1
|
Akache B, McCluskie MJ. Sulfated lactosyl archaeol (SLA) archaeosomes as a vaccine adjuvant. Hum Vaccin Immunother 2024; 20:2395081. [PMID: 39278862 PMCID: PMC11404618 DOI: 10.1080/21645515.2024.2395081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Archaeosomes are liposomes traditionally comprised of total polar lipids or semi-synthetic glycerolipids of ether-linked isoprenoid phytanyl cores with varied glycol- and amino-head groups. We have developed a semi-synthetic archaeosome formulation based on sulfated lactosylarchaeol (SLA) that can be readily synthesized and easily formulated to induce robust humoral and cell-mediated immunity following systemic immunization, enhancing protection in models of infectious disease and cancer. Liposomes composed of SLA have been shown to be a safe and effective vaccine adjuvant to a multitude of antigens in preclinical studies including hepatitis C virus E1/E2 glycoproteins, hepatitis B surface antigen, influenza hemagglutinin, Rabbit Hemorrhagic Disease Virus antigens, and SARS-CoV-2 Spike antigens based on the ancestral strain as well as multiple variants of concern. With the COVID-19 pandemic highlighting the need for new vaccine technologies including adjuvants, this review outlines the studies conducted to date to support the development of SLA archaeosomes as a vaccine adjuvant.
Collapse
Affiliation(s)
- Bassel Akache
- Department of Immunobiology, National Research Council Canada, Human Health Therapeutics, Ottawa, Ontario, Canada
| | - Michael J McCluskie
- Department of Immunobiology, National Research Council Canada, Human Health Therapeutics, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Agbayani G, Akache B, Renner TM, Tran A, Stuible M, Dudani R, Harrison BA, Duque D, Bavananthasivam J, Deschatelets L, Hemraz UD, Régnier S, Durocher Y, McCluskie MJ. Intranasal administration of unadjuvanted SARS-CoV-2 spike antigen boosts antigen-specific immune responses induced by parenteral protein subunit vaccine prime in mice and hamsters. Eur J Immunol 2024:e2350620. [PMID: 38561974 DOI: 10.1002/eji.202350620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
With the continued transmission of SARS-CoV-2 across widely vaccinated populations, it remains important to develop new vaccines and vaccination strategies capable of providing protective immunity and limiting the spread of disease. Heterologous prime-boost vaccination based on the selection of different vaccine formulations and administration routes for priming and booster doses presents a promising strategy for inducing broader immune responses in key systemic and respiratory mucosal compartments. Intranasal vaccination can induce mucosal immune responses at the site of SARS-CoV-2 infection; however, the lack of clinically approved mucosal adjuvants makes it difficult to induce robust immune responses with protein subunit vaccines. Herein, we evaluated the immunogenicity of heterologous prime-boost regimens in mice and hamsters based on a parenteral vaccination of the antigen in combination with sulfated lactosylarchaeol (SLA) archaeosomes, a liposome adjuvant comprised of a single semisynthetic archaeal lipid, followed by an intranasally administered unadjuvanted SARS-CoV-2 spike antigen. Intranasal administration of unadjuvanted spike to mice and hamsters increased serum spike-specific IgG titers and spike-neutralizing activity compared with nonboosted animals. Spike-specific IgA responses were also detected in the bronchoalveolar lavage fluid in the lungs of mice that received an intranasal boost. In hamsters, the intranasal boost showed high efficacy against SARS-CoV-2 infection by protecting from body weight loss and reducing viral titers in the lungs and nasal turbinate. Overall, our heterologous intramuscular prime-intranasal boost with SLA-adjuvanted and unadjuvanted spike, respectively, demonstrated the potential of protein subunit formulations to promote antigen-specific systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Gerard Agbayani
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Bassel Akache
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Tyler M Renner
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anh Tran
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Renu Dudani
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Blair A Harrison
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jegarubee Bavananthasivam
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Lise Deschatelets
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Usha D Hemraz
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Sophie Régnier
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Michael J McCluskie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Aroffu M, Manca ML, Pedraz JL, Manconi M. Liposome-based vaccines for minimally or noninvasive administration: an update on current advancements. Expert Opin Drug Deliv 2023; 20:1573-1593. [PMID: 38015659 DOI: 10.1080/17425247.2023.2288856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Vaccination requires innovation to provide effective protection. Traditional vaccines have several drawbacks, which can be overcome with advanced technologies and different administration routes. Over the past 10 years, a significant amount of research has focussed on the delivery of antigens into liposomes due to their dual role as antigen-carrying systems and vaccine adjuvants able to increase the immunogenicity of the carried antigen. AREAS COVERED This review encompasses the progress made over the last 10 years with liposome-based vaccines designed for minimally or noninvasive administration, filling the gaps in previous reviews and providing insights on composition, administration routes, results achieved, and Technology Readiness Level of the most recent formulations. EXPERT OPINION Liposome-based vaccines administered through minimally or noninvasive routes are expected to improve efficacy and complacency of vaccination programs. However, the translation from lab-scale production to large-scale production and collaborations with hospitals, research centers, and companies are needed to allow new products to enter the market and improve the vaccination programs in the future.
