramachandra
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Malini Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Leya Schwartz
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
| | - Tihomira Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Aditi Shastri
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Britta Will
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Amit Verma
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
5
|
Moore CA, Ferrer AI, Alonso S, Pamarthi SH, Sandiford OA, Rameshwar P. Exosomes in the Healthy and Malignant Bone Marrow Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:67-89. [PMID: 34888844 DOI: 10.1007/978-3-030-83282-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bone marrow (BM) is a complex organ that sustains hematopoiesis via mechanisms involving the microenvironment. The microenvironment includes several cell types, neurotransmitters from innervated fibers, growth factors, extracellular matrix proteins, and extracellular vesicles. The main function of the BM is to regulate hematopoietic function to sustain the production of blood and immune cells. However, the BM microenvironment can also accommodate the survival of malignant cells. A major mechanism by which the cancer cells communicate with cells of the BM microenvironment is through the exchange of exosomes, a subset of extracellular vesicles that deliver molecular signals bidirectionally between malignant and healthy cells. The field of exosomes is an active area of investigation since an understanding of how the exosomal packaging, cargo, and production can be leveraged therapeutically to deter cancer progression and sensitize malignant cells to other therapies. Altogether, this chapter discusses the crucial role of exosomes in the development and progression of BM-associated cancers, such as hematologic malignancies and marrow-metastatic breast cancer. Exosome-based therapeutic strategies and their limitations are also considered.
Collapse
Affiliation(s)
- Caitlyn A Moore
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Alejandra I Ferrer
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sara Alonso
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sri Harika Pamarthi
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Oleta A Sandiford
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Pranela Rameshwar
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
6
|
Grauers Wiktorin H, Aydin E, Christenson K, Issdisai N, Thorén FB, Hellstrand K, Martner A. Impact of IL-1β and the IL-1R antagonist on relapse risk and survival in AML patients undergoing immunotherapy for remission maintenance. Oncoimmunology 2021; 10:1944538. [PMID: 34367728 PMCID: PMC8317920 DOI: 10.1080/2162402x.2021.1944538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Interleukin-1 beta (IL-1β), a pro-inflammatory cytokine, has been ascribed a role in the expansion of myeloid progenitors in acute myeloid leukemia (AML) and in promoting myeloid cell-induced suppression of lymphocyte-mediated immunity against malignant cells. This study aimed at defining the potential impact of IL-1β in the post-remission phase of AML patients receiving immunotherapy for relapse prevention in an international phase IV trial of 84 patients (ClinicalTrials.gov; NCT01347996). Consecutive serum samples were collected from AML patients in first complete remission (CR) who received cycles of relapse-preventive immunotherapy with histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2). Low IL-1β serum levels before and after the first HDC/IL-2 treatment cycle favorably prognosticated leukemia-free survival and overall survival. Serum levels of IL-1β were significantly reduced in patients receiving HDC/IL-2. HDC also reduced the formation of IL-1β from activated human PBMCs in vitro. Additionally, high serum levels of the IL-1 receptor antagonist IL-1RA were associated with favorable outcome, and AML patients with low IL-1β along with high IL-1RA levels were strikingly protected against leukemic relapse. Our results suggest that strategies to target IL-1β might impact on relapse risk and survival in AML.
