1
|
Ye J, Deng R, Wang X, Song S, Xu X, Zhang JY, Xu BB, Wang X, Yu JK. Intra-articular Histone Deacetylase Inhibitor Microcarrier Delivery to Reduce Osteoarthritis. NANO LETTERS 2023; 23:10832-10840. [PMID: 38009465 PMCID: PMC10722529 DOI: 10.1021/acs.nanolett.3c03037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
The histone deacetylase inhibitor (HDACi) was a milestone in the treatment of refractory T-cell lymphoma. However, the beneficial effects of HDACi have not been appreciated in osteoarthritis (OA). Herein, we implemented a microcarrier system because of the outstanding advantages of controlled and sustained release, biodegradability, and biocompatibility. The poly(d,l-lactide-co-glycolide) (PLGA) microcapsules have a regulated and sustained release profile with a reduced initial burst release, which can improve the encapsulation efficiency of the Chidamide. The emulsion solvent evaporation strategy was used to encapsulate Chidamide in PLGA microcapsules. The encapsulation of Chidamide was established by UV-vis spectra and scanning electron microscopy. Additionally, the inhibition of Tnnt3 and immune stimulation by Chidamide helped to inhibit cartilage destruction and prevent articular cartilage degeneration. Based on the results, the Chidamide in PLGA microcapsules provides a transformative therapeutic strategy for the treatment of osteoarthritis patients to relieve symptoms and protect against cartilage degeneration.
Collapse
Affiliation(s)
- Jing Ye
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Ronghui Deng
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Xinjie Wang
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Shitang Song
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Xiong Xu
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ji-Ying Zhang
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Bing-bing Xu
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| | - Xing Wang
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Kuo Yu
- Sports
Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
- Institute
of Sports Medicine, Peking University, No. 49 North Garden Road, Haidian
District, Beijing 100191, China
| |
Collapse
|
2
|
Fraile-Bethencourt E, Foss MH, Nelson D, Malhotra SV, Anand S. A Cell-Based Screen Identifies HDAC Inhibitors as Activators of RIG-I Signaling. Front Mol Biosci 2022; 9:837610. [PMID: 35237663 PMCID: PMC8882870 DOI: 10.3389/fmolb.2022.837610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Enhancing the immune microenvironment in cancer by targeting the nucleic acid sensors is becoming a potent therapeutic strategy. Among the nucleic acid sensors, activation of the RNA sensor Retinoic Acid-inducible Gene (RIG-I) using small hairpin RNAs has been shown to elicit powerful innate and adaptive immune responses. Given the challenges inherent in pharmacokinetics and delivery of RNA based agonists, we set out to discover small molecule agonists of RIG-I using a cell-based assay. To this end, we established and validated a robust high throughput screening assay based on a commercially available HEK293 reporter cell line with a luciferase reporter downstream of tandem interferon stimulated gene 54 (ISG54) promoter elements. We first confirmed that the luminescence in this cell line is dependent on RIG-I and the interferon receptor using a hairpin RNA RIG-I agonist. We established a 96-well and a 384-well format HTS based on this cell line and performed a proof-of-concept screen using an FDA approved drug library of 1,200 compounds. Surprisingly, we found two HDAC inhibitors Entinostat, Mocetinostat and the PLK1 inhibitor Volasertib significantly enhanced ISG-luciferase activity. This luminescence was substantially diminished in the null reporter cell line indicating the increase in signaling was dependent on RIG-I expression. Combination treatment of tumor cell lines with Entinostat increased RIG-I induced cell death in a mammary carcinoma cell line that is resistant to either Entinostat or RIG-I agonist alone. Taken together, our data indicates an unexpected role for HDAC1,-3 inhibitors in enhancing RIG-I signaling and highlight potential opportunities for therapeutic combinations.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Marie H. Foss
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Dylan Nelson
- High-Throughput Screening Services Laboratory, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Sanjay V. Malhotra
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|