1
|
Cysneiros MADPC, Cirqueira MB, Barbosa LDF, Chaves de Oliveira Ê, Morais LK, Wastowski IJ, Floriano VG. Immune cells and checkpoints in pancreatic adenocarcinoma: Association with clinical and pathological characteristics. PLoS One 2024; 19:e0305648. [PMID: 38954689 PMCID: PMC11218951 DOI: 10.1371/journal.pone.0305648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
INTRODUCTION Pancreatic adenocarcinoma is an extremely aggressive neoplasm, with many challenges to be overcome in order to achieve a truly effective treatment. It is characterized by a mostly immunosuppressed environment, with dysfunctional immune cells and active immunoinhibitory pathways that favor tumor evasion and progression. Thus, the study and understanding of the tumor microenvironment and the various cells subtypes and their functional capacities are essential to achieve more effective treatments, especially with the use of new immunotherapeutics. METHODS Seventy cases of pancreatic adenocarcinoma divided into two groups 43 with resectable disease and 27 with unresectable disease were analyzed using immunohistochemical methods regarding the expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), and human leukocyte antigen G (HLA-G) molecules as well as the populations of CD4+ and CD8+ T lymphocytes, regulatory T cells (Tregs), and M2 macrophages (MM2). Several statistical tests, including multivariate analyses, were performed to examine how those immune cells and immunoinhibitory molecules impact the evolution and prognosis of pancreatic adenocarcinoma. RESULTS CD8+ T lymphocytes and M2 macrophages predominated in the group operated on, and PD-L2 expression predominated in the unresectable group. PD-L2 was associated with T stage, lymph node metastasis, and clinical staging, while in survival analysis, PD-L2 and HLA-G were associated with a shorter survival. In the inoperable cases, Tregs cells, MM2, PD-L1, PD-L2, and HLA-G were positively correlated. CONCLUSIONS PD-L2 and HLA-G expression correlated with worse survival in the cases studied. Tumor microenvironment was characterized by a tolerant and immunosuppressed pattern, mainly in unresectable lesions, where a broad positive influence was observed between immunoinhibitory cells and immune checkpoint proteins expressed by tumor cells.
Collapse
Affiliation(s)
| | - Magno Belém Cirqueira
- Diagnostic and Therapeutic Support Division of Clinical Hospital, Federal University of Goias, Goiania, Brazil
| | | | | | - Lucio Kenny Morais
- Surgery Department of Medicine College, Federal University of Goias, Goiania, Brazil
| | | | - Vitor Gonçalves Floriano
- Clinics Department of Medicine College, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Liu Z, Yang L, Wu W, Chen Z, Xie Z, Shi D, Cai N, Zhuo S. Prognosis and therapeutic significance of IGF-1R-related signaling pathway gene signature in glioma. Front Cell Dev Biol 2024; 12:1375030. [PMID: 38665430 PMCID: PMC11043541 DOI: 10.3389/fcell.2024.1375030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Background Glioma is the most common cancer of the central nervous system with poor therapeutic response and clinical prognosis. Insulin-like growth factor 1 receptor (IGF-1R) signaling is implicated in tumor development and progression and induces apoptosis of cancer cells following functional inhibition. However, the relationship between the IGF-1R-related signaling pathway genes and glioma prognosis or immunotherapy/chemotherapy is poorly understood. Methods LASSO-Cox regression was employed to develop a 16-gene risk signature in the TCGA-GBMLGG cohort, and all patients with glioma were divided into low-risk and high-risk subgroups. The relationships between the risk signature and the tumor immune microenvironment (TIME), immunotherapy response, and chemotherapy response were then analyzed. Immunohistochemistry was used to evaluate the HSP90B1 level in clinical glioma tissue. Results The gene risk signature yielded superior predictive efficacy in prognosis (5-year area under the curve: 0.875) and can therefore serve as an independent prognostic indicator in patients with glioma. The high-risk subgroup exhibited abundant immune infltration and elevated immune checkpoint gene expression within the TIME. Subsequent analysis revealed that patients in the high-risk subgroup benefited more from chemotherapy. Immunohistochemical analysis confirmed that HSP90B1 was overexpressed in glioma, with significantly higher levels observed in glioblastoma than in astrocytoma or oligodendrocytoma. Conclusion The newly identified 16-gene risk signature demonstrates a robust predictive capacity for glioma prognosis and plays a pivotal role in the TIME, thereby offering valuable insights for the exploration of novel biomarkers and targeted therapeutics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liangwang Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wenqi Wu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zejun Chen
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhengxing Xie
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Daoming Shi
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ning Cai
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shenghua Zhuo
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
3
|
Das S. Comparison of Clinical Trial Results of the Recently Approved Immunotherapeutic Drugs for Advanced Biliary Tract Cancers. Rev Recent Clin Trials 2024; 19:81-90. [PMID: 38288802 DOI: 10.2174/0115748871276666240123043710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 06/25/2024]
Abstract
The recently approved immunotherapeutic drugs are Keytruda (pembrolizumab) and Imfinzi (durvalumab) for advanced biliary tract cancers that inhibit PD-1 receptor and PD-L1 ligand, respectively. In this perspective, the results of the two clinical trials, i.e., TOPAZ-1 (NCT03875235) and KEYNOTE-966 (NCT04003636), are critically appraised, compared, and discussed to assess the benefits of these two drugs in the context of the treatment of advanced biliary tract cancers with a focus on PD-L1 status and MIS (microsatellite instability) status and therapy responsiveness in the subgroups. Analyzing the PD-L2 status in biliary tract cancer patients can aid in assessing the prognostic value of PD-L2 expression in determining the clinical response and this may aid in appropriate patient stratification.