Collapse
Affiliation(s)
- Hanna Grauers Wiktorin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ebru Aydin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden.,Molecular Genetics, Germany Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Christenson
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden.,Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Nuttida Issdisai
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
7
|
Giudice V, Cardamone C, Triggiani M, Selleri C. Bone Marrow Failure Syndromes, Overlapping Diseases with a Common Cytokine Signature. Int J Mol Sci 2021; 22:ijms22020705. [PMID: 33445786 PMCID: PMC7828244 DOI: 10.3390/ijms22020705] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022] Open
Abstract
Bone marrow failure (BMF) syndromes are a heterogenous group of non-malignant hematologic diseases characterized by single- or multi-lineage cytopenia(s) with either inherited or acquired pathogenesis. Aberrant T or B cells or innate immune responses are variously involved in the pathophysiology of BMF, and hematological improvement after standard immunosuppressive or anti-complement therapies is the main indirect evidence of the central role of the immune system in BMF development. As part of this immune derangement, pro-inflammatory cytokines play an important role in shaping the immune responses and in sustaining inflammation during marrow failure. In this review, we summarize current knowledge of cytokine signatures in BMF syndromes.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Chiara Cardamone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Internal Medicine and Clinical Immunology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Massimo Triggiani
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Internal Medicine and Clinical Immunology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-089-672810
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
8
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|
9
|
Pribyl M, Hubackova S, Moudra A, Vancurova M, Polackova H, Stopka T, Jonasova A, Bokorova R, Fuchs O, Stritesky J, Salovska B, Bartek J, Hodny Z. Aberrantly elevated suprabasin in the bone marrow as a candidate biomarker of advanced disease state in myelodysplastic syndromes. Mol Oncol 2020; 14:2403-2419. [PMID: 32696549 PMCID: PMC7530796 DOI: 10.1002/1878-0261.12768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are preleukemic disorders characterized by clonal growth of mutant hematopoietic stem and progenitor cells. MDS are associated with proinflammatory signaling, dysregulated immune response, and cell death in the bone marrow (BM). Aging, autoinflammation and autoimmunity are crucial features of disease progression, concordant with promoting growth of malignant clones and accumulation of mutations. Suprabasin (SBSN), a recently proposed proto‐oncogene of unknown function, physiologically expressed in stratified epithelia, is associated with poor prognosis of several human malignancies. Here, we showed that SBSN is expressed in the BM by myeloid cell subpopulations, including myeloid‐derived suppressor cells, and is secreted into BM plasma and peripheral blood of MDS patients. The highest expression of SBSN was present in a patient group with poor prognosis. SBSN levels in the BM correlated positively with blast percentage and negatively with CCL2 chemokine levels and lymphocyte count. In vitro treatment of leukemic cells with interferon‐gamma and demethylating agent 5‐azacytidine (5‐AC) induced SBSN expression. This indicated that aberrant cytokine levels in the BM and epigenetic landscape modifications in MDS patients may underlie ectopic expression of SBSN. Our findings suggest SBSN as a candidate biomarker of high‐risk MDS with a possible role in disease progression and therapy resistance.
Collapse
Affiliation(s)
- Miroslav Pribyl
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sona Hubackova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Molecular Therapy of Cancer Group, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prague, Czech Republic
| | - Alena Moudra
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Vancurova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Polackova
- 1st Department of Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Tomas Stopka
- 1st Department of Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic.,Group of Mechanisms Involved in Remodeling of Chromatin Structure During Cell Fate Decisions, BIOCEV, Prague, Czech Republic
| | - Anna Jonasova
- 1st Department of Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Radka Bokorova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Ota Fuchs
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jan Stritesky
