1
|
Ecarnot F, Maggi S. Vaccination against Respiratory Infections in the Immunosenescent Older Adult Population: Challenges and Opportunities. Semin Respir Crit Care Med 2025. [PMID: 39662893 DOI: 10.1055/a-2500-2121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Respiratory infections are associated with a huge burden of disease every year and disproportionately affect older adults, namely those aged 65 years and older. Older adults are at increased risk of infections compared with their younger counterparts, and once infected, have a higher risk of experiencing severe disease course, complications, and long-term sequelae. Therefore, vaccination is clearly a key strategy to prevent infection and its attendant negative consequences. We review here the burden of common respiratory diseases in older adults, namely influenza, pneumococcal disease, and respiratory syncytial virus. We then review some of the challenges facing immunization of older adults, namely immunosenescence, inflammaging, and low vaccine uptake. Next, potential opportunities for overcoming these challenges are reviewed, including the use of higher antigen doses and/or adjuvants in vaccine formulations for older adults, and the potential of multiomics analyses to improve development, performance, and implementation of vaccines.
Collapse
Affiliation(s)
- Fiona Ecarnot
- Department of Cardiology, University Hospital Besançon, Boulevard Fleming, Besançon, France
- SINERGIES Research Unit, University of Franche-Comté, Besançon, France
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| |
Collapse
|
2
|
Badruzzaman ATM, Cheng YC, Sung WC, Lee MS. Insect Cell-Based Quadrivalent Seasonal Influenza Virus-like Particles Vaccine Elicits Potent Immune Responses in Mice. Vaccines (Basel) 2024; 12:667. [PMID: 38932396 PMCID: PMC11209530 DOI: 10.3390/vaccines12060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza viruses can cause highly infectious respiratory diseases, posing noteworthy epidemic and pandemic threats. Vaccination is the most cost-effective intervention to prevent influenza and its complications. However, reliance on embryonic chicken eggs for commercial influenza vaccine production presents potential risks, including reductions in efficacy due to HA gene mutations and supply delays due to scalability challenges. Thus, alternative platforms are needed urgently to replace egg-based methods and efficiently meet the increasing demand for vaccines. In this study, we employed a baculovirus expression vector system to engineer HA, NA, and M1 genes from seasonal influenza strains A/H1N1, A/H3N2, B/Yamagata, and B/Victoria, generating virus-like particle (VLP) vaccine antigens, H1N1-VLP, H3N2-VLP, Yamagata-VLP, and Victoria-VLP. We then assessed their functional and antigenic characteristics, including hemagglutination assay, protein composition, morphology, stability, and immunogenicity. We found that recombinant VLPs displayed functional activity, resembling influenza virions in morphology and size while maintaining structural integrity. Comparative immunogenicity assessments in mice showed that our quadrivalent VLPs were consistent in inducing hemagglutination inhibition and neutralizing antibody titers against homologous viruses compared to both commercial recombinant HA and egg-based vaccines (Vaxigrip). The findings highlight insect cell-based VLP vaccines as promising candidates for quadrivalent seasonal influenza vaccines. Further studies are worth conducting.
Collapse
Affiliation(s)
- A. T. M. Badruzzaman
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320, Taiwan
| | - Yu-Chieh Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| |
Collapse
|
3
|
Castrodeza-Sanz J, Sanz-Muñoz I, Eiros JM. Adjuvants for COVID-19 Vaccines. Vaccines (Basel) 2023; 11:vaccines11050902. [PMID: 37243006 DOI: 10.3390/vaccines11050902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, the improvement of traditional vaccines has meant that we have moved from inactivated whole virus vaccines, which provoke a moderate immune response but notable adverse effects, to much more processed vaccines such as protein subunit vaccines, which despite being less immunogenic have better tolerability profiles. This reduction in immunogenicity is detrimental to the prevention of people at risk. For this reason, adjuvants are a good solution to improve the immunogenicity of this type of vaccine, with much better tolerability profiles and a low prevalence of side effects. During the COVID-19 pandemic, vaccination focused on mRNA-type and viral vector vaccines. However, during the years 2022 and 2023, the first protein-based vaccines began to be approved. Adjuvanted vaccines are capable of inducing potent responses, not only humoral but also cellular, in populations whose immune systems are weak or do not respond properly, such as the elderly. Therefore, this type of vaccine should complete the portfolio of existing vaccines, and could help to complete vaccination against COVID-19 worldwide now and over the coming years. In this review we analyze the advantages and disadvantages of adjuvants, as well as their use in current and future vaccines against COVID-19.