Collapse
Affiliation(s)
- Samayita Das
- Department of Public Health, Harvard Medical School, Boston, MA02115, USA
| |
Collapse
|
4
|
Srivastava R, Dodda M, Zou H, Li X, Hu B. Tumor Niches: Perspectives for Targeted Therapies in Glioblastoma. Antioxid Redox Signal 2023; 39:904-922. [PMID: 37166370 PMCID: PMC10654996 DOI: 10.1089/ars.2022.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Significance: Glioblastoma (GBM), the most common and lethal primary brain tumor with a median survival rate of only 15 months and a 5-year survival rate of only 6.8%, remains largely incurable despite the intensive multimodal treatment of surgical resection and radiochemotherapy. Developing effective new therapies is an unmet need for patients with GBM. Recent Advances: Targeted therapies, such as antiangiogenesis therapy and immunotherapy, show great promise in treating GBM based upon increasing knowledge about brain tumor biology. Single-cell transcriptomics reveals the plasticity, heterogeneity, and dynamics of tumor cells during GBM development and progression. Critical Issues: While antiangiogenesis therapy and immunotherapy have been highly effective in some types of cancer, the disappointing results from clinical trials represent continued challenges in applying these treatments to GBM. Molecular and cellular heterogeneity of GBM is developed temporally and spatially, which profoundly contributes to therapeutic resistance and tumor recurrence. Future Directions: Deciphering mechanisms of tumor heterogeneity and mapping tumor niche trajectories and functions will provide a foundation for the development of more effective therapies for GBM patients. In this review, we discuss five different tumor niches and the intercellular and intracellular communications among these niches, including the perivascular, hypoxic, invasive, immunosuppressive, and glioma-stem cell niches. We also highlight the cellular and molecular biology of these niches and discuss potential strategies to target these tumor niches for GBM therapy. Antioxid. Redox Signal. 39, 904-922.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meghana Dodda
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Han Zou
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Changsha, China
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Li Y, Feng Y, Luo F, Peng G, Li Y. Positive regulators of T cell functions as predictors of prognosis and microenvironment characteristics of low-grade gliomas. Front Immunol 2023; 13:1089792. [PMID: 36726969 PMCID: PMC9885161 DOI: 10.3389/fimmu.2022.1089792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Background Low-grade gliomas (LGG) are one of the most prevalent types of brain cancers. The efficacy of immunotherapy in LGG is limited compared to other cancers. Immunosuppression in the tumor microenvironment (TME) of LGG is one of the main reasons for the low efficacy of immunotherapy. Recent studies have identified 33 positive regulators of T cell functions (TPRs) that play a critical role in promoting the proliferation, activity, and functions of multiple immunocytes. However, their role in the TME of LGG has not been investigated. This study aimed to construct a risk model based on these TPRs and to detect the significance of immunotypes in predicting LGG prognosis and immunotherapy efficacy. Methods A total of 688 LGGs and 202 normal brain tissues were extracted from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Genotype-Tissue Expression (GTEx) databases. The NMF R package was used to identify TRP-related subtypes. The TPR prognostic model was established using the least absolute shrinkage and selection operator (LASSO) algorithm to predict the overall survival of LGG samples. Results The Subtype 2 patients had worse survival outcomes, suppressed immune function, and higher immune cell infiltration. A risk regression model consisting of 14 TPRs was established, and its performance was validated in CGGA325 cohorts. The low-risk group exhibited better overall survival, immune microenvironment, and immunotherapy response, as determined via the TIDE algorithm, indicating that increasing the level of immune infiltration can effectively improve the response to immunotherapy in the low-risk group. The risk score was determined to be an independent hazard factor (p<0.001) although other clinical features (age, sex, grade, IDH status, 1p19q codel status, MGMT status, and accepted radiotherapy) were considered. Lastly, high-risk groups in both cohorts revealed optimal drug responses to rapamycin, paclitaxel, JW-7-52-1, and bortezomib. Conclusions Our study identified two distinct TPR subtypes and built a TPR signature to elucidate the characteristics of T cell proliferation in LGG and its association with immune status and prognosis. These findings shed light on possible immunotherapeutic strategies for LGGs.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,PET-CT Center, Chenzhou First People’s Hospital, Chenzhou, Hunan, China
| | - Yabo Feng
- PET-CT Center, Chenzhou First People’s Hospital, Chenzhou, Hunan, China
| | - Fushu Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yueran Li
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Yueran Li,
| |
Collapse
|
6
|
Tao YY, Shi Y, Gong XQ, Li L, Li ZM, Yang L, Zhang XM. Radiomic Analysis Based on Magnetic Resonance Imaging for Predicting PD-L2 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15020365. [PMID: 36672315 PMCID: PMC9856314 DOI: 10.3390/cancers15020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignant tumour and the third leading cause of cancer death in the world. The emerging field of radiomics involves extracting many clinical image features that cannot be recognized by the human eye to provide information for precise treatment decision making. Radiomics has shown its importance in HCC identification, histological grading, microvascular invasion (MVI) status, treatment response, and prognosis, but there is no report on the preoperative prediction of programmed death ligand-2 (PD-L2) expression in HCC. The purpose of this study was to investigate the value of MRI radiomic features for the non-invasive prediction of immunotherapy target PD-L2 expression in hepatocellular carcinoma (HCC). A total of 108 patients with HCC confirmed by pathology were retrospectively analysed. Immunohistochemical analysis was used to evaluate the expression level of PD-L2. 3D-Slicer software was used to manually delineate volumes of interest (VOIs) and extract radiomic features on preoperative T2-weighted, arterial-phase, and portal venous-phase MR images. Least absolute shrinkage and selection operator (LASSO) was performed to find the best radiomic features. Multivariable logistic regression models were constructed and validated using fivefold cross-validation. The area under the receiver characteristic curve (AUC) was used to evaluate the predictive performance of each model. The results show that among the 108 cases of HCC, 50 cases had high PD-L2 expression, and 58 cases had low PD-L2 expression. Radiomic features correlated with PD-L2 expression. The T2-weighted, arterial-phase, and portal venous-phase and combined MRI radiomics models showed AUCs of 0.789 (95% CI: 0.702-0.875), 0.727 (95% CI: 0.632-0.823), 0.770 (95% CI: 0.682-0.875), and 0.871 (95% CI: 0.803-0.939), respectively. The combined model showed the best performance. The results of this study suggest that prediction based on the radiomic characteristics of MRI could noninvasively predict the expression of PD-L2 in HCC before surgery and provide a reference for the selection of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yue Shi
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Li Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Zu-Mao Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
- Correspondence:
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
7
|
Bou Zerdan M, Atoui A, Hijazi A, Basbous L, Abou Zeidane R, Alame SM, Assi HI. Latest updates on cellular and molecular biomarkers of gliomas. Front Oncol 2022; 12:1030366. [PMID: 36425564 PMCID: PMC9678906 DOI: 10.3389/fonc.2022.1030366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/05/2022] [Indexed: 03/05/2024] Open
Abstract
Gliomas are the most common central nervous system malignancies, compromising almost 80% of all brain tumors and is associated with significant mortality. The classification of gliomas has shifted from basic histological perspective to one that is based on molecular biomarkers. Treatment of this type of tumors consists currently of surgery, chemotherapy and radiation therapy. During the past years, there was a limited development of effective glioma diagnostics and therapeutics due to multiple factors including the presence of blood-brain barrier and the heterogeneity of this type of tumors. Currently, it is necessary to highlight the advantage of molecular diagnosis of gliomas to develop patient targeted therapies based on multiple oncogenic pathway. In this review, we will evaluate the development of cellular and molecular biomarkers for the diagnosis of gliomas and the impact of these diagnostic tools for better tailored and targeted therapies.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Ali Atoui
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Hijazi
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lynn Basbous
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Reine Abou Zeidane
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada M Alame
- Department of Pediatrics, Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - Hazem I Assi
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
8
|
Wang Z, Zhong H, Liang X, Ni S. Targeting tumor-associated macrophages for the immunotherapy of glioblastoma: Navigating the clinical and translational landscape. Front Immunol 2022; 13:1024921. [PMID: 36311702 PMCID: PMC9606568 DOI: 10.3389/fimmu.2022.1024921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor-associated macrophages (TAMs) can directly clear tumor cells and enhance the phagocytic ability of immune cells. An abundance of TAMs at the site of the glioblastoma tumor indicates that TAM-targeting immunotherapy could represent a potential form of treatment for this aggressive cancer. Herein, we discuss: i) the dynamic role of TAMs in glioblastoma; ii) describe the formation of the immunosuppressive tumor microenvironment; iii) summarize the latest clinical trial data that reveal how TAM function can be regulated in favor tumor eradication; and lastly, iv) evaluate the implications of existing and novel translational approaches for treating glioblastoma in clinical practice.
Collapse
Affiliation(s)
- Zide Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hanlin Zhong
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, China
- *Correspondence: Xiaohong Liang, ; Shilei Ni,
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Xiaohong Liang, ; Shilei Ni,
| |
Collapse
|
9
|
Wang J, Shi F, Shan A. Transcriptome profile and clinical characterization of ICOS expression in gliomas. Front Oncol 2022; 12:946967. [PMID: 36276141 PMCID: PMC9582985 DOI: 10.3389/fonc.2022.946967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Inducible co-stimulator (ICOS), an immune costimulatory molecule, has been found to play an essential role across various malignancies. This study investigated the transcriptome profile and clinical characterization of ICOS in gliomas. Clinical information and transcriptome data of 301 glioma samples were downloaded from the Chinese Glioma Genome Atlas (CGGA) dataset for analysis (CGGA301 cohort). Furthermore, the results were validated in 697 samples with RNAseq data from the TCGA glioma dataset and 325 gliomas with RNAseq data from the CGGA325 dataset. Immunohistochemistry was performed to evaluate ICOS protein expression across different WHO grades in a tissue microarray (TMA). In addition, single-cell sequencing data from CGGA and GSE 163108 datasets were used to analyze the ICOS expression across different cell types. Statistical analyses and figure production were performed with R-language. We found that ICOS was significantly upregulated in higher-grade, IDH wild type, and mesenchymal subtype of gliomas. Functional enrichment analyses revealed that ICOS was mainly involved in glioma-related immune response. Moreover, ICOS showed a robust correlation with other immune checkpoints, including the PD1/PD-L1/PD-L2 pathway, CTLA4, ICOSL (ICOS ligand), and IDO1. Subsequent Tumor Immune Dysfunction and Exclusion (TIDE) analysis revealed that GBM patients with higher ICOS expression seemed to be more sensitive to ICB therapy. Furthermore, based on seven clusters of metagenes, GSVA identified that ICOS was tightly associated with HCK, LCK, MHC-I, MHC-II, STAT1, and interferon, especially with LCK, suggesting a strong correlation between ICOS and T-cell activity in gliomas. In cell lineage analysis, Higher-ICOS gliomas tended to recruit dendritic cells, monocytes, and macrophages into the tumor microenvironment. Single-cell sequencing analysis indicated that ICOS was highly expressed by regulatory T cells (Tregs), especially in mature Tregs. Finally, patients with higher ICOS had shortened survival. ICOS was an independent prognosticator for glioma patients. In conclusion, higher ICOS is correlated with more malignancy of gliomas and is significantly associated with Treg activity among glioma-related immune responses. Moreover, ICOS could contribute as an independent prognostic factor for gliomas. Our study highlights the role of ICOS in glioma and may facilitate therapeutic strategies targeting ICOS for glioma.