Collapse
Affiliation(s)
- Matteo Aroffu
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- BioAraba, NanoBioCel research Group, Vitoria-Gasteiz, Spain
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Akache B, Read AJ, Dudani R, Harrison BA, Williams D, Deschatelets L, Jia Y, Chandan V, Stark FC, Agbayani G, Makinen SR, Hemraz UD, Lam E, Régnier S, Zou W, Kirkland PD, McCluskie MJ. Sulfated Lactosyl Archaeol Archaeosome-Adjuvanted Vaccine Formulations Targeting Rabbit Hemorrhagic Disease Virus Are Immunogenic and Efficacious. Vaccines (Basel) 2023; 11:1043. [PMID: 37376432 DOI: 10.3390/vaccines11061043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Vaccines play an important role in maintaining human and animal health worldwide. There is continued demand for effective and safe adjuvants capable of enhancing antigen-specific responses to a target pathogen. Rabbit hemorrhagic disease virus (RHDV) is a highly contagious calicivirus that often induces high mortality rates in rabbits. Herein, we evaluated the activity of an experimental sulfated lactosyl archaeol (SLA) archaeosome adjuvant when incorporated in subunit vaccine formulations targeting RHDV. The subunit antigens consisted of RHDV-CRM197 peptide conjugates or recombinant RHDV2 VP60. SLA was able to enhance antigen-specific antibody titers and cellular responses in mice and rabbits. Three weeks following immunization, antigen-specific antibody levels in rabbits vaccinated with RHDV2 VP60 + SLA were significantly higher than those immunized with antigen alone, with geomean titers of 7393 vs. 117. In addition, the SLA-adjuvanted VP60-based formulations were highly efficacious in a rabbit RHDV2 challenge model with up to 87.5% animals surviving the viral challenge. These findings demonstrate the potential utility of SLA adjuvants in veterinary applications and highlight its activity in different types of mammalian species.
Collapse
Affiliation(s)
- Bassel Akache
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Andrew J Read
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2567, Australia
| | - Renu Dudani
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Blair A Harrison
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Dean Williams
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Lise Deschatelets
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Yimei Jia
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Vandana Chandan
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Felicity C Stark
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Gerard Agbayani
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Shawn R Makinen
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Usha D Hemraz
- National Research Council Canada, Aquatic and Crop Resource Development, Montreal, QC H4P 2R2, Canada
| | - Edmond Lam
- National Research Council Canada, Aquatic and Crop Resource Development, Montreal, QC H4P 2R2, Canada
| | - Sophie Régnier
- National Research Council Canada, Aquatic and Crop Resource Development, Montreal, QC H4P 2R2, Canada
| | - Wei Zou
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Peter D Kirkland
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2567, Australia
| | - Michael J McCluskie
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
5
|
Zhao Z, Peng Y, Shi X, Zhao K. Chitosan derivative composite nanoparticles as adjuvants enhance the cellular immune response via activation of the cGAS-STING pathway. Int J Pharm 2023; 636:122847. [PMID: 36933583 DOI: 10.1016/j.ijpharm.2023.122847] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/21/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Chitosan and its derivatives are widely used in vaccine adjuvants and delivery systems. Vaccine antigens encapsulated in or conjugated onto N-2-hydroxypropyl trimethyl ammonium chloride chitosan/N,O-carboxymethyl chitosan nanoparticles (N-2-HACC/CMCS NPs) induce strong cellular, humoral, and mucosal immune responses, but the mechanism of action is not fully understood. Therefore, the purpose of this study was to explore the molecular mechanism of composite NPs by upregulating the cGAS-STING signalling pathway to enhance the cellular immune response. We showed that the N-2-HACC/CMCS NPs could be taken up by RAW264.7 cells and produced high levels of IL-6, IL-12p40, and TNF-α. The N-2-HACC/CMCS NPs activated BMDCs, promoted Th1 responses, and enhanced the expression of cGAS, TBK1, IRF3, and STING, as further demonstrated by qRT-PCR and western blotting. Moreover, the NP-induced expression of I-IFNs, IL-1β, IL-6, IL-10 and TNF-α in macrophages was closely related to cGAS-STING. These findings provide a reference for chitosan derivative nanomaterials as vaccine adjuvants and delivery systems and demonstrate that N-2-HACC/CMCS NPs can engage the STING-cGAS pathway to trigger the innate immune response.