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Barbora Salovska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Danish Cancer Society Research Center, Copenhagen, Denmark.,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Tonorezos ES, Ford JS, Wang L, Ness KK, Yasui Y, Leisenring W, Sklar CA, Robison LL, Oeffinger KC, Nathan PC, Armstrong GT, Krull K, Jones LW. Impact of exercise on psychological burden in adult survivors of childhood cancer: A report from the Childhood Cancer Survivor Study. Cancer 2019; 125:3059-3067. [PMID: 31067357 DOI: 10.1002/cncr.32173] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Childhood cancer survivors are at risk for adverse psychological outcomes. Whether exercise can attenuate this risk is unknown. METHODS In total, 6199 participants in the Childhood Cancer Survivor Study (median age, 34.3 years [range, 22.0-54.0 years]; median age at diagnosis, 10.0 years [range, 0-21.0 years]) completed a questionnaire assessing vigorous exercise and medical/psychological conditions. Outcomes were evaluated a median of 7.8 years (range, 0.1-10.0 years) later and were defined as: symptom level above the 90th percentile of population norms for depression, anxiety, or somatization on the Brief Symptom Inventory-18; cancer-related pain; cognitive impairment using a validated self-report neurocognitive questionnaire; or poor health-related quality of life. Log-binomial regression estimated associations between exercise (metabolic equivalent [MET]-hours per week-1 ) and outcomes adjusting for cancer diagnosis, treatment, demographics, and baseline conditions. RESULTS The prevalence of depression at follow-up was 11.4% (95% CI, 10.6%-12.3%), anxiety 7.4% (95% CI, 6.7%-8.2%) and somatization 13.9% (95% CI, 13.0%-14.9%). Vigorous exercise was associated with lower prevalence of depression and somatization. The adjusted prevalence ratio for depression was 0.87 (95% CI, 0.72-1.05) for 3 to 6 MET hours per week-1 , 0.76 (95% CI, 0.62-0.94) for 9 to 12 MET-hours per week-1 , and 0.74 (95% CI, 0.58-0.95) for 15 to 21 MET-hours per week-1 . Compared with 0 MET hours per week-1 , 15 to 21 MET-hours per week-1 were associated with an adjusted prevalence ratio of 0.79 (95% CI, 0.62-1.00) for somatization. Vigorous exercise also was associated with less impairment in the physical functioning, general health and vitality (Ptrend < .001), emotional role limitations (Ptrend = .02), and mental health (Ptrend = .02) domains as well as higher cognitive function in the domains of task completion, organization, and working memory (P < .05 for all), but not in the domain of cancer pain. CONCLUSIONS Vigorous exercise is associated with less psychological burden and cognitive impairment in childhood cancer survivors.
Collapse
Affiliation(s)
- Emily S Tonorezos
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jennifer S Ford
- Department of Psychology, Hunter College, City University of New York, New York, New York
| | - Linwei Wang
- Department of Epidemiology and Public Health, British Columbia Center for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wendy Leisenring
- Clinical Research Division and Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charles A Sklar
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kevin C Oeffinger
- Duke Center for Onco-Primary Care, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Paul C Nathan
- Department of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kevin Krull
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lee W Jones
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
11
|
Kogan AA, Lapidus RG, Baer MR, Rassool FV. Exploiting epigenetically mediated changes: Acute myeloid leukemia, leukemia stem cells and the bone marrow microenvironment. Adv Cancer Res 2019; 141:213-253. [PMID: 30691684 DOI: 10.1016/bs.acr.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) derives from the clonal expansion of immature myeloid cells in the bone marrow, and results in the disruption of normal hematopoiesis and subsequent bone marrow failure. The bone marrow microenvironment (BME) and its immune and other supporting cells are regarded to facilitate the survival, differentiation and proliferation of leukemia stem cells (LSCs), which enables AML cells to persist and expand despite treatment. Recent studies have identified epigenetic modifications among AML cells and BME constituents in AML, and have shown that epigenetic therapy can potentially reprogram these alterations. In this review, we summarize the interactions between the BME and LSCs, and discuss changes in how the BME and immune cells interact with AML cells. After describing the epigenetic modifications seen across chromatin, DNA, the BME, and the immune microenvironment, we explore how demethylating agents may reprogram these pathological interactions, and potentially re-sensitize AML cells to treatment.