Collapse
Affiliation(s)
- Jin Wang
- *Correspondence: Jin Wang, ; Fei Shi, ; Aijun Shan,
| | - Fei Shi
- *Correspondence: Jin Wang, ; Fei Shi, ; Aijun Shan,
| | - Aijun Shan
- *Correspondence: Jin Wang, ; Fei Shi, ; Aijun Shan,
| |
Collapse
|
10
|
Deng X, Chen K, Ren J, Zeng J, Zhang Q, Li T, Tang Q, Zhu J. A B7-CD28 Family-Based Signature Demonstrates Significantly Different Prognosis and Immunological Characteristics in Diffuse Gliomas. Front Mol Biosci 2022; 9:849723. [PMID: 35928223 PMCID: PMC9344576 DOI: 10.3389/fmolb.2022.849723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
The B7-CD28 gene family plays a crucial role in modulating immune functions and has served as potential targets for immunotherapeutic strategies. Therefore, we systematically analyzed B7-CD28 family gene expression profiles and constructed a B7-CD28 family-based prognostic signature to predict survival and immune host status in diffuse gliomas. The TCGA dataset was used as a training cohort, and three CGGA datasets (mRNAseq_325, mRNAseq_693 and mRNA-array) were employed as validation cohorts to intensify the findings that we have revealed in TCGA dataset. Ultimately, we developed a B7-CD28 family-based signature that consisted of CD276, CD274, PDCD1LG2 and CD80 using LASSO Cox analysis. This gene signature was validated to have significant prognostic value, and could be used as a biomarker to distinguish pathological grade and IDH mutation status in diffuse glioma. Additionally, we found that the gene signature was significantly related to intensity of immune response and immune cell population, as well as several other important immune checkpoint genes, holding a great potential to be a predictive immune marker for immunotherapy and tumor microenvironment. Finally, a B7-CD28 family-based nomogram was established to predict patient life expectancy contributing to facilitate personalizing therapy for tumor sufferers. In summary, this is the first mathematical model based on this gene family with the aim of providing novel insights into immunotherapy for diffuse glioma.
Collapse
|
11
|
Xie Q, Huang X, Huang W, Liu F. PD-L2 Serves as a Potential Prognostic Biomarker That Correlates With Immune Infiltration and May Predict Therapeutic Sensitivity in Lower-Grade Gliomas. Front Oncol 2022; 12:860640. [PMID: 35756621 PMCID: PMC9213741 DOI: 10.3389/fonc.2022.860640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Although patients with lower-grade gliomas (LGGs; grades II and III) have a relatively favorable prognosis, patients frequently relapse and tend to progress to higher-grade gliomas, leading to treatment resistance, poor survival, and ultimately treatment failure. However, until now, thorough research has not yet been reported on the relationship between PD-L2 and immune infiltration and therapeutic sensitivity to immunotherapy and TMZ-based chemotherapy of LGGs. In this study, we found that the expression of PD-L2 is upregulated in glioma, with high PD-L2 expression predicting a worse prognosis. Univariate and multivariate Cox regression analysis both indicated that PD-L2 represented an independent prognostic factor with high accuracy in survival prediction for LGGs. A nomogram comprising of age, grade, IDH mutation, and PD-L2 was established for predicting OS. Additionally, PD-L2 was found to be remarkably correlated with immune infiltration and some anti-tumor immune functions. The degree of PD-L2 expression was also found to be strongly related to the prediction of therapeutic sensitivity to immunotherapy and TMZ-based chemotherapy. Furthermore, immunohistochemistry demonstrated that PD-L2 and the macrophage biomarker CD68 were both increased in glioma, with PD-L2 expression having a strong positive connection with CD68 expression. Taken together, PD-L2 is a prognostic biomarker for LGGs patients that may provide novel insights into glioma individualized therapeutic strategies and guide effective immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Qijun Xie
- Department of Neurosurgery, The affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xianlong Huang
- Department of Neurosurgery, The affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Wu Huang
- Department of Neurosurgery, The affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fang Liu
- Department of Neurosurgery, The affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
12
|
Sun K, Fei X, Xu M, Xu R, Xu M. FCGR3A Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Lower-Grade Glioma. JOURNAL OF ONCOLOGY 2022; 2022:9499317. [PMID: 39280892 PMCID: PMC11401682 DOI: 10.1155/2022/9499317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 09/18/2024]
Abstract
Low-grade gliomas (LGGs) are primary invasive brain tumors that grow slowly but are incurable and eventually develop into high malignant glioma. Fc fragment of IgG receptor IIIa (FCGR3A) gene polymorphism may correlate with some cancers' treatment responses. However, the expression and prognosis value of FCGR3A and correlation with tumor-immune infiltrate in LGG remain unclear. FCGR3A mRNA expression in gastric cancer (GC) was examined using TIMER and GEPIA databases. Correlations between FCGR3A expression and clinicopathological parameters were analyzed using ULACAN and CGGA databases. GEPIA, OncoLnc, and ULACAN databases were used to examine the clinical prognostic significance of FCGR3A in LGG. TIMER was used to analyze the correlations among FCGR3A and tumor-infiltrating immune cells. Signaling pathways related to FCGR3A expression were identified by LinkedOmics. We found that FCGR3A expression was higher in LGG than in normal tissue and was correlated with various clinical parameters. In addition, high FCGR3A expression predicted poor overall survival in LGG. More importantly, FCGR3A expression positively correlated with immune checkpoint molecules, including PD1, PD-L1, PD-L2, CTLA4, LAG-3 and TIM-3, and tumor-associated macrophage (TAM) gene markers in LGG. GO and KEGG pathway analyses indicated that TUBA1C may potentially regulate the pathogenesis of LGG through immune-related pathways. These findings indicated that FCGR3A plays a vital role in the infiltration of immune cells and could constitute a promising prognostic biomarker in LGG patients.
