1
|
Zhong J, Dos Santos RF, Abdelgaffar H, de Bortoli CP, Raza A, Jurat-Fuentes JL. Individual transmembrane domains of SfABCC2 from Spodoptera frugiperda do not serve as functional Cry1F receptors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105777. [PMID: 38458684 DOI: 10.1016/j.pestbp.2024.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
The fall armyworm (Spodoptera frugiperda) is a major global pest causing severe damage to various crops, especially corn. Transgenic corn producing the Cry1F pesticidal protein from the bacterium Bacillus thuringiensis (Cry1F corn) showed effectiveness in controlling this pest until S. frugiperda populations at locations in North and South America evolved practical resistance. The mechanism for practical resistance involved disruptive mutations in an ATP binding cassette transporter subfamily C2 gene (SfABCC2), which serves as a functional Cry1F receptor in the midgut cells of susceptible S. frugiperda. The SfABCC2 protein contains two transmembrane domains (TMD1 and TMD2), each with a cytosolic nucleotide (ATP) binding domain (NBD1 and NBD2, respectively). Previous reports have demonstrated that disruptive mutations in TMD2 were linked with resistance to Cry1F, yet whether the complete SfABCC2 structure is needed for receptor functionality or if a single TMD-NBD protein can serve as functional Cry1F receptor remains unknown. In the present study, we separately expressed TMD1 and TMD2 with their corresponding NBDs in cultured insect cells and tested their Cry1F receptor functionality. Our results show that the complete SfABCC2 structure is required for Cry1F receptor functionality. Moreover, binding competition assays revealed that Cry1F specifically bound to SfABCC2, whereas neither SfTMD1-NBD1 nor SfTMD2-NBD2 exhibited any significant binding. These results provide insights into the molecular mechanism of Cry1F recognition by SfABCC2 in S. frugiperda, which could facilitate the development of more effective insecticidal proteins.
Collapse
Affiliation(s)
- Jianfeng Zhong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Ahmad Raza
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
2
|
Wang FH, Han LY, Jiang QP, Jiao P, Liu JQ, Liu SY, Guan SY, Ma YY. Functional analysis of transgenic cry1Ah-1 maize. Microb Pathog 2023; 185:106455. [PMID: 37995881 DOI: 10.1016/j.micpath.2023.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Maize is an important food crop in the world, but the yield and quality of maize have been significantly reduced due to the impact of insect pests. In order to address this issue, the cry1Ah gene was subjected to error-prone PCR for mutagenesis, and subsequently, the mutant cry1Ah-1 gene was introduced into maize inbred line GSH9901 callus using the Agrobacterium-mediated method. The T2 generation transformed plants were obtained by subculture, and 9 transgenic positive plants were obtained by molecular detection which was carried out by PCR, qRT-PCR, Bt gold-labeled immunoassay test strips, Western blot and ELISA. It was found that the Cry1Ah-1 gene could be transcribed normally in maize leaves, of which OE1 and OE3 had higher relative expression levels and could successfully express proteins of 71.94 KD size. They were expressed in different tissues at the 6-leaf stage, heading stage and grain-filling stage, and could ensure the protection of maize from corn borer throughout the growth period. The biological activities of OE1 and OE3 were tested indoors and in the field, and the results showed that in indoors, the corn borer that fed on OE1 and OE3 corn leaves had a mortality rate of 100 % after 3 days; in the field, OE1 and OE3 had strong insecticidal activity against corn borer, reaching a high resistance level. In conclusion, the transgenic cry1Ah-1 maize has a strong insecticidal effect on corn borer, and has a good prospect of commercialization.
Collapse
Affiliation(s)
- Fan-Hao Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Li-Yuan Han
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Qing-Ping Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Jia-Qi Liu
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Si-Yan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Shu-Yan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China.
| | - Yi-Yong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China.