Collapse
Affiliation(s)
- Aksinija A Kogan
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rena G Lapidus
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria R Baer
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.
| |
Collapse
|
12
|
Infection perturbs Bach2- and Bach1-dependent erythroid lineage 'choice' to cause anemia. Nat Immunol 2018; 19:1059-1070. [PMID: 30250186 DOI: 10.1038/s41590-018-0202-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
Elucidation of how the differentiation of hematopoietic stem and progenitor cells (HSPCs) is reconfigured in response to the environment is critical for understanding the biology and disorder of hematopoiesis. Here we found that the transcription factors (TFs) Bach2 and Bach1 promoted erythropoiesis by regulating heme metabolism in committed erythroid cells to sustain erythroblast maturation and by reinforcing erythroid commitment at the erythro-myeloid bifurcation step. Bach TFs repressed expression of the gene encoding the transcription factor C/EBPβ, as well as that of its target genes encoding molecules important for myelopoiesis and inflammation; they achieved the latter by binding to their regulatory regions also bound by C/EBPβ. Lipopolysaccharide diminished the expression of Bach TFs in progenitor cells and promoted myeloid differentiation. Overexpression of Bach2 in HSPCs promoted erythroid development and inhibited myelopoiesis. Knockdown of BACH1 or BACH2 in human CD34+ HSPCs impaired erythroid differentiation in vitro. Thus, Bach TFs accelerate erythroid commitment by suppressing the myeloid program at steady state. Anemia of inflammation and myelodysplastic syndrome might involve reduced activity of Bach TFs.
Collapse
|
13
|
Chronic immune response dysregulation in MDS pathogenesis. Blood 2018; 132:1553-1560. [PMID: 30104218 DOI: 10.1182/blood-2018-03-784116] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic innate immune signaling in hematopoietic cells is widely described in myelodysplastic syndromes (MDS), and innate immune pathway activation, predominantly via pattern recognition receptors, increases the risk of developing MDS. An inflammatory component to MDS has been reported for many years, but only recently has evidence supported a more direct role of chronic innate immune signaling and associated inflammatory pathways in the pathogenesis of MDS. Here we review recent findings and discuss relevant questions related to chronic immune response dysregulation in MDS.
Collapse
|
14
|
McGill CM, Brown TJ, Fisher LN, Gustafson SJ, Dunlap KL, Beck AJ, Toran PT, Claxton DF, Barth BM. Combinatorial Efficacy of Quercitin and Nanoliposomal Ceramide for Acute Myeloid Leukemia. INTERNATIONAL JOURNAL OF BIOPHARMACEUTICAL SCIENCES 2018; 1:106. [PMID: 30701264 PMCID: PMC6349237 DOI: 10.31021/ijbs.20181106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with limited treatment options. Inflammation is often a contributing factor to the development and progression of AML, and related diseases, and can potentiate therapy failure. Previously, we had identified anti-inflammatory roles and anti-AML efficacy for blueberry extracts. The present study extended these observations to determine that the polyphenol quercetin inhibited neutral sphingomyelinase (N-SMase) activity and exerted anti-AML efficacy. Moreover, quercetin was shown to exert combinatorial anti-AML efficacy with nanoliposomal ceramide. Overall, this demonstrated that quercetin could block the pro-inflammatory actions of N-SMase and augment the efficacy of anti-AML therapeutics, including ceramide-based therapeutics.
Collapse
Affiliation(s)
- Colin M McGill
- Department of Chemistry, University of Alaska-Anchorage, Anchorage, AK 99508 USA
| | - Timothy J Brown
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Lindsey N Fisher
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Sally J Gustafson
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, Fairbanks, AK 99775
| | - Kriya L Dunlap
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, Fairbanks, AK 99775
| | - Adam J Beck
- Drug Discovery, Development, and Delivery Core, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Paul T Toran
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - David F Claxton
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Brian M Barth
- Department of Medicine, Division of Hematology and Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
15
|
Cooper JN, Young NS. Clonality in context: hematopoietic clones in their marrow environment. Blood 2017; 130:2363-2372. [PMID: 29046282 PMCID: PMC5709788 DOI: 10.1182/blood-2017-07-794362] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/04/2017] [Indexed: 11/20/2022] Open
Abstract
Clonal hematopoiesis occurs normally, especially with aging, and in the setting of disease, not only in myeloid cancers but in bone marrow failure as well. In cancer, malignant clones are characterized by recurrent somatic mutations in specific sets of genes, but the direct relationship of such mutations to leukemogenesis, when they occur in cells of an apparently healthy older individual or after recovery from immune aplastic anemia, is uncertain. Here we emphasize a view of clonal evolution that stresses natural selection over deterministic ontogeny, and we stress the selective role of the environment of the marrow and organism. Clonal hematopoieses after chemotherapy, in marrow failure, and with aging serve as models. We caution against the overinterpretation of clinical results of genomic testing in the absence of a better understanding of clonal selection and evolution.