Collapse
Affiliation(s)
- Kai Sun
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaowei Fei
- Department of Neurosurgery, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an 710032, China
| | - Mingwei Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
13
|
Shan Z, Zhao Y, Zhang J, Yan Z, Wang T, Mao F, Teng Y, Peng L, Chen W, Wang P, Cheng P, Tian W, Chen J, Chen W, Zhuang Y. FasL + PD-L2 + Identifies a Novel Immunosuppressive Neutrophil Population in Human Gastric Cancer That Promotes Disease Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103543. [PMID: 34957697 PMCID: PMC8844550 DOI: 10.1002/advs.202103543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Indexed: 05/05/2023]
Abstract
Neutrophils constitute abundant cellular components in human gastric cancer (GC) tissues, but their protumorigenic subset in pathogenesis of GC progression is unclear. Here, it is found that patients with GC show significantly higher neutrophil infiltration in tumors that is regulated by CXCL12-CXCR4 chemotaxis. These tumor-infiltrating neutrophils express high level immunosuppressive molecules FasL and PD-L2, and this FasL+ PD-L2+ neutrophil subset with a unique phenotype constitutes at least 20% of all neutrophils in advanced GC and predicts poor patient survival. Tumor induces neutrophils to express FasL and PD-L2 proteins with similar phenotype to those in GC tumors in both time-dependent and dose-dependent manners. Mechanistically, Th17 cell-derived IL-17A and tumor cell-derived G-CSF can significantly induce neutrophil FasL and PD-L2 expression via activating ERK-NF-κB and JAK-STAT3 signaling pathway, respectively. Importantly, upon over-expressing FasL and PD-L2, neutrophils acquire immunosuppressive functions on tumor-specific CD8+ T-cells and promote the growth and progression of human GC tumors in vitro and in vivo, which can be reversed by blocking FasL and PD-L2 on these neutrophils. Thus, the work identifies a novel protumorigenic FasL+ PD-L2+ neutrophil subset in GC and provides new insights for human cancer immunosuppression and anti-cancer therapies targeting these pathogenic cells.
Collapse
Affiliation(s)
- Zhi‐Guo Shan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal SurgerySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Yong‐Liang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal SurgerySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Jin‐Yu Zhang
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Zong‐Bao Yan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal SurgerySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Ting‐Ting Wang
- Chongqing Key Research Laboratory for Drug MetabolismDepartment of PharmacologyChongqing Medical UniversityChongqing400016China
| | - Fang‐Yuan Mao
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Yong‐Sheng Teng
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Liu‐Sheng Peng
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Wan‐Yan Chen
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Pan Wang
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Ping Cheng
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Wen‐Qing Tian
- Department of Endocrinologythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Jun Chen
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal SurgerySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Weisan Chen
- La Trobe Institute of Molecular ScienceLa Trobe UniversityBundooraVictoria3085Australia
| | - Yuan Zhuang
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
- Department of Gastroenterologythe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuan646000China
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityJiangsu21013China
- Department of GastroenterologySouthwest HospitalThird Military Medical UniversityChongqing400038China
- Department of Gastroenterologythe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhou563003China
| |
Collapse
|
14
|
Zhang Y, Ma W, Fan W, Ren C, Xu J, Zeng F, Bao Z, Jiang T, Zhao Z. Comprehensive transcriptomic characterization reveals core genes and module associated with immunological changes via 1619 samples of brain glioma. Cell Death Dis 2021; 12:1140. [PMID: 34880206 PMCID: PMC8654825 DOI: 10.1038/s41419-021-04427-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
Glioma is the most common primary malignant brain tumor with limited treatment options and poor prognosis. To investigate the potential relationships between transcriptional characteristics and clinical phenotypes, we applied weighted gene co-expression network analysis (WGCNA) to construct a free-scale gene co-expression network yielding four modules in gliomas. Turquoise and yellow modules were positively correlated with the most malignant glioma subtype (IDH-wildtype glioblastomas). Of them, genes in turquoise module were mainly involved in immune-related terms and were regulated by NFKB1, RELA, SP1, STAT1 and STAT3. Meanwhile, genes in yellow module mainly participated in cell-cycle and division processes and were regulated by E2F1, TP53, E2F4, YBX1 and E2F3. Furthermore, 14 genes in turquoise module were screened as hub genes. Among them, five prognostic hub genes (TNFRSF1B, LAIR1, TYROBP, VAMP8, and FCGR2A) were selected to construct a prognostic risk score model via LASSO method. The risk score of this immune-related gene signature is associated with clinical features, malignant phenotype, and somatic alterations. Moreover, this signature showed an accurate prediction of prognosis across different clinical and pathological subgroups in three independent datasets including 1619 samples. Our results showed that the high-risk group was characterized by active immune-related activities while the low-risk group enriched in neurophysiological-related pathway. Importantly, the high-risk score of our immune signature predicts an enrichment of glioma-associated microglia/macrophages and less response to immune checkpoint blockade (ICB) therapy in gliomas. This study not only provides new insights into the molecular pathogenesis of glioma, but may also help optimize the immunotherapies for glioma patients.
Collapse
Affiliation(s)
- Ying Zhang
- grid.24696.3f0000 0004 0369 153XBeijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China ,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), 100070 Beijing, China
| | - Wenping Ma
- grid.24696.3f0000 0004 0369 153XBeijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China ,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), 100070 Beijing, China ,grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Wenhua Fan
- grid.24696.3f0000 0004 0369 153XBeijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China ,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), 100070 Beijing, China ,grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Changyuan Ren
- grid.24696.3f0000 0004 0369 153XSanbo Brain Hospital, Capital Medical University, 100093 Beijing, China
| | - Jianbao Xu
- grid.412463.60000 0004 1762 6325The Second Affiliated Hospital of Harbin Medical University, 150001 Harbin, China
| | - Fan Zeng
- grid.24696.3f0000 0004 0369 153XBeijing Neurosurgical Institute, Capital Medical University, 100070 Beijing, China ,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), 100070 Beijing, China
| | - Zhaoshi Bao
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), 100070 Beijing, China ,grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China. .,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), 100070, Beijing, China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China. .,Center of Brain Tumor, Beijing Institute for Brain Disorders, 100069, Beijing, China. .,China National Clinical Research Center for Neurological Diseases, 100070, Beijing, China.
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China. .,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), 100070, Beijing, China.
| |
Collapse
|
15
|
Yang Y, Lv W, Xu S, Shi F, Shan A, Wang J. Molecular and Clinical Characterization of LIGHT/TNFSF14 Expression at Transcriptional Level via 998 Samples With Brain Glioma. Front Mol Biosci 2021; 8:567327. [PMID: 34513918 PMCID: PMC8430338 DOI: 10.3389/fmolb.2021.567327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
LIGHT, also termed TNFSF14, has been reported to play a vital role in different tumors. However, its role in glioma remains unknown. This study is aimed at unveiling the characterization of the transcriptional expression profiling of LIGHT in glioma. We selected 301 glioma patients with mRNA microarray data from the CGGA dataset and 697 glioma patients with RNAseq data from the TCGA dataset. Transcriptome data and clinical data of 998 samples were analyzed. Statistical analyses and figure generation were performed with R language. LIGHT expression showed a positive correlation with WHO grade of glioma. LIGHT was significantly increased in mesenchymal molecular subtype. Gene Ontology analysis demonstrated that LIGHT was profoundly involved in immune response. Moreover, LIGHT was found to be synergistic with various immune checkpoint members, especially HVEM, PD1/PD-L1 pathway, TIM3, and B7-H3. To get further understanding of LIGHT-related immune response, we put LIGHT together with seven immune signatures into GSVA and found that LIGHT was particularly correlated with HCK, LCK, and MHC-II in both datasets, suggesting a robust correlation between LIGHT and activities of macrophages, T-cells, and antigen-presenting cells (APCs). Finally, higher LIGHT indicated significantly shorter survival for glioma patients. Cox regression models revealed that LIGHT expression was an independent variable for predicting survival. In conclusion, LIGHT was upregulated in more malignant gliomas including glioblastoma, IDH wildtype, and mesenchymal subtype. LIGHT was mainly involved in the immune function of macrophages, T cells, and APCs and served as an independent prognosticator in glioma.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Futian Women and Children Institute, Shenzhen, China
| | - Wen Lv
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Shihai Xu
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Fei Shi
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Aijun Shan
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Jin Wang
- Emergency Department, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
16
|
PD-L1 Expression Fluctuates Concurrently with Cyclin D in Glioblastoma Cells. Cells 2021; 10:cells10092366. [PMID: 34572014 PMCID: PMC8468141 DOI: 10.3390/cells10092366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Despite Glioblastoma (GBM) frequently expressing programmed cell death ligand-1 (PD-L1), treatment with anti-programmed cell death-1 (PD1) has not yielded brilliant results. Intratumor variability of PD-L1 can impact determination accuracy. A previous study on mouse embryonic fibroblasts (MEFs) reported a role for cyclin-D in control of PD-L1 expression. Because tumor-cell growth within a cancer is highly heterogeneous, we looked at whether PD-L1 and its cochaperone FKBP51s were influenced by cell proliferation, using U251 and SF767 GBM-cell-lines. PD-L1 was measured by Western blot, flow cytometry, confocal-microscopy, quantitative PCR (qPCR), CCND1 by qPCR, FKBP51s by Western blot and confocal-microscopy. Chromatin-Immunoprecipitation assay (xChIp) served to assess the DNA-binding of FKBP51 isoforms. In the course of cell culture, PD-L1 appeared to increase concomitantly to cyclin-D on G1/S transition, to decrease during exponential cell growth progressively. We calculated a correlation between CCND1 and PD-L1 gene expression levels. In the temporal window of PD-L1 and CCND1 peak, FKBP51s localized in ER. When cyclin-D declined, FKBP51s went nuclear. XChIp showed that FKBP51s binds CCND1 gene in a closed-chromatin configuration. Our finding suggests that the dynamism of PD-L1 expression in GBM follows cyclin-D fluctuation and raises the hypothesis that FKBP51s might participate in the events that govern cyclin-D oscillation.