Collapse
Affiliation(s)
- Zhi Zhao
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Yue Peng
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Xueao Shi
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China.
| |
Collapse
|
6
|
Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm 2023; 634:122632. [PMID: 36690132 DOI: 10.1016/j.ijpharm.2023.122632] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| | - Maria Jose Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
7
|
Jia Y, Agbayani G, Chandan V, Iqbal U, Dudani R, Qian H, Jakubek Z, Chan K, Harrison B, Deschatelets L, Akache B, McCluskie MJ. Evaluation of Adjuvant Activity and Bio-Distribution of Archaeosomes Prepared Using Microfluidic Technology. Pharmaceutics 2022; 14:2291. [PMID: 36365110 PMCID: PMC9697222 DOI: 10.3390/pharmaceutics14112291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/24/2023] Open
Abstract
Archaeosomes, composed of sulfated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. They have classically been prepared using a thin-film hydration method with an average particle size of 100-200 nm. In this study, we developed methods to generate SLA archaeosomes at different sizes, i.e., 30 nm and 100 nm, via microfluidic mixing technology and evaluated their physicochemical characteristics, as well as adjuvant activity and in vivo biodistribution in mice. Archaeosomes, prepared using thin-film and microfluidic mixing techniques, had similar nanostructures and physicochemical characteristics, with both appearing stable during the course of this study when stored at 4 °C or 37 °C. They also demonstrated similar adjuvant activity when admixed with ovalbumin antigen and used to immunize mice, generating equivalent antigen-specific immune responses. Archaeosomes, labeled with CellVueTM NIR815, had an equivalent biodistribution with both sizes, namely the highest signal at the injection site at 24 h post injection, followed by liver, spleen and inguinal lymph node. The presence of SLA archaeosomes of either size helped to retain OVA antigen (OVA-Cy5.5) longer at the injection site than unadjuvanted OVA. Overall, archaeosomes of two sizes (30 nm and 100 nm) prepared using microfluidic mixing maintained similar physicochemical properties, adjuvant activity and biodistribution of antigen, in comparison to those compared by the conventional thin film hydration method. This suggests that microfluidics based approaches could be applied to generate consistently sized archaeosomes for use as a vaccine adjuvant.
Collapse
Affiliation(s)
- Yimei Jia
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Umar Iqbal
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Hui Qian
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G2M9, Canada
| | - Zygmunt Jakubek
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Kenneth Chan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Blair Harrison
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Michael J. McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| |
Collapse
|
8
|
Vesicular and Planar Membranes of Archaea Lipids: Unusual Physical Properties and Biomedical Applications. Int J Mol Sci 2022; 23:ijms23147616. [PMID: 35886964 PMCID: PMC9319432 DOI: 10.3390/ijms23147616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Liposomes and planar membranes made of archaea or archaea-like lipids exhibit many unusual physical properties compared to model membranes composed of conventional diester lipids. Here, we review several recent findings in this research area, which include (1) thermosensitive archaeosomes with the capability to drastically change the membrane surface charge, (2) MthK channel's capability to insert into tightly packed tetraether black lipid membranes and exhibit channel activity with surprisingly high calcium sensitivity, and (3) the intercalation of apolar squalane into the midplane space of diether bilayers to impede proton permeation. We also review the usage of tetraether archaeosomes as nanocarriers of therapeutics and vaccine adjuvants, as well as the biomedical applications of planar archaea lipid membranes. The discussion on archaeosomal therapeutics is focused on partially purified tetraether lipid fractions such as the polar lipid fraction E (PLFE) and glyceryl caldityl tetraether (GCTE), which are the main components of PLFE with the sugar and phosphate removed.