Collapse
Affiliation(s)
- James N Cooper
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Asayama T, Tamura H, Ishibashi M, Kuribayashi-Hamada Y, Onodera-Kondo A, Okuyama N, Yamada A, Shimizu M, Moriya K, Takahashi H, Inokuchi K. Functional expression of Tim-3 on blasts and clinical impact of its ligand galectin-9 in myelodysplastic syndromes. Oncotarget 2017; 8:88904-88917. [PMID: 29179486 PMCID: PMC5687656 DOI: 10.18632/oncotarget.21492] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
T-cell immunoglobulin mucin-3 (Tim-3), an inhibitory immune checkpoint receptor, is highly expressed on acute myeloid leukemia cells and its ligand galectin-9 is reported to drive leukemic progression by binding with Tim-3. However, it remains unclear whether the Tim-3–galectin-9 pathway is associated with the pathophysiology of myelodysplastic syndromes (MDS). Thus, we investigated the expression and function of Tim-3 and the clinical impact of its ligand galectin-9 in MDS. Tim-3 expression levels on MDS blasts by CD45/side-scatter or CD34/CD45 gating were increased as MDS progressed to the advanced stage. Tim-3 expression in the MDS blasts was upregulated in the presence of the cell culture supernatant of human stromal cells or the MDS-related cytokine transforming growth factor-β1. The proliferation of Tim-3+ MDS blasts was inhibited by the blockade of anti-Tim-3 antibody. Furthermore, plasma levels of galectin-9 were elevated as MDS progressed to the advanced stage in 70 MDS/acute leukemia transformed from MDS patients and was a prognostic factor in 40 MDS patients. Our data demonstrated that the Tim-3-galectin-9 pathway is associated with the pathogenesis and disease progression of MDS. These findings provide new insight into potential immunotherapy targeting the galectin-9–Tim-3 pathway in MDS.
Collapse
Affiliation(s)
- Toshio Asayama
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Hideto Tamura
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | | | | | - Namiko Okuyama
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Akiko Yamada
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Keiichi Moriya
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Koiti Inokuchi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
17
|
Cull AH, Rauh MJ. Success in bone marrow failure? Novel therapeutic directions based on the immune environment of myelodysplastic syndromes. J Leukoc Biol 2017; 102:209-219. [DOI: 10.1189/jlb.5ri0317-083r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/24/2022] Open
|
18
|
Lu Y, Li S, Zhu S, Gong Y, Shi J, Xu L. Methylated DNA/RNA in Body Fluids as Biomarkers for Lung Cancer. Biol Proced Online 2017; 19:2. [PMID: 28331435 PMCID: PMC5356409 DOI: 10.1186/s12575-017-0051-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.
Collapse
Affiliation(s)
- Yan Lu
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Shulin/Sl Li
- MD Anderson Cancer Center, the university of Texas, 1840 Old Spanish Trail, Houston, TX USA
| | - Shiguo/Sg Zhu
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai, China
| | - Yabin/Yb Gong
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Jun/J Shi
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Ling/L Xu
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| |
Collapse
|
19
|
Camacho V, McClearn V, Patel S, Welner RS. Regulation of normal and leukemic stem cells through cytokine signaling and the microenvironment. Int J Hematol 2017; 105:566-577. [DOI: 10.1007/s12185-017-2184-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
|