Collapse
|
17
|
Qiao Y, Liu C, Zhang X, Zhou Q, Li Y, Xu Y, Gao Z, Xu Y, Kong L, Yang A, Mei M, Ren Y, Wang X, Zhou X. PD-L2 based immune signature confers poor prognosis in HNSCC. Oncoimmunology 2021; 10:1947569. [PMID: 34377590 PMCID: PMC8344752 DOI: 10.1080/2162402x.2021.1947569] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PD-L2 expression is an important predictor of anti-PD-1 therapy efficacy in patients with head and neck squamous cell carcinoma (HNSCC). However, whether the PD-L2-based immune signature can serve as a prognostic biomarker for patients with HNSCC remains unclear. Here, we reported that PD-L2 was positively stained in 62.7% of tumors, which was more than twice as that of PD-L1, and in 61.4% of patients with PD-L1-negative tumors. Survival tree analysis (STA) revealed that PD-L2high was an independent predictor of poor overall survival (OS). Six patterns were generated from STA, demonstrating that patients with PD-L2lowCD3high were associated with an improved median OS of 72 months and prognostic index (PI) of -3.95 (95% CI, -5.14 to -2.76), whereas patients with PD-L2highCD3lowCD8low to a median OS of 10 months and PI of 1.43 (95% CI, 0.56 to 2.30). Analysis of single-cell RNA sequencing showed that PD-L2 expression was associated with IL-6 expression. We confirmed that IL-6 augments PD-L2 expression in HNSCC cell lines. The PD-L2-based immune signature can serve as an effective biomarker for anti-PD-1 therapy. In addition, PD-L2 may serve as a potential immunotherapeutic target, and we propose anti-IL6 therapy in the adjuvant setting for patients with HNSCC with high PD-L2 expression.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xiaoyue Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Yatian Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yini Xu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Zhenyue Gao
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiqi Xu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingping Kong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Aifeng Yang
- Department of Second General Surgery, Shuangyashan People's Hospital, Heilongjiang, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
18
|
Qiu H, Tian W, He Y, Li J, He C, Li Y, Liu N, Li J. Integrated Analysis Reveals Prognostic Value and Immune Correlates of CD86 Expression in Lower Grade Glioma. Front Oncol 2021; 11:654350. [PMID: 33954112 PMCID: PMC8089378 DOI: 10.3389/fonc.2021.654350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Background CD86 has great potential to be a new target of immunotherapy by regulating cancer immune response. However, it remains unclear whether CD86 is a friend or foe in lower-grade glioma (LGG). Methods The prognostic value of CD86 expression in pan-cancer was analyzed using Cox regression and Kaplan-Meier analysis with data from the cancer genome atlas (TCGA). Cancer types where CD86 showed prognostic value in overall survival and disease-specific survival were identified for further analyses. The Chinese Glioma Genome Atlas (CGGA) dataset were utilized for external validation. Quantitative real-time PCR (qRT-PCR), Western blot (WB), and Immunohistochemistry (IHC) were conducted for further validation using surgical samples from Jiangsu Province hospital. The correlations between CD86 expression and tumor immunity were analyzed using the Estimation of Stromal and Immune cells in Malignant Tumours using Expression data (ESTIMATE) algorithm, Tumor IMmune Estimation Resource (TIMER) database, and expressions of immune checkpoint molecules. Gene Set Enrichment Analysis (GSEA) was performed using clusterprofiler r package to reveal potential pathways. Results Pan-cancer survival analysis established CD86 expression as an unfavorable prognostic factor in tumor progression and survival for LGG. CD86 expression between Grade-II and Grade-III LGG was validated using qRT-PCR and WB. Additionally, CD86 expression in LGG with unmethylated O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter was significantly higher than those with methylated MGMT (P<0.05), while in LGG with codeletion of 1p/19q it was significantly downregulated as opposed to those with non-codeletion (P<2.2*10-16). IHC staining validated that CD86 expression was correlated with MGMT status and X1p/19q subtypes, which was independent of tumor grade. Multivariate regression validated that CD86 expression acts as an unfavorable prognostic factor independent of clinicopathological factors in overall survival of LGG patients. Analysis of tumor immunity and GSEA revealed pivotal role of CD86 in immune response for LGG. Conclusions Integrated analysis shows that CD86 is an unfavorable prognostic biomarker in LGG patients. Targeting CD86 may become a novel approach for immunotherapy of LGG.
Collapse
Affiliation(s)
- Huaide Qiu
- Department of Rehabilitation Medicine, Jiangsu Shengze Hospital Affiliated to Nanjing Medical University, Suzhou, China.,Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Tian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yikang He
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Rehabilitation Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiahui Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuan He
- Department of Rehabilitation Medicine, Jiangsu Shengze Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Yongqiang Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Zhang H, Chen Z, Wang Z, Dai Z, Hu Z, Zhang X, Hu M, Liu Z, Cheng Q. Correlation Between APOBEC3B Expression and Clinical Characterization in Lower-Grade Gliomas. Front Oncol 2021; 11:625838. [PMID: 33842328 PMCID: PMC8033027 DOI: 10.3389/fonc.2021.625838] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Background As the most aggressive tumors in the central nervous system, gliomas have poor prognosis and limited therapy methods. Immunotherapy has become promising in the treatment of gliomas. Here, we explored the expression pattern of APOBEC3B, a genomic mutation inducer, in gliomas to assess its value as an immune biomarker and immunotherapeutic target. Methods We mined transcriptional data from two publicly available genomic datasets, TCGA and CGGA, to investigate the relevance between APOBEC3B and clinical characterizations including tumor classifications, patient prognosis, and immune infiltrating features in gliomas. We especially explored the correlation between APOBEC3B and tumor mutations. Samples from Xiangya cohort were used for immunohistochemistry staining. Results Our findings demonstrated that APOBEC3B expression level was relatively high in advanced gliomas and other cancer types, which indicated poorer prognosis. APOBEC3B also stratified patients’ survival in Xiangya cohort. APOBEC3B was significantly associated with infiltrating immune and stromal cell types in the tumor microenvironment. Notably, APOBEC3B was involved in tumor mutation and strongly correlated with the regulation of oncogenic genes. Conclusion Our findings identified that APOBEC3B could be a latent molecular target in gliomas.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyang Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengang Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Decipher the Glioblastoma Microenvironment: The First Milestone for New Groundbreaking Therapeutic Strategies. Genes (Basel) 2021; 12:genes12030445. [PMID: 33804731 PMCID: PMC8003887 DOI: 10.3390/genes12030445] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite the combination of novel therapeutical approaches, it remains a deadly malignancy with an abysmal prognosis. GBM is a polymorphic tumour from both molecular and histological points of view. It consists of different malignant cells and various stromal cells, contributing to tumour initiation, progression, and treatment response. GBM’s microenvironment is multifaceted and is made up of soluble factors, extracellular matrix components, tissue-resident cell types (e.g., neurons, astrocytes, endothelial cells, pericytes, and fibroblasts) together with resident (e.g., microglia) or recruited (e.g., bone marrow-derived macrophages) immune cells. These latter constitute the so-called immune microenvironment, accounting for a substantial GBM’s tumour volume. Despite the abundance of immune cells, an intense state of tumour immunosuppression is promoted and developed; this represents the significant challenge for cancer cells’ immune-mediated destruction. Though literature data suggest that distinct GBM’s subtypes harbour differences in their microenvironment, its role in treatment response remains obscure. However, an in-depth investigation of GBM’s microenvironment may lead to novel therapeutic opportunities to improve patients’ outcomes. This review will elucidate the GBM’s microenvironment composition, highlighting the current state of the art in immunotherapy approaches. We will focus on novel strategies of active and passive immunotherapies, including vaccination, gene therapy, checkpoint blockade, and adoptive T-cell therapies.