Collapse
Affiliation(s)
- Javier Castrodeza-Sanz
- National Influenza Centre, 47005 Valladolid, Spain
- Preventive Medicine and Public Health Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Iván Sanz-Muñoz
- National Influenza Centre, 47005 Valladolid, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León, ICSCYL, 42002 Soria, Spain
| | - Jose M Eiros
- National Influenza Centre, 47005 Valladolid, Spain
- Microbiology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
- Microbiology Unit, Hospital Universitario Río Hortega, 47013 Valladolid, Spain
| |
Collapse
|
4
|
O'Hagan DT, van der Most R, Lodaya RN, Coccia M, Lofano G. "World in motion" - emulsion adjuvants rising to meet the pandemic challenges. NPJ Vaccines 2021; 6:158. [PMID: 34934069 PMCID: PMC8692316 DOI: 10.1038/s41541-021-00418-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Emulsion adjuvants such as MF59 and AS03 have been used for more than two decades as key components of licensed vaccines, with over 100 million doses administered to diverse populations in more than 30 countries. Substantial clinical experience of effectiveness and a well-established safety profile, along with the ease of manufacturing have established emulsion adjuvants as one of the leading platforms for the development of pandemic vaccines. Emulsion adjuvants allow for antigen dose sparing, more rapid immune responses, and enhanced quality and quantity of adaptive immune responses. The mechanisms of enhancement of immune responses are well defined and typically characterized by the creation of an "immunocompetent environment" at the site of injection, followed by the induction of strong and long-lasting germinal center responses in the draining lymph nodes. As a result, emulsion adjuvants induce distinct immunological responses, with a mixed Th1/Th2 T cell response, long-lived plasma cells, an expanded repertoire of memory B cells, and high titers of cross-neutralizing polyfunctional antibodies against viral variants. Because of these various properties, emulsion adjuvants were included in pandemic influenza vaccines deployed during the 2009 H1N1 influenza pandemic, are still included in seasonal influenza vaccines, and are currently at the forefront of the development of vaccines against emerging SARS-CoV-2 pandemic variants. Here, we comprehensively review emulsion adjuvants, discuss their mechanism of action, and highlight their profile as a benchmark for the development of additional vaccine adjuvants and as a valuable tool to allow further investigations of the general principles of human immunity.
Collapse
|
5
|
Verschoor CP, Andrew MK, Loeb M, Pawelec G, Haynes L, Kuchel GA, McElhaney JE. Antibody and Cell-Mediated Immune Responses Are Correlates of Protection against Influenza Infection in Vaccinated Older Adults. Vaccines (Basel) 2021; 9:vaccines9010025. [PMID: 33430191 PMCID: PMC7825602 DOI: 10.3390/vaccines9010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022] Open
Abstract
Despite efforts to design better vaccines for older adults, the risk for serious complications of influenza remains disproportionately high. Identifying correlates of vaccine effectiveness and understanding the heterogeneity of health outcomes in older adults are key to the vaccine development pipeline. We sought correlates of protection against laboratory-confirmed influenza illness (LCII) in a 4-year randomized trial of standard versus high-dose influenza vaccination of adults 65 years and older. To this end, we quantified serum hemagglutination-inhibition (HAI) titers and interferon-gamma (IFNγ) and interleukin-10 (IL-10) secretion by virus-challenged peripheral blood mononuclear cells. Of the 608 participants included, 26 developed either A/H3N2-(n = 17) or B-LCII (n = 9) at 10-20 weeks post-vaccination. Antibody titres for A/H3N2 at 4-weeks post-vaccination were significantly associated with protection against LCII, where every 1-standard deviation increase reduced the odds of A/H3N2-LCII by 53%. Although B-titres did not correlate with protection against B-LCII, the fold-increase in IFNγ:IL-10 ratios from pre- to 4-weeks post-vaccination was significantly associated with protection against B-LCII, where every 1-standard deviation increase reduced the odds by 71%. Our results suggest that both antibody and cell-mediated immune measures are valuable and potentially complementary correlates of protection against LCII in vaccinated older adults, although this may depend on the viral type causing infection.
