1
|
Zane L, Kraschowetz S, Trentini MM, Alves VDS, Araujo SC, Goulart C, Leite LCDC, Gonçalves VM. Peptide linker increased the stability of pneumococcal fusion protein vaccine candidate. Front Bioeng Biotechnol 2023; 11:1108300. [PMID: 36777254 PMCID: PMC9909212 DOI: 10.3389/fbioe.2023.1108300] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pneumoniae is a bacterial pathogen exclusive to humans, responsible for respiratory and systemic diseases. Pneumococcal protein vaccines have been proposed as serotype-independent alternatives to currently used conjugated polysaccharide vaccines, which have presented limitations regarding their coverage. Previously in our group, pneumococcal surface protein A (PspA) and detoxified pneumolysin (PdT) were genetically fused and the hybrid protein protected mice against pneumococcal challenge, offered higher cross-protection against different strains and showed greater opsonophagocytosis rate than co-administered proteins. As juxtaposed fusion was unstable to upscale production of the protein, flexible (PspA-FL-PdT) and rigid (PspA-RL-PdT) molecular linkers were inserted between the antigens to increase stability. This work aimed to produce recombinant fusion proteins, evaluate their stability after linker insertion, both in silico and experimentally, and enable the production of two antigens in a single process. The two constructs with linkers were cloned into Escherichia coli and hybrid proteins were purified using chromatography; purity was evaluated by SDS-PAGE and stability by Western blot and high performance size exclusion chromatography. PspA-FL-PdT showed higher stability at -20°C and 4°C, without additional preservatives. In silico analyses also showed differences regarding stability of the fusion proteins, with molecule without linker presenting disallowed amino acid positions in Ramachandran plot and PspA-FL-PdT showing the best scores, in agreement with experimental results. Mice were immunized with three doses and different amounts of each protein. Both fusion proteins protected all groups of mice against intranasal lethal challenge. The results show the importance of hybrid protein structure on the stability of the products, which is essential for a successful bioprocess development.
Collapse
Affiliation(s)
- Luciano Zane
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | - Stefanie Kraschowetz
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Vitor dos Santos Alves
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Carneiro Araujo
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | - Cibelly Goulart
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Viviane Maimoni Gonçalves
- Laboratory of Vaccine Development, Butantan Institute, Sao Paulo, Brazil,*Correspondence: Viviane Maimoni Gonçalves,
| |
Collapse
|
2
|
Harris K, Ling Y, Bukhbinder AS, Chen L, Phelps KN, Cruz G, Thomas J, Kim Y, Jiang X, Schulz PE. The Impact of Routine Vaccinations on Alzheimer's Disease Risk in Persons 65 Years and Older: A Claims-Based Cohort Study using Propensity Score Matching. J Alzheimers Dis 2023; 95:703-718. [PMID: 37574727 PMCID: PMC10578243 DOI: 10.3233/jad-221231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Accumulating evidence suggests that adult vaccinations can reduce the risk of developing Alzheimer's disease (AD) and Alzheimer's disease related dementias. OBJECTIVE To compare the risk for developing AD between adults with and without prior vaccination against tetanus and diphtheria, with or without pertussis (Tdap/Td); herpes zoster (HZ); or pneumococcus. METHODS A retrospective cohort study was performed using Optum's de-identified Clinformatics® Data Mart Database. Included patients were free of dementia during a 2-year look-back period and were≥65 years old by the start of the 8-year follow-up period. We compared two similar cohorts identified using propensity score matching (PSM), one vaccinated and another unvaccinated, with Tdap/Td, HZ, or pneumococcal vaccines. We calculated the relative risk (RR) and absolute risk reduction (ARR) for developing AD. RESULTS For the Tdap/Td vaccine, 7.2% (n = 8,370) of vaccinated patients and 10.2% (n = 11,857) of unvaccinated patients developed AD during follow-up; the RR was 0.70 (95% CI, 0.68-0.72) and ARR was 0.03 (95% CI, 0.02-0.03). For the HZ vaccine, 8.1% (n = 16,106) of vaccinated patients and 10.7% (n = 21,417) of unvaccinated patients developed AD during follow-up; the RR was 0.75 (95% CI, 0.73-0.76) and ARR was 0.02 (95% CI, 0.02-0.02). For the pneumococcal vaccine, 7.92% (n = 20,583) of vaccinated patients and 10.9% (n = 28,558) of unvaccinated patients developed AD during follow-up; the RR was 0.73 (95% CI, 0.71-0.74) and ARR was 0.02 (95% CI, 0.02-0.03). CONCLUSION Several vaccinations, including Tdap/Td, HZ, and pneumococcal, are associated with a reduced risk for developing AD.