Collapse
|
21
|
Zhang H, He J, Dai Z, Wang Z, Liang X, He F, Xia Z, Feng S, Cao H, Zhang L, Cheng Q. PDIA5 is Correlated With Immune Infiltration and Predicts Poor Prognosis in Gliomas. Front Immunol 2021; 12:628966. [PMID: 33664747 PMCID: PMC7921737 DOI: 10.3389/fimmu.2021.628966] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common and lethal primary malignant tumor of the brain. Routine treatment including surgical resection, chemotherapy, and radiotherapy produced limited therapeutic effect, while immunotherapy targeting the glioma microenvironment has offered a novel therapeutic option. PDIA5 protein is the member of PDI family, which is highly expressed in glioma and participates in glioma progression. Based on large-scale bioinformatics analysis, we discovered that PDIA5 expression level is upregulated in aggressive gliomas, with high PDIA5 expression predicting poor clinical outcomes. We also observed positive correlation between PDIA5 and immune infiltrating cells, immune related pathways, inflammatory activities, and other immune checkpoint members. Patients with high PDIA5 high-expression benefited from immunotherapies. Additionally, immunohistochemistry revealed that PDIA5 and macrophage biomarker CD68 were upregulated in high-grade gliomas, and patients with low PDIA5 level experienced favorable outcomes among 33 glioma patients. Single cell RNA sequencing exhibited that PDIA5 was in high level presenting in neoplastic cells and macrophages. Cell transfection and co-culture of glioma cells and macrophages revealed that PDIA5 in tumor cells mediated macrophages exhausting. Altogether, our findings indicate that PDIA5 overexpression is associated with immune infiltration in gliomas, and may be a promising therapeutic target for glioma immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fengqiong He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Qi C, Lei L, Hu J, Wang G, Liu J, Ou S. T cell immune regulator 1 is a prognostic marker associated with immune infiltration in glioblastoma multiforme. Oncol Lett 2021; 21:252. [PMID: 33664816 PMCID: PMC7882896 DOI: 10.3892/ol.2021.12514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most common primary brain tumor and glioblastoma multiforme (GBM) is the most malignant brain glioma with the worst prognosis. T cell immune regulator 1 (TCIRG1) constitutes the V0a3 subunit of vacuolar ATPase (V-ATPase), and the function of V-ATPase in malignant tumors, such as breast cancer, melanoma and hepatocellular carcinoma, has been reported. However, the effect of the TCIRG1 subunit on GBM remains to be fully elucidated. mRNA levels of TCIRG1 in different cancer types and the corresponding normal tissues were extracted from the Oncomine and Tumor Immune Estimation Resource (TIMER) databases. The Gene Expression Omnibus (access number: GSE16011), the Chinese Glioma Genome Atlas and The Cancer Genome Atlas were used to investigate the mRNA level of TCIRG1 in glioma. Protein level validation in glioma was performed using western blotting. The Database for Annotation, Visualization and Integrated Discovery was used to analyze Gene Ontology (GO) categories for genes correlated with TCIRG1 in GBM. Protein-protein interaction (PPI) networks and module analyses were performed using Cytoscape software and the MCODE plugin. The correlation between tumor immune cell infiltration and TCIRG1 expression was explored using the TIMER database. Additionally, the correlation between TCIRG1 and the gene signature of immune infiltration was explored through TIMER and Gene Expression Profiling Interactive Analysis. External validation of TCIRG1 expression according to immune signatures in GBM was performed using the GSE16011 dataset with the GlioVis online tool. It was found that TCIRG1 expression was increased in GBM and numerous malignant tumors and may serve as a biomarker of the mesenchymal subtype of GBM. GO category analysis of positively correlated genes revealed that TCIRG1 was correlated with the immune response in GBM. PPI network and module analyses also supported the potential function of TCIRG1 in the local immune response. The expression of TCIRG1 was associated with various immune markers. It was therefore speculated that TCIRG1 is associated with glioma malignancy and may be a marker of unfavorable prognosis in patients with GBM, and it could be regarded as a prognostic biomarker and an indicator of immune infiltration in GBM.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Neurosurgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Lei Lei
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Jinqu Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Gang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shaowu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
23
|
Ghouzlani A, Rafii S, Karkouri M, Lakhdar A, Badou A. The Promising IgSF11 Immune Checkpoint Is Highly Expressed in Advanced Human Gliomas and Associates to Poor Prognosis. Front Oncol 2021; 10:608609. [PMID: 33604291 PMCID: PMC7884863 DOI: 10.3389/fonc.2020.608609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most prevalent primary brain tumor. Immune checkpoint blockade has made a great stride in mending patient’s clinical outcome for multiple types of cancers. However, PD-1, CTLA-4, or VEGF blockade exhibited only poor outcome in glioma patients. This study aimed to explore the expression and role of IgSF11, an emerging immune checkpoint and a ligand of VISTA, in human gliomas. IgSF11 mRNA expression was assessed in human glioma patients at different grades using 2 independent cohorts, a set of 52 Moroccan samples, including 20 glioma tissues, 22 PBMC samples taken before and 10 PBMC samples taken after surgery; and a series of 667 patients from TCGA. In parallel, immunohistochemistry was performed to evaluate IgSF11 protein staining. IgSF11 gene expression was significantly upregulated in high grade glioma tissues, compared to low grade. IgSF11 protein also showed a significant expression in low and high-grade gliomas. Interestingly, IgSF11 expression seemed to correlate positively with other critical immune checkpoints such as PD1, PDL-1, VISTA, and surprisingly negatively with CTLA-4. Although, T cell markers appeared higher in advanced gliomas, T cell-produced pro-inflammatory genes showed similar expression levels, highly likely because of the potent immunosuppressive microenvironment. Indeed, increased expression of IgSF11 in advanced human gliomas associated with a poor overall survival. Our data strongly suggest that IgSF11 is an immune checkpoint, which is upregulated in advanced human gliomas and contributes to the immunosuppressive state resulting in a poor clinical outcome in glioma patients. IgSF11 could be considered as a possible promising therapeutic target in advanced human gliomas.