Collapse
Affiliation(s)
- Chris P. Verschoor
- Health Sciences North Research Institute, Sudbury, ON P3E 5J1, Canada; (G.P.); (J.E.M.)
- Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Correspondence:
| | - Melissa K. Andrew
- Department of Medicine (Geriatrics), Dalhousie University, Halifax, NS B3H 2E1, Canada;
| | - Mark Loeb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Graham Pawelec
- Health Sciences North Research Institute, Sudbury, ON P3E 5J1, Canada; (G.P.); (J.E.M.)
- Department of Immunology, University of Tübingen, 72074 Tübingen, Germany
| | - Laura Haynes
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (L.H.); (G.A.K.)
| | - George A. Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (L.H.); (G.A.K.)
| | - Janet E. McElhaney
- Health Sciences North Research Institute, Sudbury, ON P3E 5J1, Canada; (G.P.); (J.E.M.)
- Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
6
|
Jia S, Li J, Liu Y, Zhu F. Precision immunization: a new trend in human vaccination. Hum Vaccin Immunother 2020; 16:513-522. [PMID: 31545124 DOI: 10.1080/21645515.2019.1670123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vaccination has been one of the major revolutions in the history of human health. Vaccination programs have targeted entire populations such as infants or elderly subjects as a matter of being efficient with time and resources. These general populations are heterogeneous in terms of factors such as ethnicity, health status, and socio-economics. Thus, there have been variations in the safety and effectiveness profiles of certain vaccinations according to current population-wide strategies. As the concept of precision medicine has been raised in recent years, many researchers have suggested that vaccines could be administered more precisely in terms of particular target populations, vaccine formulations, regimens, and dosage levels. This review addresses the concept and framework of precision immunization, summarizes recent and representative clinical trials of among specific populations, mentions important factors to be addressed in customizing vaccinations, and provides suggestions on the establishment of precision immunization with the goal of maximizing the effectiveness of vaccines in general.
Collapse
Affiliation(s)
- Siyue Jia
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Jingxin Li
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Yuanbao Liu
- Expanded Program on Immunization Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China.,NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Fengcai Zhu
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China.,NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| |
Collapse
|
7
|
The Effects of Birth Year, Age and Sex on Hemagglutination Inhibition Antibody Responses to Influenza Vaccination. Vaccines (Basel) 2018; 6:vaccines6030039. [PMID: 29970820 PMCID: PMC6161215 DOI: 10.3390/vaccines6030039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 12/05/2022] Open
Abstract
The first exposure to influenza is thought to impact subsequent immune responses later in life. The consequences of this can be seen during influenza epidemics and pandemics with differences in morbidity and mortality for different birth cohorts. There is a need for better understanding of how vaccine responses are affected by early exposures to influenza viruses. In this analysis of hemagglutination inhibition (HI) antibody responses in two cohorts of military personnel we noticed differences related to age, sex, prior vaccination, deployment and birth year. These data suggest that HI antibody production, in response to influenza vaccination, is affected by these factors. The magnitude of this antibody response is associated with, among other factors, the influenza strain that circulated following birth.
Collapse
|