| |
Collapse
|
3
|
Queiroz PR, Posso MC, Martins ÉS, Grynberg P, Togawa R, Monnerat RG. Identification of cry genes in Bacillus thuringiensis by multiplex real-time PCR. J Microbiol Methods 2023; 205:106665. [PMID: 36592897 DOI: 10.1016/j.mimet.2022.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Bacillus thuringiensis is an important bacterium of the group Bacillus cereus sensu lato due to its insecticidal properties. This microorganism has high genetic variability and its strains produce different Cry toxins, known as δ-endotoxins, which are mainly responsible for its toxic effect on insects that are agricultural pests or vector human diseases. Each strain can express a variety of cry genes, out of a total of 789 cry genes described so far. The detection of these genes is very important to characterize strains, as they may indicate their toxic potential. Several methods have been used to characterize B. thuringiensis strains, but one of the most common techniques is Polymerase Chain Reaction (PCR) from primers that detect the presence of cry genes. This technique has been optimized to make real-time multiplex quantitative PCR (qPCR) assays faster, more efficient, and safer, because the presence of three genes can be detected in a single reaction. In this work, a multiplex assay was developed to identify the presence of genes from the cry1A, cry1C, and cry1F families whose respective toxins are present in both bioinsecticides, and commercial transgenic plants used to control caterpillars. Specific primers were designed to identify the families of the cited genes and the system was validated with samples that were sequenced by next-generation sequencing (NGS). The system was implemented and used to characterize 214 strains. Of these, eight were submitted to conventional PCR, and the results matched, again validating the system. Thus, the application of the proposed technique allows the reliable evaluation through this system to detect the presence of the genes of the families cry1A, cry1C, and cry1F in samples of B. thuringiensis.
Collapse
Affiliation(s)
- Paulo Roberto Queiroz
- CEUB 707/907 - Campus Universitário, SEPN - Asa Norte, Brasília, DF 70790-075, Brasil.
| | - Marina Cassago Posso
- Laboratório de Bactérias Entomopatogênicas, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brasil
| | | | - Priscila Grynberg
- Laboratório de Bioinformática, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brasil
| | - Roberto Togawa
- Laboratório de Bioinformática, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brasil
| | - Rose Gomes Monnerat
- Laboratório de Bactérias Entomopatogênicas, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brasil
| |
Collapse
|
4
|
Sampath V, Song JH, Jeong J, Mun S, Han K, Kim IH. Nourishing neonatal piglets with synthetic milk and Lactobacillus sp. at birth highly modifies the gut microbial communities at the post-weaning stage. Front Microbiol 2022; 13:1044256. [PMID: 36532479 PMCID: PMC9748437 DOI: 10.3389/fmicb.2022.1044256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 03/07/2024] Open
Abstract
The importance of probiotics in pig production is widely recognized. However, the precise role of probiotics in regulating the gut microbiota of piglets has not been assessed extensively. Therefore, we intend to examine whether suckling pigs ingesting with synthetic milk (SM) and probiotics along with mother milk has a carryover effect on its growth and gut health at the post-weaning stage. A total of 40 [Duroc× (Yorkshire× Landrace)] neonates with an initial BW of 1.49 ± 0.28 kg were assigned to one of two treatments groups: control (CON) and treatment (TRT). Control group piglets were nourished with synthetic milk, while TRT group piglets were nourished SM with (1 × 109 CFU/g) Lactobacillus sp. probiotics. The treatment group piglets showed higher (p < 0.05) body weight and daily gain at week 3 than the CON group piglets. 16S metagenome sequencing showed average demultiplexed reads and denoised reads counts of 157,399 and 74,945, respectively. The total ASV taxonomy number classified with a confidence threshold > 70% (default) on sequence alignment with the SILVA v138 reference database was 4,474. During week 1, Escherichia-Shigella, Clostridium sensu stricto 1, and Bacteroides were confirmed as the major dominant bacterial genera in both the groups at the genus level. However, during week 2, the relative proportion of Escherichia-Shigella, Clostridium sensu stricto 1, and Proteobacteria was decreased, while that of Lactobacillus and Bacteroidota was increased in pigs receiving the probiotic supplement. During weeks 2 and 3, Firmicutes, Proteobacteria, and Bacteroidota phyla were dominant in both groups. During week 6, the relative proportion of Proteobacteria was slightly increased in both groups. Furthermore, Prevotella was confirmed as the major dominant bacterial genus in both groups during weeks 3 and 6. This study suggests that nourishing neonatal piglets with synthetic milk and Lactobacillus sp. probiotics from birth to 21 days would be beneficial to enhance the gut health of piglets and to overcome post-weaning mortality.