Collapse
Affiliation(s)
- Amina Ghouzlani
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Soumaya Rafii
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mehdi Karkouri
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco.,Department of Pathology, CHU Ibn Rochd, Casablanca, Morocco
| | - Abdelhakim Lakhdar
- Department of Neurosurgery, UHC Ibn Rochd, Casablanca, Morocco.,Laboratory of Research on Neurologic, Neurosensorial Diseases and Handicap, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
24
|
Mei J, Cai Y, Xu R, Yang X, Zhou W, Wang H, Liu C. Characterization of the Clinical Significance of PD-1/PD-Ls Expression and Methylation in Patients With Low-Grade Glioma. Technol Cancer Res Treat 2021; 20:15330338211011970. [PMID: 33955303 PMCID: PMC8111557 DOI: 10.1177/15330338211011970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/23/2021] [Accepted: 03/30/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Immune checkpoints play crucial roles in the immune escape of cancer cells. However, the exact prognostic values of expression and methylation of programmed-death 1 (PD-1), programmed-death-ligand 1 (PD-L1) and PD-L2 in low-grade glioma (LGG) have not been well-defined yet. METHODS A total 514 LGG samples from the Cancer Genome Atlas (TCGA) dataset containing gene expression, DNA methylation, and survival data were enrolled in our study. Besides, a total of 137 primary LGG samples from the Chinese Glioma Genome Atlas (CGGA) database were also extracted for the survival analysis of the prognostic values of PD-1/PD-Ls expression. RESULTS PD-1/PD-Ls had distinct co-expression patterns in LGG tissues. The expression and methylation level of PD-1/PD-Ls seemed to be various in different LGG subtypes. Besides, overexpression and hypo-methylation of PD-1/PD-Ls were associated with worse prognosis. In addition, PD-1/PD-Ls expression was positively associated with TIICs infiltration, while their methylation was negatively associated with TIICs infiltration. Moreover, PD-1/PD-Ls and their positively correlated gene mainly participated in immune response related biological processes. CONCLUSION To conclude, overexpression and hypo-methylation of PD-1/PD-Ls predicted unfavorable prognosis in LGG patients, suggesting those patients may benefit from PD1/PD-Ls checkpoint inhibitors treatment.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yun Cai
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xuejing Yang
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Weijian Zhou
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Chaoying Liu
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
25
|
Robilliard LD, Yu J, Anchan A, Joseph W, Finlay G, Angel CE, Scott Graham E. Comprehensive analysis of inhibitory checkpoint ligand expression by glioblastoma cells. Immunol Cell Biol 2020; 99:403-418. [PMID: 33217047 DOI: 10.1111/imcb.12428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
Glioblastoma is a highly aggressive brain malignancy commonly refractory to classical and novel chemo-, radio- and immunotherapies, with median survival times of ~15 months following diagnosis. Poor immunological responses exemplified by the downregulation of T-cell activity, and upregulation of immunosuppressive cells within the tumor microenvironment have limited the effectiveness of immunotherapy in glioblastoma to date. Here we show that glioblastoma cells express a large repertoire of inhibitory checkpoint ligands known to control effector T cell responses. Furthermore, flow cytometry analysis reveals that glioblastoma cells with an enhanced stem cell-like phenotype express several investigated ligands at significant levels on their cell surface. This reveals that glioblastoma stem-like cells express suppressive ligands with the potential of suppressing major T cell checkpoint receptors. With this information, it is now essential that we understand the relevance of this extensive repertoire of immune checkpoint ligands and their functional consequence on immune evasion in glioblastoma. This is necessary to develop effective immunotherapeutics and to be able to match treatment to patient, especially in the light of CheckMate 143.
Collapse
Affiliation(s)
- Laverne D Robilliard
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jane Yu
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Akshata Anchan
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Wayne Joseph
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Graeme Finlay
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Catherine E Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Qi C, Lei L, Hu J, Wang G, Liu J, Ou S. Thrombospondin-1 is a prognostic biomarker and is correlated with tumor immune microenvironment in glioblastoma. Oncol Lett 2020; 21:22. [PMID: 33240428 PMCID: PMC7681197 DOI: 10.3892/ol.2020.12283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor and the most aggressive type of glioma, characterized by strong invasive potential and rapid recurrence despite severe treatment methods, such as maximal tumor resection followed by chemotherapy and radiotherapy. Thrombospondin-1 (THBS1) was first discovered in platelets and subsequent studies have indicated its functions in the development of several cancers, including breast cancer, melanoma, gastric cancer, cervical cancer and GBM. However, to the best of our knowledge, the expression profiles of THBS1 in GBM subtypes remain unknown, and the underlying mechanism by which THBS1 expression is regulated, and its effect on the local immune response in GBM, remains unclear. The present study used public datasets from The Cancer Genome Atlas, the Chinese Glioma Genome Atlas, the Gene Expression Omnibus, the Ivy Glioblastoma Atlas Project, Tumor Immune Estimation Resource, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data and the Human Protein Atlas to investigate the prognostic value of THBS1 and its expression profiles, as well as its correlation with the local immune response in GBM. The results demonstrated that THBS1 was a biomarker of the pathological malignancy of glioma, and predicted the mesenchymal subtype of GBM. Furthermore, DNA methylation of THBS1 may be an important mechanism by which THBS1 expression is regulated in GBM. The hypomethylation or overexpression of THBS1 predicted an unfavorable prognosis in patients with GBM. Additionally, THBS1 was correlated with immune and inflammatory responses in GBM. Thus, the findings of the present study provide insight into the potential value of THBS1 in the treatment of GBM.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Neurosurgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Lei Lei
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Jinqu Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Gang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shaowu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
27
|
Marinelli O, Annibali D, Morelli MB, Zeppa L, Tuyaerts S, Aguzzi C, Amantini C, Maggi F, Ferretti B, Santoni G, Amant F, Nabissi M. Biological Function of PD-L2 and Correlation With Overall Survival in Type II Endometrial Cancer. Front Oncol 2020; 10:538064. [PMID: 33194598 PMCID: PMC7656062 DOI: 10.3389/fonc.2020.538064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/18/2020] [Indexed: 01/27/2023] Open
Abstract
In cancer, upregulation of coinhibitory B7 ligands has been associated with immune evasion. So far, anti-programmed death-1 (PD-1) and anti-PD-ligand 1 (PD-L1) antibodies have been used in immuno-oncology, with promising outcomes; however, it is still needed to identify other markers, especially for endometrial cancer (EC). EC is a gynecological malignancy historically classified into two types: type I, with mostly estrogen-dependent endometrioid diseases, and the most aggressive type II, including mainly estrogen-independent and non-endometrioid tumors. PD ligand-2 (PD-L2) is known as the second ligand of the PD-1 receptor and, upon its binding, contributes to T-cell exhaustion. Up to now, very few information are available about PD-L2 in cancers, and no data have been reported for EC. The aim of this work was to characterize the PD-L1 and PD-L2 ligand expression profile in EC cell lines, focusing the attention on the biological role of PD-L2 and its prognostic impact in human type II EC biopsies. Using in silico analysis of TCGA data, we performed a molecular profiling in a cohort of 506 patients, both types I and II, and PD-1 ligands expression was also analyzed in different primary human EC cell lines. Moreover, PD-L2 staining was evaluated in a cohort of human type II EC samples and correlated with the overall survival (OS), progression-free survival (PFS), and additional clinicopathological data. From the in silico analysis, PD-L2 was more expressed than PD-L1 in EC cell lines. PD-L2 was found highly expressed in 64.44% of tumor specimens, predominantly in the serous subtype, in both stromal and epithelial components, while in peritumoral and normal tissues it was predominantly moderate or low. In vitro, we investigated the cell autonomous role of PD-L2 in controlling cell survival, migration, and chemoresistance.
Collapse
Affiliation(s)
- Oliviero Marinelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy.,School of Biosciences and Veterinary Medicine, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Daniela Annibali
- Gynecological Oncology, Oncology Department and LKI Leuven Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Maria Beatrice Morelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Laura Zeppa
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Sandra Tuyaerts
- Gynecological Oncology, Oncology Department and LKI Leuven Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Cristina Aguzzi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Federica Maggi
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Frédéric Amant
- Gynecological Oncology, Oncology Department and LKI Leuven Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium.,Centre for Gynecologic Oncology Amsterdam (CGOA) Antoni Van Leeuwenhoek-Netherlands Cancer Institute (AvL-NKI) and University Medical Centra (UMC), Amsterdam, Netherlands
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy.,Integrative Therapy Discovery Lab, University of Camerino, Camerino, Italy
| |
Collapse
|
28
|
Solinas C, Aiello M, Rozali E, Lambertini M, Willard-Gallo K, Migliori E. Programmed cell death-ligand 2: A neglected but important target in the immune response to cancer? Transl Oncol 2020; 13:100811. [PMID: 32622310 PMCID: PMC7332529 DOI: 10.1016/j.tranon.2020.100811] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death-ligand 2 (PD-L2) is one of the two ligands of the programmed cell death-1 (PD-1) receptor, an inhibitory protein mainly expressed on activated immune cells that is targeted in the clinic, with successful and remarkable results. The PD-1/PD-Ls axis was shown to be one of the most relevant immunosuppressive pathways in the immune microenvironment, and blocking this interaction gave rise to an impressive clinical benefit in a broad variety of solid and hematological malignancies. Although PD-L2 has been historically considered a minor ligand, it binds to PD-1 with a two- to six-fold higher affinity as compared to PD-L1. PD-L2 can be expressed by immune, stromal, or tumor cells. The aims of this narrative review are to summarize PD-L2 biology in the physiological responses of the immune system and its role, expression, and clinical significance in cancer.