Collapse
Affiliation(s)
- Kristofer Harris
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yaobin Ling
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Avram S. Bukhbinder
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Division of Pediatric Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Luyao Chen
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kamal N. Phelps
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriela Cruz
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jenna Thomas
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yejin Kim
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul E. Schulz
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
3
|
Catalioto RM, Valenti C, Bellucci F, Cialdai C, Altamura M, Digilio L, Pellacani AUE, Meini S. Booster immunization with a fractional dose of Prevnar 13 affects cell-mediated immune response but not humoral immunity in CD-1 mice. Heliyon 2021; 7:e07314. [PMID: 34195422 PMCID: PMC8239470 DOI: 10.1016/j.heliyon.2021.e07314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/02/2021] [Accepted: 06/10/2021] [Indexed: 12/01/2022] Open
Abstract
Achieving durable protective immunity following vaccination is dependent on many factors, including vaccine composition and antigen dose, and it has been investigated for various types of vaccines. Aim of the present study was to investigate the overall immune response elicited by two different booster doses in CD-1 mice, by exploiting the largely used 13-valent pneumococcal conjugate vaccine Prevnar 13® (PCV13). Immunization was performed by two primary doses of PCV13 two weeks apart, and a full or fractional (1/5) booster dose on week 10. Serotype-specific antibody titer, avidity, and opsonophagocytic activity were evaluated one week later, and compared to cell-mediated immunity (CMI) responses determined as the frequency of cytokines producing splenocytes by in vitro recall with the antigens (carrier protein and polysaccharides). Data showed that regardless of the booster dose, a comparable humoral response was produced, characterized by similar amounts of serotype-specific antibodies, with analog avidity and opsonophagocytic properties. On the other hand, when CMI was evaluated, the presence of CRM197-specific IL-5 and IL-2 producing cells was evident in splenocytes from mice immunized with the full dose, while in those immunized with the fractional booster dose, IFN-γ producing cells responsive to both protein and polysaccharide antigens were significantly increased, whereas the number of IL-5 and IL-2 positive cells remained unaffected. Overall the present findings show that PCV13 humoral response in mice is associated to a Th2 predominant response at the full booster dose, while the fractional one favors a mixed Th1/Th2 response, suggesting an important role of CMI besides measurement of functional protective antibodies, as an additional and important key information in vaccine development.
Collapse
Affiliation(s)
- Rose-Marie Catalioto
- Experimental Pharmacology Department, Menarini Ricerche S.p.A., Via dei Sette Santi 1, I-50131 Florence, Italy
| | - Claudio Valenti
- Experimental Pharmacology Department, Menarini Ricerche S.p.A., Via dei Sette Santi 1, I-50131 Florence, Italy
| | - Francesca Bellucci
- Experimental Pharmacology Department, Menarini Ricerche S.p.A., Via dei Sette Santi 1, I-50131 Florence, Italy
| | - Cecilia Cialdai
- Experimental Pharmacology Department, Menarini Ricerche S.p.A., Via dei Sette Santi 1, I-50131 Florence, Italy
| | - Maria Altamura
- Corporate Preclinical Development for New Technologies, Antiinfectives and Non-oncological Drugs, A. Menarini NewTech S.r.l., Via dei Sette Santi 1, I-50131 Florence, Italy
| | | | | | - Stefania Meini
- Experimental Pharmacology Department, Menarini Ricerche S.p.A., Via dei Sette Santi 1, I-50131 Florence, Italy
| |
Collapse
|
4
|
Choi SK, Baik YO, Kim CW, Kim SK, Oh IN, Yoon H, Yu D, Lee C. An open-label, comparative, single dose, clinical Phase Ⅰ study to assess the safety and immunogenicity of typhoid conjugate vaccine (Vi-CRM197) in healthy Filipino adults. Vaccine 2021; 39:2620-2627. [PMID: 33849723 DOI: 10.1016/j.vaccine.2021.03.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022]
Abstract
An injectable typhoid conjugate vaccine (TCV) provides longer-lasting protection, requires fewer doses, and is suitable for children aged >2 years. In addition, TCV is preferred at most ages owing to its improved immunological properties as it overcomes the limitation of Vi polysaccharide vaccines. Here, we assessed the safety, tolerability, and immunogenicity of a TCV, Vi-CRM197, termed EuTCV, in an open-label clinical phase I study in healthy Filipino adults. This study was conducted in 75 healthy adults aged 18-45 years who were randomized in a 1:1:1 ratio based on the vaccines administered: EuTCV (Test), Typbar-TCV® (WHO prequalified vaccine) and Typhim Vi® (Vi polysaccharide vaccine). The study vaccines were administered at a dose of 25 µg of Vi-CRM197 conjugate by intramuscular injection as a single dose to each of the 25 participants/group, and their immunogenicity and overall safety were assessed for 42 days post-vaccination. All study participants (n = 25/group) completed the trial without dropouts. There were no deaths, SAEs, or events leading to premature withdrawal from the study. Anti-Vi IgG antibody titer (geometric mean titer) of EuTCV group on day 42 was 65.325 [95% CI (36.860, 115.771)], which was significantly higher than that of the WHO prequalified TCV [24.795, 95% CI (16.164, 38.033) p = 0.0055] and the Vi polysaccharide vaccine [7.998, 95% CI (3.800, 16.835) p < 0.0001]. Moreover, the seroconversion rate of EuTCV and Typbar-TCV® was 100%, but that of Typhim Vi® was only 84%. The IgG1-3 subclass titers and serum bactericidal assay results in the EuTCV group showed higher and better bactericidal capacity than the other groups. EuTCV was well tolerated and exhibited an acceptable safety profile in the study population. The Vi-CRM197 conjugate dose of 25 μg may be considered effective in terms of efficacy and safety. ClinicalTrials.gov registration number: NCT03956524.