Collapse
Affiliation(s)
- Vetriselvi Sampath
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Jun Ho Song
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Jinuk Jeong
- Department of Bio-Convergence Engineering, Dankook University, Cheonan, South Korea
| | - Seyoung Mun
- Department of Bio-Convergence Engineering, Dankook University, Cheonan, South Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
| | - Kyudong Han
- Department of Bio-Convergence Engineering, Dankook University, Cheonan, South Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
5
|
Luo C, Xia B, Zhong R, Shen D, Li J, Chen L, Zhang H. Early-Life Nutrition Interventions Improved Growth Performance and Intestinal Health via the Gut Microbiota in Piglets. Front Nutr 2022; 8:783688. [PMID: 35047544 PMCID: PMC8762325 DOI: 10.3389/fnut.2021.783688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Intestinal infections in piglets are the main causes of morbidity before and after weaning. Studies have not explored approaches for combining pre-weaning and post-weaning nutritional strategies to sustain optimal gut health. The current study thus sought to explore the effects of early-life nutrition interventions through administration of synthetic milk on growth performance and gut health in piglets from 3 to 30 days of age. Twelve sows were randomly allocated to control group (CON) and early-life nutrition interventions group (ENI). Piglets were fed with the same creep diet from 7 days of age ad libitum. Piglets in the ENI group were provided with additional synthetic milk from Day 3 to Day 30. The results showed that early-life nutrition interventions improved growth performance, liver weight, spleen weight, and reduced diarrhea rate of piglets after weaning (P < 0.05). Early-life nutrition interventions significantly upregulated expression of ZO-1, Occludin, Claudin4, GALNT1, B3GNT6, and MUC2 in colonic mucosa at mRNA level (P < 0.05). Early-life nutrition interventions reduced activity of alkaline phosphatase (AKP) in serum and the content of lipopolysaccharides (LPS) in plasma (P < 0.05). The number of goblet cells and crypt depth of colon of piglets was significantly higher in piglets in the ENI group relative to that of piglets in the CON group (P < 0.05). The relative mRNA expression levels of MCP-1, TNF-α, IL-1β, and IL-8, and the protein expression levels of TNF-α, IL-6, and IL-8 in colonic mucosa of piglets in the ENI group were lower compared with those of piglets in the CON group (P < 0.05). Relative abundance of Lactobacillus in colonic chyme and mucosa of piglets in the ENI group was significantly higher relative to that of piglets in the CON group (P < 0.05). Correlation analysis indicated that abundance of Lactobacillus was positively correlated with the relative mRNA expression levels of ZO-1, Claudin4, and GALNT1, and it was negatively correlated with the level of MCP-1 in colonic chyme and mucosa. In summary, the findings of this study showed that early-life nutrition interventions improved growth performance, colonic barrier, and reduced inflammation in the colon by modulating composition of gut microbiota in piglets. Early-life nutrition intervention through supplemental synthetic milk is a feasible measure to improve the health and reduce the number of deaths of piglets.
Collapse
Affiliation(s)
- Chengzeng Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Shen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaheng Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
|
7
|
Vieira L, Hissa DC, Souza T, Gonçalves ÍFS, Evaristo JAM, Nogueira FCS, Carvalho AFU, Farias D. Assessing the effects of an acute exposure to worst-case concentration of Cry proteins on zebrafish using the embryotoxicity test and proteomics analysis. CHEMOSPHERE 2021; 264:128538. [PMID: 33038734 DOI: 10.1016/j.chemosphere.2020.128538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Cry1C, Cry1F and Cry1Ab are insecticidal proteins from Bacillus thuringiensis (Bt) which are expressed in transgenic crops. Given the entry of these proteins into aquatic environments, it is relevant to evaluate their impacts on aquatic organisms. In this work, we sought to evaluate the effects of Cry1C, Cry1F and Cry1Ab on zebrafish embryos and larvae of a predicted worst-case scenario concentration of these proteins (set to 1.1 mg/L). For that, we coupled a traditional toxicity approach (the zebrafish embryotoxicity test and dosage of enzymatic biomarkers) to gel free proteomics analysis. At the concentration tested, these proteins did not cause adverse effects in the zebrafish early life stages, either by verifying phenotypic endpoints of toxicity or alterations in representative enzymatic biomarkers (catalase, glutathione-S-tranferase and lactate-dehydrogenase). At the molecular level, the Cry proteins tested lead to very small changes in the proteome of zebrafish larvae. In a global way, these proteins upregulated the expression of vitellogenins. Besides that, Cry1C e Cry1F deregulated heterogeneous nuclear ribonucleoproteins (Hnrnpa0l and Hnrnpaba, respectively), implicated in mRNA processing and gene regulation. Overall, these data lead to the conclusion that Cry1C, Cry1F and Cry1Ab proteins, even at a very high concentration, have limited effects in the early stages of zebrafish life.
