1
|
Arkiya S, Hesampour A, Esrafili A, Arasteh J. Effect of chitosan nanogels loaded with vancomycin and gamma interferon on TNF-α gene expression in macrophage cell line activated with methicillin-resistant Staphylococcus aureus (MRSA). IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:614-623. [PMID: 39534300 PMCID: PMC11551651 DOI: 10.18502/ijm.v16i5.16794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Background and Objectives Staphylococcus aureus is an opportunistic pathogen that frequently leads to asymptomatic infections. Methicillin-resistant strains (MRSA) pose a significant threat as they are resistant to most commonly used antibiotics, complicating treatment efforts. This study aimed to develop chitosan nanogels loaded with vancomycin and IFN-γ and to assess the expression of the TNF-α gene in a cell line infected with MRSA. Materials and Methods Following the synthesis and confirmation of the chitosan nanogels, vancomycin and IFN-γ were incorporated into these nanogels. The synthesis was validated using DLS, FTIR, TEM, and SEM. Subsequently, the anti-bacterial efficacy of the nanogels was assessed. Finally, four groups of cell lines were designed: control, MRSA, chitosan nanogels and IFN-γ-vancomycin chitosan nanogels. After infection of the groups (except control) with MRSA, 5 μg/mL of nanogels, and nanogels (drug and IFN-γ) were added to groups 3 and 4, respectively. Then the expression of TNF-α gene in each group was analyzed by RT-PCR at 6 and 24 hours. Results At pH 6.5 and 7.4, the MIC of 1 μg/mL was obtained for free vancomycin, whereas that of IFN-γ-vancomycin nanogels at both pHs was respectively 8 and 64 μg/mL. The IC50 of chitosan nanogels and nanogels loaded with vancomycin-IFN-γ on RAW264.7 cells were 2.37 and 4.15 μg/mL in 24 hours, respectively. In group 4 in comparison to the MRSA group, TNF-α expression decreased significantly following 24 hours. Conclusion Loading of vancomycin and IFN-γ in the chitosan nanogel can reduce TNF-α gene expression on MRSA infected cell lines.
Collapse
Affiliation(s)
- Sahar Arkiya
- Department of Biology, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ardeshir Hesampour
- Department of Biology, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Arasteh
- Department of Biology, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Wang S, Wang L, Qiu M, Lin Z, Qi W, Lv J, Wang Y, Lu Y, Li X, Chen W, Qiu W. Constructing and validating a risk model based on neutrophil-related genes for evaluating prognosis and guiding immunotherapy in colon cancer. J Gene Med 2024; 26:e3684. [PMID: 38618694 DOI: 10.1002/jgm.3684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Colon cancer is one of the most common digestive tract malignancies. Although immunotherapy has brought new hope to colon cancer patients, there is still a large proportion of patients who do not benefit from immunotherapy. Studies have shown that neutrophils can interact with immune cells and immune factors to affect the prognosis of patients. METHODS We first determined the infiltration level of neutrophils in tumors using the CIBERSORT algorithm and identified key genes in the final risk model by Spearman correlation analysis and subsequent Cox analysis. The risk score of each patient was obtained by multiplying the Cox regression coefficient and the gene expression level, and patients were divided into two groups based on the median of risk score. Differences in overall survival (OS) and progression-free survival (PFS) were assessed by Kaplan-Meier survival analysis, and model accuracy was validated in independent dataset. Differences in immune infiltration and immunotherapy were evaluated by immunoassay. Finally, immunohistochemistry and western blotting were performed to verify the expression of the three genes in the colon normal and tumor tissues. RESULTS We established and validated a risk scoring model based on neutrophil-related genes in two independent datasets, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, with SLC11A1 and SLC2A3 as risk factors and MMP3 as a protective factor. A new nomogram was constructed and validated by combining clinical characteristics and the risk score model to better predict patients OS and PFS. Immune analysis showed that patients in the high-risk group had immune cell infiltration level, immune checkpoint level and tumor mutational burden, and were more likely to benefit from immunotherapy. CONCLUSIONS The low-risk group showed better OS and PFS than the high-risk group in the neutrophil-related gene-based risk model. Patients in the high-risk group presented higher immune infiltration levels and tumor mutational burden and thus may be more responsive to immunotherapy.