Collapse
Affiliation(s)
- Seuk Keun Choi
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea; Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yeong Ok Baik
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea
| | - Chan Wha Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Soo Kyung Kim
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea
| | - Il Nam Oh
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea
| | - Hyeseon Yoon
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea
| | - Dajung Yu
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea
| | - Chankyu Lee
- R&D Center, EuBiologics Co., Ltd., Chuncheon, Republic of Korea.
| |
Collapse
|
5
|
Jaufmann J, Tümen L, Beer-Hammer S. SLy2-overexpression impairs B-cell development in the bone marrow and the IgG response towards pneumococcal conjugate-vaccine. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:533-546. [PMID: 33592135 PMCID: PMC8127564 DOI: 10.1002/iid3.413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Background Infections with Streptococcus pneumoniae can cause severe diseases in humans including pneumonia. Although guidelines for vaccination have been established, S. pneumoniae is still responsible for a serious burden of disease around the globe. Currently, two pneumococcal immunizations are available, namely the pure polysaccharide vaccine Pneumovax23 (P23) and the conjugate‐vaccine Prevenar13 (PCV13). We recently reported impaired thymus‐independent antibody responses towards P23 in mice overexpressing the immunoinhibitory adapter SLy2. The purpose of this study was to evaluate adaptive B‐cell responses towards the thymus‐dependent vaccine PCV13 in SLy2‐overexpressing mice and to study their survival rate during pneumococcal lung infection. Moreover, we investigated B‐cell developmental stages within the bone marrow (BM) in the context of excessive SLy2‐expression. Methods B‐cell subsets and their surface immune globulins were investigated by flow cytometry. For class‐switch assays, isolated splenic B cells were stimulated in vitro with lipopolysaccharide and interleukin‐4 and antibody secretion was quantified via LEGENDplex. To study PCV13‐specific responses, mice were immunized and serum antibody titers (immunoglobulin M, immunoglobulins IgG1, IgG2, and IgG3) were examined by enzyme‐linked immunosorbent assay. Survival rates of mice were assessed within 7 days upon intranasal challenge with S. pneumoniae. Results Our data demonstrate impaired IgG1 and IgG3 antibody responses towards the pneumococcal conjugate‐vaccine PCV13 in SLy2‐overexpressing mice. This was accompanied by reduced frequencies and numbers of BM‐resident plasmablasts. In addition, we found drastically reduced counts of B‐cell precursors in the BM of SLy2‐Tg mice. The survival rate upon intranasal challenge with S. pneumoniae was mostly comparable between the genotypes. Conclusion Our findings demonstrate an important role of the adapter protein SLy2 in the context of adaptive antibody responses against pneumococcal conjugate‐vaccine. Interestingly, deficits in humoral immunity seemed to be compensated by cellular immune effectors upon bacterial challenge. Our study further shows a novel relevance of SLy2 for plasmablasts and B‐cell progenitors in the BM.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Leyla Tümen
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Immunogenicity Comparison of a Next Generation Pneumococcal Conjugate Vaccine in Animal Models and Human Infants. Pediatr Infect Dis J 2020; 39:70-77. [PMID: 31725555 DOI: 10.1097/inf.0000000000002522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Evaluation of a pneumococcal conjugate vaccine (PCV) in an animal model provides an initial assessment of the performance of the vaccine prior to evaluation in humans. Cost, availability, study duration, cross-reactivity and applicability to humans are several factors which contribute to animal model selection. PCV15 is an investigational 15-valent PCV which includes capsular polysaccharides from pneumococcal serotypes (ST) 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F and 33F all individually conjugated to cross-reactive material 197 (CRM197). METHODS Immunogenicity of PCV15 was evaluated in infant rhesus macaques (IRM), adult New Zealand white rabbits (NZWR) and CD1 mice using multiplexed pneumococcal electrochemiluminescent (Pn ECL) assay to measure serotype-specific IgG antibodies, multiplexed opsonophagocytosis assay (MOPA) to measure serotype-specific functional antibody responses and bacterial challenge in mice to evaluate protection against a lethal dose of S. pneumoniae. RESULTS PCV15 was immunogenic and induced both IgG and functional antibodies to all 15 vaccine serotypes in all animal species evaluated. PCV15 also protected mice from S. pneumoniae serotype 14 intraperitoneal challenge. Opsonophagocytosis assay (OPA) titers measured from sera of human infants vaccinated with PCV15 in a Phase 2 clinical trial showed a good correlation with that observed in IRM (rs=0.69, P=0.006), a medium correlation with that of rabbits (rs=0.49, P=0.06), and no correlation with that of mice (rs=0.04, P=0.89). In contrast, there was no correlation in serum IgG levels between human infants and animal models. CONCLUSIONS These results demonstrate that PCV15 is immunogenic across multiple animal species, with IRM and human infants showing the best correlation for OPA responses.
Collapse
|