Collapse
|
9
|
Régnier S, Lam E, Vasquez V, Martinez-Farina CF, Stark FC, Agbayani G, Deschatelets L, Dudani R, Harrison BA, Akache B, McCluskie MJ, Hemraz UD. Effect of Chiral Purity on Adjuvanticity of Archaeol-Based Glycolipids. J Med Chem 2022; 65:8332-8344. [PMID: 35658102 DOI: 10.1021/acs.jmedchem.2c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Archaeosomes composed of sulfated lactosyl archaeol (SLA) glycolipids from stereoisomerically pure archaeol (1) are vaccine adjuvants that can boost immunogenicity and vaccine efficacy in preclinical models. Herein, we report a new synthesis of 2,3-bis((3,7,11,15-tetramethylhexadecyl)oxy) propan-1-ol (3) by treating (±)-3-benzyloxy-1,2-propanediol with a mesylated phytol derivative through a double nucleophilic substitution reaction, followed by reductive debenzylation. Three SLA archaeosomes from archaeols of different chiral purities were prepared, and the effect of stereochemistry on their adjuvanticity toward ovalbumin was investigated. It was found that all SLA archaeosomes induced strong humoral and cell-mediated antigen-specific immune responses following immunization of C57BL/6NCrl mice, with no significant differences, irrespective of the chiral purities. The responses were comparable or better than those obtained using mimetics of approved adjuvants. The performance of SLA archaeosomes during immunization and their lack of dependence on the stereochemistry of archaeol points toward a promising, safe, scalable, and economically viable vaccine adjuvant system.
Collapse
Affiliation(s)
- Sophie Régnier
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Edmond Lam
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Vinicio Vasquez
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Camilo F Martinez-Farina
- Aquatic and Crop Resource Development, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Renu Dudani
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Blair A Harrison
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Bassel Akache
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Usha D Hemraz
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
10
|
Akache B, Stark FC, Agbayani G, Renner TM, McCluskie MJ. Adjuvants: Engineering Protective Immune Responses in Human and Veterinary Vaccines. Methods Mol Biol 2022; 2412:179-231. [PMID: 34918246 DOI: 10.1007/978-1-0716-1892-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adjuvants are key components of many vaccines, used to enhance the level and breadth of the immune response to a target antigen, thereby enhancing protection from the associated disease. In recent years, advances in our understanding of the innate and adaptive immune systems have allowed for the development of a number of novel adjuvants with differing mechanisms of action. Herein, we review adjuvants currently approved for human and veterinary use, describing their use and proposed mechanisms of action. In addition, we will discuss additional promising adjuvants currently undergoing preclinical and/or clinical testing.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Tyler M Renner
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Liu Z, Xu N, Zhao L, Yu J, Zhang P. Bifunctional lipids in tumor vaccines: An outstanding delivery carrier and promising immune stimulator. Int J Pharm 2021; 608:121078. [PMID: 34500059 DOI: 10.1016/j.ijpharm.2021.121078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Cancer is still a major threat for human life, and the cancer immunotherapy can be more optimized to prolong life. However, the effect of immunotherapy is not encouraging. In order to achieve outstanding immune effect, it is necessary to strengthen antigens uptake of antigen presenting cells. Adjuvants were added to vaccines to achieve this purpose, which could be divided into two types: as an immunostimulatory molecule, the innate immunities of the body were triggered; or as a delivery carrier, and antigens were cross-delivery through the "cytoplasmic pathway" and released at a specific location. This paper reviewed the relevant research status of tumor vaccine immune adjuvants in recent years. Among the review, the function, combination strategies and derivatives of lipid A were discussed in detail. In addition, some suggestions on the existing problems and research direction of lipids as tumor vaccine adjuvants were put forward.