Collapse
Affiliation(s)
- Shasha Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Wang
- Department of Oncology, Rizhao Central Hospital, Rizhao, China
| | - Mingxiu Qiu
- Department Second of Respiratory and Critical Care, Qingdao Municipal Hospital, Qingdao, China
| | - Zhongkun Lin
- Department of Oncology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Weiwei Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangyang Lu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxuan Li
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Wensheng Qiu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, Wang R, Meng Y, Zhou Q, Tian X. Dysbiosis: The first hit for digestive system cancer. Front Physiol 2022; 13:1040991. [DOI: 10.3389/fphys.2022.1040991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Gastrointestinal cancer may be associated with dysbiosis, which is characterized by an alteration of the gut microbiota. Understanding the role of gut microbiota in the development of gastrointestinal cancer is useful for cancer prevention and gut microbiota-based therapy. However, the potential role of dysbiosis in the onset of tumorigenesis is not fully understood. While accumulating evidence has demonstrated the presence of dysbiosis in the intestinal microbiota of both healthy individuals and patients with various digestive system diseases, severe dysbiosis is often present in patients with digestive system cancer. Importantly, specific bacteria have been isolated from the fecal samples of these patients. Thus, the association between dysbiosis and the development of digestive system cancer cannot be ignored. A new model describing this relationship must be established. In this review, we postulate that dysbiosis serves as the first hit for the development of digestive system cancer. Dysbiosis-induced alterations, including inflammation, aberrant immune response, bacteria-produced genotoxins, and cellular stress response associated with genetic, epigenetic, and/or neoplastic changes, are second hits that speed carcinogenesis. This review explains the mechanisms for these four pathways and discusses gut microbiota-based therapies. The content included in this review will shed light on gut microbiota-based strategies for cancer prevention and therapy.
Collapse
|
4
|
Ghosh S, Singh R, Vanwinkle ZM, Guo H, Vemula PK, Goel A, Haribabu B, Jala VR. Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis. Theranostics 2022; 12:5574-5595. [PMID: 35910798 PMCID: PMC9330515 DOI: 10.7150/thno.70754] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
The survival rate of colorectal cancer patients is adversely affected by the selection of tumors resistant to conventional anti-cancer drugs such as 5-fluorouracil (5FU). Although there is mounting evidence that commensal gut microbiota is essential for effective colon cancer treatment, the detailed molecular mechanisms and the role of gut microbial metabolites remain elusive. The goal of this study is to decipher the impact and mechanisms of gut microbial metabolite, urolithin A (UroA) and its structural analogue, UAS03 on reversal of 5FU-resistant (5FUR) colon cancers. Methods: We have utilized the SW480 and HCT-116 parental (5FU-sensitive) and 5FUR colon cancer cells to examine the chemosensitization effects of UroA or UAS03 by using both in vitro and in vivo models. The effects of mono (UroA/UAS03/5FU) and combinatorial therapy (UroA/UAS03 + 5FU) on cell proliferation, apoptosis, cell migration and invasion, regulation of epithelial mesenchymal transition (EMT) mediators, expression and activities of drug transporters, and their regulatory transcription factors were examined using molecular, cellular, immunological and flowcytometric methods. Further, the anti-tumor effects of mono/combination therapy (UroA or UAS03 or 5FU or UroA/UAS03 + 5FU) were examined using pre-clinical models of 5FUR-tumor xenografts in NRGS mice and azoxymethane (AOM)-dextran sodium sulfate (DSS)-induced colon tumors. Results: Our data showed that UroA or UAS03 in combination with 5FU significantly inhibited cell viability, proliferation, invasiveness as well as induced apoptosis of the 5FUR colon cancer cells compared to mono treatments. Mechanistically, UroA or UAS03 chemosensitized the 5FUR cancer cells by downregulating the expression and activities of drug transporters (MDR1, BCRP, MRP2 and MRP7) leading to a decrease in the efflux of 5FU. Further, our data suggested the UroA or UAS03 chemosensitized 5FUR cancer cells to 5FU treatment through regulating FOXO3-FOXM1 axis. Oral treatment with UroA or UAS03 in combination with low dose i.p. 5FU significantly reduced the growth of 5FUR-tumor xenografts in NRGS mice. Further, combination therapy significantly abrogated colonic tumors in AOM-DSS-induced colon tumors in mice. Conclusions: In summary, gut microbial metabolite UroA and its structural analogue UAS03 chemosensitized the 5FUR colon cancers for effective 5FU chemotherapy. This study provided the novel characteristics of gut microbial metabolites to have significant translational implications in drug-resistant cancer therapeutics.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Rajbir Singh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Zachary Matthew Vanwinkle