Collapse
Affiliation(s)
- Cinzia Solinas
- Azienda USL Valle d'Aosta, Regional Hospital of Valle d'Aosta, Aosta, Italy
| | - Marco Aiello
- Medical Oncology Unit, A.O.U. Policlinico San Marco, Catania, Italy
| | - Esdy Rozali
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Matteo Lambertini
- IRCCS Ospedale Policlinico San Martino and University of Genova, Genova, Italy
| | | | - Edoardo Migliori
- Columbia University Medical Center, Columbia Center for Translational Immunology, New York, NY, USA.
| |
Collapse
|
29
|
A computational guided, functional validation of a novel therapeutic antibody proposes Notch signaling as a clinical relevant and druggable target in glioma. Sci Rep 2020; 10:16218. [PMID: 33004830 PMCID: PMC7531005 DOI: 10.1038/s41598-020-72480-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling network determines stemness in various tissues and targeting signaling activity in malignant brain cancers by gamma-secretase inhibitors (GSI) has shown promising preclinical success. However, the clinical translation remains challenging due to severe toxicity side effects and emergence of therapy resistance. Better anti-Notch directed therapies, specifically directed against the tumor promoting Notch receptor 1 signaling framework, and biomarkers predicting response to such therapy are of highest clinical need. We assessed multiple patient datasets to probe the clinical relevance Notch1 activation and possible differential distribution amongst molecular subtypes in brain cancers. We functionally assessed the biological effects of the first-in-human tested blocking antibody against Notch1 receptor (brontictuzumab, BRON) in a collection of glioma stem-like cell (GSC) models and compared its effects to genetic Notch1 inhibition as well as classical pharmacological Notch inhibitor treatment using gamma-secretase inhibitor MRK003. We also assess effects on Wingless (WNT) stem cell signaling activation, which includes the interrogation of genetic WNT inhibition models. Our computed transcriptional Notch pathway activation score is upregulated in neural stem cells, as compared to astrocytes; as well as in GSCs, as compared to differentiated glioblastoma cells. Moreover, the Notch signature is clinical predictive in our glioblastoma patient discovery and validation cohort. Notch signature is significantly increased in tumors with mutant IDH1 genome and tumors without 1p and 19q co-deletion. In GSCs with elevated Notch1 expression, BRON treatment blocks transcription of Notch pathway target genes Hes1/Hey1, significantly reduced the amount of cleaved Notch1 receptor protein and caused significantly impairment of cellular invasion. Benchmarking this phenotype to those observed with genetic Notch1 inhibition in corresponding cell models did result in higher reduction of cell invasion under chemotherapy. BRON treatment caused signs of upregulation of Wingless (WNT) stem cell signaling activity, and vice versa, blockage of WNT signaling caused induction of Notch target gene expression in our models. We extend the list of evidences that elevated Notch signal expression is a biomarker signature declaring stem cell prevalence and useful for predicting negative clinical course in glioblastoma. By using functional assays, we validated a first in man tested Notch1 receptor specific antibody as a promising drug candidate in the context of neuro oncology and propose biomarker panel to predict resistance and therapy success of this treatment option. We note that the observed phenotype seems only in part due to Notch1 blockage and the drug candidate leads to activation of off target signals. Further studies addressing a possible emergence of therapy resistance due to WNT activation need to be conducted. We further validated our 3D disease modeling technology to be of benefit for drug development projects.
Collapse
|
30
|
Lin X, Wang Z, Yang G, Wen G, Zhang H. YTHDF2 correlates with tumor immune infiltrates in lower-grade glioma. Aging (Albany NY) 2020; 12:18476-18500. [PMID: 32986017 PMCID: PMC7585119 DOI: 10.18632/aging.103812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/20/2020] [Indexed: 01/24/2023]
Abstract
Immunotherapy is an effective treatment for many cancer types. However, YTHDF2 effects on the prognosis of different tumors and correlation with tumor immune infiltration are unclear. Here, we analyzed The Cancer Genome Atlas and Gene Expression Omnibus data obtained through various web-based platforms. The analyses showed that YTHDF2 expression and associated prognoses may depend on cancer type. High YTHDF2 expression was associated with poor overall survival in lower-grade glioma (LGG). In addition, YTHDF2 expression positively correlated with expression of several immune cell markers, including PD-1, TIM-3, and CTLA-4, as well as tumor-associated macrophage gene markers, and isocitrate dehydrogenase 1 in LGG. These findings suggest that YTHDF2 is a potential prognostic biomarker that correlates with LGG tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Xiangan Lin
- Department of Cancer Chemotherapy, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510000, China
| | - Zhichao Wang
- Department of Cancer Chemotherapy, Zengcheng District People’s Hospital of Guangzhou, Guangzhou 511300, China
| | - Guangda Yang
- Department of Cancer Chemotherapy, Zengcheng District People’s Hospital of Guangzhou, Guangzhou 511300, China
| | - Guohua Wen
- Department of Cancer Chemotherapy, Zengcheng District People’s Hospital of Guangzhou, Guangzhou 511300, China
| | - Hailiang Zhang
- Department of Cancer Chemotherapy, Zengcheng District People’s Hospital of Guangzhou, Guangzhou 511300, China
| |
Collapse
|
31
|
Relationship between Microsatellite Instability, Immune Cells Infiltration, and Expression of Immune Checkpoint Molecules in Ovarian Carcinoma: Immunotherapeutic Strategies for the Future. Int J Mol Sci 2019; 20:ijms20205129. [PMID: 31623180 PMCID: PMC6829575 DOI: 10.3390/ijms20205129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer has the worst prognosis among gynecological cancers. Thus, new ovarian cancer treatment strategies are needed. Currently, immune checkpoint inhibitors such as anti-PD-1/PD-L1 antibody are attracting attention worldwide. The Food and Drug Administration approved the use of the PD-1 antibody pembrolizumab for solid cancers with microsatellite instability (MSI)-H or mismatch repair (MMR) deficiency in 2017. However, few studies on ovarian carcinoma have evaluated the relationship among MSI status, lymphocyte infiltration into the tumor, and the expression of immune checkpoint molecules by histologic type. We evaluated the expression of MMR proteins, tumor-infiltrating lymphocytes (CD8+), and immune checkpoint molecules (PD-L1/PD-1) by immunohistochemistry in 136 ovarian cancer patients (76, 13, 23, and 24 cases were high-grade serous, mucinous, endometrioid, and clear cell carcinoma, respectively) to investigate the effectiveness of immune checkpoint inhibitors. Only six cases (4.4%) had loss of MMR protein expression. There was no significant relationship between MSI status and age (p = 0.496), FIGO stage (p = 0.357), initial treatment (primary debulking surgery [PDS] or neoadjuvant chemotherapy) (p = 0.419), residual tumor after PDS or interval debulking surgery (p = 0.202), and expression of CD8 (p = 0.126), PD-L1 (p = 0.432), and PD-1 (p = 0.653). These results suggest that only a small number of MSI cases in ovarian cancer can be effectively treated with immune checkpoint inhibitor monotherapy. Therefore, to improve the prognosis of ovarian carcinoma, a combination therapy of immune checkpoint inhibitors and other anticancer drugs is necessary.
Collapse
|