Collapse
Affiliation(s)
- Zhiling Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lin Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
12
|
Adamiak N, Krawczyk KT, Locht C, Kowalewicz-Kulbat M. Archaeosomes and Gas Vesicles as Tools for Vaccine Development. Front Immunol 2021; 12:746235. [PMID: 34567012 PMCID: PMC8462270 DOI: 10.3389/fimmu.2021.746235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 12/03/2022] Open
Abstract
Archaea are prokaryotic organisms that were classified as a new domain in 1990. Archaeal cellular components and metabolites have found various applications in the pharmaceutical industry. Some archaeal lipids can be used to produce archaeosomes, a new family of liposomes that exhibit high stability to temperatures, pH and oxidative conditions. Additionally, archaeosomes can be efficient antigen carriers and adjuvants promoting humoral and cellular immune responses. Some archaea produce gas vesicles, which are nanoparticles released by the archaea that increase the buoyancy of the cells and facilitate an upward flotation in water columns. Purified gas vesicles display a great potential for bioengineering, due to their high stability, immunostimulatory properties and uptake across cell membranes. Both archaeosomes and archaeal gas vesicles are attractive tools for the development of novel drug and vaccine carriers to control various diseases. In this review we discuss the current knowledge on production, preparation methods and potential applications of archaeosomes and gas vesicles as carriers for vaccines. We give an overview of the traditional structures of these carriers and their modifications. A comparative analysis of both vaccine delivery systems, including their advantages and limitations of their use, is provided. Gas vesicle- and archaeosome-based vaccines may be powerful next-generation tools for the prevention and treatment of a wide variety of infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Natalia Adamiak
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Krzysztof T Krawczyk
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Sallam MA, Prakash S, Kumbhojkar N, Shields CW, Mitragotri S. Formulation-based approaches for dermal delivery of vaccines and therapeutic nucleic acids: Recent advances and future perspectives. Bioeng Transl Med 2021; 6:e10215. [PMID: 34589595 PMCID: PMC8459604 DOI: 10.1002/btm2.10215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
A growing variety of biological macromolecules are in development for use as active ingredients in topical therapies and vaccines. Dermal delivery of biomacromolecules offers several advantages compared to other delivery methods, including improved targetability, reduced systemic toxicity, and decreased degradation of drugs. However, this route of delivery is hampered by the barrier function of the skin. Recently, a large body of research has been directed toward improving the delivery of macromolecules to the skin, ranging from nucleic acids (NAs) to antigens, using noninvasive means. In this review, we discuss the latest formulation-based efforts to deliver antigens and NAs for vaccination and treatment of skin diseases. We provide a perspective of their advantages, limitations, and potential for clinical translation. The delivery platforms discussed in this review may provide formulation scientists and clinicians with a better vision of the alternatives for dermal delivery of biomacromolecules, which may facilitate the development of new patient-friendly prophylactic and therapeutic medicines.
Collapse
Affiliation(s)
- Marwa A. Sallam
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
- Present address:
Department of Industrial PharmacyFaculty of Pharmacy, Alexandria UniversityEgypt
| | - Supriya Prakash
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| | - Ninad Kumbhojkar
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| | - Charles Wyatt Shields
- Department of Chemical & Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute of Biologically Inspired Engineering, Harvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
14
|
Akache B, Agbayani G, Stark FC, Jia Y, Dudani R, Harrison BA, Deschatelets L, Chandan V, Lam E, Hemraz UD, Régnier S, Krishnan L, McCluskie MJ. Sulfated Lactosyl Archaeol Archaeosomes Synergize with Poly(I:C) to Enhance the Immunogenicity and Efficacy of a Synthetic Long Peptide-Based Vaccine in a Melanoma Tumor Model. Pharmaceutics 2021; 13:pharmaceutics13020257. [PMID: 33673382 PMCID: PMC7918940 DOI: 10.3390/pharmaceutics13020257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide. While novel treatments have improved survival outcomes for some patients, new treatment modalities/platforms are needed to combat a wider variety of tumor types. Cancer vaccines harness the power of the immune system to generate targeted tumor-specific immune responses. Liposomes composed of glycolipids derived from archaea (i.e., archaeosomes) have been shown to be potent