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Haixun Guo
- Department of Radiology, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK campus, Bangalore, Karnataka 560065, India
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| |
Collapse
|
5
|
Li S, Wang T, Fu W, Kennett M, Cox AD, Lee D, Vanamala JKP, Reddivari L. Role of Gut Microbiota in the Anti-Colitic Effects of Anthocyanin-Containing Potatoes. Mol Nutr Food Res 2021; 65:e2100152. [PMID: 34633750 DOI: 10.1002/mnfr.202100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/29/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Anthocyanin-containing potatoes exert anti-inflammatory activity in colitic mice. Gut bacterial dysbiosis plays a critical role in ulcerative colitis. This study examined the extent to which the anti-colitic activity of anthocyanin-containing red/purple-fleshed potatoes depends on the gut bacteria using a chemically-induced rodent model of colitis with the intact and antibiotic-ablated microbiome. METHODS AND RESULTS Four-week-old male mice (C57BL6) are randomly assigned to the control diet or 20% purple-/red-fleshed potatoes supplemented diet group. The microbiota-ablated group received an antibiotic cocktail in drinking water. At week nine, colitis is induced by 2% dextran sulfate sodium (DSS) in drinking water for five days. Administration of antibiotics resulted in a 95% reduction in gut bacterial load and fecal SCFAs. DSS-induced elevated gut permeability and body weight loss are more pronounced in antibiotic mice compared to non-antibiotic mice. Purple- or red-fleshed potato supplementation (20% w/w) ameliorated DSS-induced reduction in colon length and mucin 2 expression levels, and increase in permeability, spleen weight, myeloperoxidase (MPO) activity, and inflammatory cytokines (IL-6, IL-17, and IL1-β) expression levels in non-antibiotic mice, but not in gut microbiota ablated mice. CONCLUSIONS Anthocyanin-containing potatoes are potent in alleviating colitis, and the gut microbiome is critical for the anti-colitic activity of anthocyanin-containing potatoes.
Collapse
Affiliation(s)
- Shiyu Li
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
| | - Tianmin Wang
- Department of Plant Science, Penn State University, University Park, PA, 16802, USA
| | - Wenyi Fu
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA, 16802, USA
| | - Abigail D Cox
- College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Dale Lee
- Seattle Children's Hospital, University of Washington, Seattle, WA, 98105, USA
| | - Jairam K P Vanamala
- Department of Food Science, Penn State University, University Park, PA, 16802, USA
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
6
|
Khan I, Huang Z, Liang L, Li N, Ali Z, Ding L, Hong M, Shi H. Ammonia stress influences intestinal histomorphology, immune status and microbiota of Chinese striped-neck turtle (Mauremys sinensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112471. [PMID: 34229168 DOI: 10.1016/j.ecoenv.2021.112471] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Ammonia is one of major pollutants in aquatic environment that induces severe stress and toxicity to organisms in aquatic system. The intestine acts a major defense line that protects living organisms from biotic and abiotic stresses. In the current study, we examined the effects of ammonia on intestinal histomorphology, transcriptional levels of intestinal barrier functioning genes and intestinal microbiota of Chinese striped-neck turtle (Mauremys sinensis). Thus, the turtles were placed in water with addition of ammonia at 0 (control), 100, 200 mg L-1 for 30 days. Our findings showed that ammonia reduced the villus length and induced the inflammatory cells appearance. In addition, the epithelial tight junction genes, claudin and zonola occludin significantly downregulated in ammonia exposed groups as compared to control group (P < 0.05). Similarly, the mRNA expression levels of MUC-2 gene also significantly decreased in ammonia treated groups (P < 0.05). However, the expression levels of intestinal immune related genes such as IL-10, IL-12, TGF-β1, TNF-α and IFN-γ significantly increased (P < 0.05). Furthermore, ammonia changed gut microbial diversity variedly. At the phylum levels, Firmicutes increased, whereas Bacteroidota, Desulfobacterota and Synergistota decreased significantly. Likewise, Lachnospiraceae, Bacteroides, Eubacteriaceae, Desulfovibrio, Muribaculaceae, Bilophila, Cloacibacillus, Christensenellaceae, Ruminococcus and Parabacteroides decreased while, Romboutsia and Turicibacter increased in ammonia exposed groups. In conclusion, ammonia at 100 and 200 mg L-1 could alter the intestinal barrier function and change the composition of intestinal microbiota, leading to bad health status in M. sinensis.
Collapse
Affiliation(s)
- Ijaz Khan
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zubin Huang
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Liangyue Liang
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Na Li
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zeeshan Ali
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Meiling Hong
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Haitao Shi
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
7
|
Ding L, Huang Z, Lu Y, Liang L, Li N, Xu Z, Zhang J, Shi H, Hong M. Toxic effects of ammonia on intestinal health and microbiota in red-eared slider (Trachemys scripta elegans). CHEMOSPHERE 2021; 280:130630. [PMID: 33930609 DOI: 10.1016/j.chemosphere.2021.130630] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Ammonia is an important environmental pollutant and can induce serious damages to the organs of aquatic animals, especially the intestine which is mostly exposed to external environment. As important species of aquatic ecosystems, turtles may be potential risk targets of ammonia. However, it is not clear whether ammonia shows toxic effects on the intestines of turtles. Therefore, the worldwide species red-eared slider (Trachemys scripta elegans) was selected, to investigate the effects of ammonia on intestinal health and the composition of microbiota. Results showed that ammonia significantly changed the structure of intestines by decreasing the thickness of intestinal wall, shortening the length of intestinal villus, extending lamina proprias, and inducing inflammatory cells appearance when the turtles were exposed to ammonia (1.418 mg NH3 L-1) for 30 d. In addition, the downregulation of epithelial tight junction genes indicated that ammonia increased selective paracellular permeability. Simultaneously, the upregulation of cytokines suggested that ammonia induced intestinal immune and inflammatory responses. Furthermore, ammonia altered the dominant bacterial composition, and decreased the abundance of beneficial intestinal bacteria in the host. Our results demonstrated that ammonia impaired the intestinal health and changed the composition of residential microbiota in T. s. elegans. This study provides a new insight to evaluate the toxic effects of ammonia on aquatic turtles and helps to build a framework for the effective conservation of turtles.
Collapse
Affiliation(s)
- Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Zubin Huang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Yingnan Lu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Lingyue Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Zhixia Xu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
8
|
DiToro D, Basu R. Emerging Complexity in CD4 +T Lineage Programming and Its Implications in Colorectal Cancer. Front Immunol 2021; 12:694833. [PMID: 34489941 PMCID: PMC8417887 DOI: 10.3389/fimmu.2021.694833] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The intestinal immune system has the difficult task of protecting a large environmentally exposed single layer of epithelium from pathogens without allowing inappropriate inflammatory responses. Unmitigated inflammation drives multiple pathologies, including the development of colorectal cancer. CD4+T cells mediate both the suppression and promotion of intestinal inflammation. They comprise an array of phenotypically and functionally distinct subsets tailored to a specific inflammatory context. This diversity of form and function is relevant to a broad array of pathologic and physiologic processes. The heterogeneity underlying both effector and regulatory T helper cell responses to colorectal cancer, and its impact on disease progression, is reviewed herein. Importantly, T cell responses are dynamic; they exhibit both quantitative and qualitative changes as the inflammatory context shifts. Recent evidence outlines the role of CD4+T cells in colorectal cancer responses and suggests possible mechanisms driving qualitative alterations in anti-cancer immune responses. The heterogeneity of T cells in colorectal cancer, as well as the manner and mechanism by which they change, offer an abundance of opportunities for more specific, and likely effective, interventional strategies.
Collapse
Affiliation(s)
- Daniel DiToro
- Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH MIT and Harvard, Cambridge, MA, United States
| | - Rajatava Basu
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
9
|
Semin I, Ninnemann J, Bondareva M, Gimaev I, Kruglov AA. Interplay Between Microbiota, Toll-Like Receptors and Cytokines for the Maintenance of Epithelial Barrier Integrity. Front Med (Lausanne) 2021; 8:644333. [PMID: 34124086 PMCID: PMC8194074 DOI: 10.3389/fmed.2021.644333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal tract is densely populated by microbiota consisting of various commensal microorganisms that are instrumental for the healthy state of the living organism. Such commensals generate various molecules that can be recognized by the Toll-like receptors of the immune system leading to the inflammation marked by strong upregulation of various proinflammatory cytokines, such as TNF, IL-6, and IL-1β. To prevent excessive inflammation, a single layer of constantly renewing, highly proliferating epithelial cells (IEC) provides proper segregation of such microorganisms from the body cavities. There are various triggers which facilitate the disturbance of the epithelial barrier which often leads to inflammation. However, the nature and duration of the stress may determine the state of the epithelial cells and their responses to cytokines. Here we discuss the role of the microbiota-TLR-cytokine axis in the maintenance of the epithelial tissue integrity. In particular, we highlight discrepancies in the function of TLR and cytokines in IEC barrier during acute or chronic inflammation and we suggest that intervention strategies should be applied based on the type of inflammation.