adjuvants, inducing robust, long-lasting humoral and cell-mediated immune responses to a variety of antigens. Herein, we evaluated the ability of archaeosomes composed of sulfated lactosyl archaeol (SLA), a semi-synthetic archaeal glycolipid, to enhance the immunogenicity of a synthetic long peptide-based vaccine formulation containing the dominant CD8+ T cell epitope, SIINFEKL, from the weakly immunogenic model antigen ovalbumin. One advantage of immunizing with long peptides is the ability to include multiple epitopes, for example, the long peptide antigen was also designed to include the immediately adjacent CD4+ epitope, TEWTSSNVMEER. SLA archaeosomes were tested alone or in combination with the toll-like receptor 3 (TLR3) agonist Poly(I:C). Overall, SLA archaeosomes synergized strongly with Poly(I:C) to induce robust antigen-specific CD8+ T cell responses, which were highly functional in an in vivo cytolytic assay. Furthermore, immunization with this vaccine formulation suppressed tumor growth and extended mouse survival in a mouse melanoma tumor model. Overall, the combination of SLA archaeosomes and Poly(I:C) appears to be a promising adjuvant system when used along with long peptide-based antigens targeting cancer.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Felicity C. Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Yimei Jia
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Blair A. Harrison
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Edmond Lam
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Usha D. Hemraz
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Sophie Régnier
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Lakshmi Krishnan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Michael J. McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
- Correspondence: ; Tel.: +1-613-993-9774
| |
Collapse
|
15
|
Jia Y, Akache B, Agbayani G, Chandan V, Dudani R, Harrison BA, Deschatelets L, Hemraz UD, Lam E, Régnier S, Stark FC, Krishnan L, McCluskie MJ. The Synergistic Effects of Sulfated Lactosyl Archaeol Archaeosomes When Combined with Different Adjuvants in a Murine Model. Pharmaceutics 2021; 13:pharmaceutics13020205. [PMID: 33540932 PMCID: PMC7913188 DOI: 10.3390/pharmaceutics13020205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Archaeosomes, composed of sulfated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. SLA archaeosomes are a promising adjuvant candidate due to their ability to strongly stimulate both humoral and cytotoxic immune responses when simply admixed with an antigen. In the present study, we evaluated whether the adjuvant effects of SLA archaeosomes could be further enhanced when combined with other adjuvants. SLA archaeosomes were co-administered with five different Toll-like Receptor (TLR) agonists or the saponin QS-21 using ovalbumin as a model antigen in mice. Both humoral and cellular immune responses were greatly enhanced compared to either adjuvant alone when SLA archaeosomes were combined with either the TLR3 agonist poly(I:C) or the TLR9 agonist CpG. These results were also confirmed in a separate study using Hepatitis B surface antigen (HBsAg) and support the further evaluation of these adjuvant combinations.
Collapse
Affiliation(s)
- Yimei Jia
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (Y.J.); (B.A.); (G.A.); (V.C.); (R.D.); (B.A.H.); (L.D.); (F.C.S.); (L.K.)
| | - Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (Y.J.); (B.A.); (G.A.); (V.C.); (R.D.); (B.A.H.); (L.D.); (F.C.S.); (L.K.)
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (Y.J.); (B.A.); (G.A.); (V.C.); (R.D.); (B.A.H.); (L.D.); (F.C.S.); (L.K.)
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (Y.J.); (B.A.); (G.A.); (V.C.); (R.D.); (B.A.H.); (L.D.); (F.C.S.); (L.K.)
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (Y.J.); (B.A.); (G.A.); (V.C.); (R.D.); (B.A.H.); (L.D.); (F.C.S.); (L.K.)
| | - Blair A. Harrison
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (Y.J.); (B.A.); (G.A.); (V.C.); (R.D.); (B.A.H.); (L.D.); (F.C.S.); (L.K.)
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (Y.J.); (B.A.); (G.A.); (V.C.); (R.D.); (B.A.H.); (L.D.); (F.C.S.); (L.K.)
| | - Usha D. Hemraz
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (U.D.H.); (E.L.); (S.R.)
| | - Edmond Lam
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (U.D.H.); (E.L.); (S.R.)
| | - Sophie Régnier
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (U.D.H.); (E.L.); (S.R.)
| | - Felicity C. Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (Y.J.); (B.A.); (G.A.); (V.C.); (R.D.); (B.A.H.); (L.D.); (F.C.S.); (L.K.)
| | - Lakshmi Krishnan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (Y.J.); (B.A.); (G.A.); (V.C.); (R.D.); (B.A.H.); (L.D.); (F.C.S.); (L.K.)
| | - Michael J. McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (Y.J.); (B.A.); (G.A.); (V.C.); (R.D.); (B.A.H.); (L.D.); (F.C.S.); (L.K.)
- Correspondence: ; Tel.: +1-613-993-9774
| |
Collapse
|