Collapse
Affiliation(s)
- Iaroslav Semin
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Justus Ninnemann
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Marina Bondareva
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ilia Gimaev
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A. Kruglov
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Andrey A. Kruglov
| |
Collapse
|
10
|
Liu JH, Yue T, Luo ZW, Cao J, Yan ZQ, Jin L, Wan TF, Shuai CJ, Wang ZG, Zhou Y, Xu R, Xie H. Akkermansia muciniphila promotes type H vessel formation and bone fracture healing by reducing gut permeability and inflammation. Dis Model Mech 2020; 13:dmm043620. [PMID: 33033107 PMCID: PMC7725610 DOI: 10.1242/dmm.043620] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 09/19/2020] [Indexed: 12/16/2022] Open
Abstract
Improving revascularization is one of the major measures in fracture treatment. Moderate local inflammation triggers angiogenesis, whereas systemic inflammation hampers angiogenesis. Previous studies showed that Akkermansia muciniphila, a gut probiotic, ameliorates systemic inflammation by tightening the intestinal barrier. In this study, fractured mice intragastrically administrated with A. muciniphila were found to display better fracture healing than mice treated with vehicle. Notably, more preosteclasts positive for platelet-derived growth factor-BB (PDGF-BB) were induced by A. muciniphila at 2 weeks post fracture, coinciding with increased formation of type H vessels, a specific vessel subtype that couples angiogenesis and osteogenesis, and can be stimulated by PDGF-BB. Moreover, A. muciniphila treatment significantly reduced gut permeability and inflammation at the early stage. Dextran sulfate sodium (DSS) was used to disrupt the gut barrier to determine its role in fracture healing and whether A. muciniphila still can stimulate bone fracture healing. As expected, A. muciniphila evidently improved gut barrier, reduced inflammation and restored the impaired bone healing and angiogenesis in DSS-treated mice. Our results suggest that A. muciniphila reduces intestinal permeability and alleviates inflammation, which probably induces more PDGF-BB+ preosteoclasts and type H vessel formation in callus, thereby promoting fracture healing. This study provides the evidence for the involvement of type H vessels in fracture healing and suggests the potential of A. muciniphila as a promising strategy for bone healing.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tao Yue
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zi-Qi Yan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Teng-Fei Wan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ci-Jun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan 410008, China
| | - Zheng-Guang Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yong Zhou
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008 China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
11
|
Dey P. Targeting gut barrier dysfunction with phytotherapies: Effective strategy against chronic diseases. Pharmacol Res 2020; 161:105135. [PMID: 32814166 DOI: 10.1016/j.phrs.2020.105135] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The intestinal epithelial layer serves as a physical and functional barrier between the microbe-rich lumen and immunologically active submucosa; it prevents systemic translocation of microbial pyrogenic products (e.g. endotoxin) that elicits immune activation upon translocation to the systemic circulation. Loss of barrier function has been associated with chronic 'low-grade' systemic inflammation which underlies pathogenesis of numerous no-communicable chronic inflammatory disease. Thus, targeting gut barrier dysfunction is an effective strategy for the prevention and/or treatment of chronic disease. This review intends to emphasize on the beneficial effects of herbal formulations, phytochemicals and traditional phytomedicines in attenuating intestinal barrier dysfunction. It also aims to provide a comprehensive understanding of intestinal-level events leading to a 'leaky-gut' and systemic complications mediated by endotoxemia. Additionally, a variety of detectable markers and diagnostic criteria utilized to evaluate barrier improving capacities of experimental therapeutics has been discussed. Collectively, this review provides rationale for targeting gut barrier dysfunction by phytotherapies for treating chronic diseases that are associated with endotoxemia-induced systemic inflammation.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
12
|
Affiliation(s)
- Nejat K. Egilmez
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
13
|
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine; Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States; Université de Paris, Paris, France.
| | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
14
|
Deciphering the Colorectal Cancer Gut Microbiota: Association vs. Causality. CURRENT COLORECTAL CANCER REPORTS 2019. [DOI: 10.1007/s11888-019-00431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|