Collapse
Affiliation(s)
- Leonardo Vieira
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil
| | - Denise Cavalcante Hissa
- Department of Biology, Building 909, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil
| | - Terezinha Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Oncology, Maastricht University, Maastricht, the Netherlands
| | - Íris Flávia Sousa Gonçalves
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, 58051-900, João Pessoa, Brazil
| | - Joseph Alberto Medeiros Evaristo
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Fábio César Sousa Nogueira
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil; Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Ana Fontenele Urano Carvalho
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil; Department of Biology, Building 909, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceara, 60455-970, Fortaleza, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
8
|
Coates BS, Abel CA, Swoboda-Bhattarai KA, Palmquist DE, Montezano DG, Zukoff SN, Wang Y, Bradshaw JD, DiFonzo CD, Shields E, Tilmon KJ, Hunt TE, Peterson JA. Geographic Distribution of Bacillus thuringiensis Cry1F Toxin Resistance in Western Bean Cutworm (Lepidoptera: Noctuidae) Populations in the United States. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2465-2472. [PMID: 32740653 DOI: 10.1093/jee/toaa136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 06/11/2023]
Abstract
The western bean cutworm (WBC), Striacosta albicosta (Lepidoptera: Noctuidae), can be a severe pest of transgenic corn in the western Plains and Great Lakes regions of North America, including on hybrids expressing the Bacillus thuringiensis (Bt) Cry1F toxin. The level and geographic distribution of Cry1F resistance are not completely known. Neonate S. albicosta from 10 locations between Nebraska and New York state were subjected to dose-response trypsin-activated native Cry1F toxin overlay bioassays. In 2017, the mean estimated lethal concentration causing 50% larval mortality (LC50) ranged from 15.1 to 18.4 µg Cry1F cm-2, and were not significantly different among locations. In 2018, LC50 estimates at Scottsbluff, NE (22.0 µg Cry1F cm-2) and Watertown, NY (21.7 µg Cry1F cm-2) were significantly higher when compared to locations in Michigan (15.8 µg Cry1F cm-2). Significantly lower 14-day larval weight among survivors was correlated with higher Cry1F dose. Results from this study indicate that S. albicosta survivorship on purified Bt Cry1F toxin shows a relatively even distribution across the native and range expansion areas where seasonal field infestations typically occur.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA
| | - Craig A Abel
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA
| | - Katharine A Swoboda-Bhattarai
- University of Nebraska-Lincoln, Department of Entomology, West Central Research and Extension Center, North Platte, NE
| | | | - Débora G Montezano
- University of Nebraska-Lincoln, Department of Entomology, West Central Research and Extension Center, North Platte, NE
| | - Sarah N Zukoff
- Kansas State University, Department of Entomology, Southwest Research and Extension Center, Garden City, KS
| | - Yangzhou Wang
- Jilin Academy of Agricultural Sciences, Plant Protection Institute, Changchun, Jilin Province, China
| | - Jeffrey D Bradshaw
- University of Nebraska-Lincoln, Department of Entomology, Panhandle Research and Extension Center, Scottsbluff, NE
| | | | - Elson Shields
- Cornell University, Department of Entomology, Ithaca, NY
| | | | - Thomas E Hunt
- University of Nebraska-Lincoln, Department of Entomology, Haskell Agricultural Laboratory, Concord, NE
| | - Julie A Peterson
- University of Nebraska-Lincoln, Department of Entomology, West Central Research and Extension Center, North Platte, NE
| |
Collapse
|
9
|
McDonald J, Burns A, Raybould A. Advancing ecological risk assessment on genetically engineered breeding stacks with combined insect-resistance traits. Transgenic Res 2020; 29:135-148. [PMID: 31953798 PMCID: PMC7000536 DOI: 10.1007/s11248-019-00185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 11/01/2022]
Abstract
To inform the ecological risk assessment (ERA) of a transgenic crop with multiple insecticidal traits combined by conventional breeding (breeding stack), a comparative field study is customarily conducted to compare transgenic protein concentrations in a breeding stack to those in corresponding component single events used in the breeding process. This study tests the hypothesis that transgenic protein expression will not significantly increase due to stacking, such that existing margins of exposure erode to unacceptable levels. Corroboration of this hypothesis allows for the use of existing non-target organism (NTO) effects tests results, where doses were based on the estimated environmental concentrations determined for a component single event. Results from over 20 studies comparing expression profiles of insecticidal proteins produced by commercial events in various combinations of conventionally-bred stacks were examined to evaluate applying previously determined no-observed-effect concentrations (NOECs) to stack ERAs. This paper presents a large number of tests corroborating the hypothesis of no significant increase in insecticidal protein expression due to combination by conventional breeding, and much of the variation in protein expression is likely attributed to genetic and environmental factors. All transgenic protein concentrations were well within conservative margins between exposure and corresponding NOEC. This work supports the conclusion that protein expression data generated for single events and the conservative manner for setting NTO effects test concentrations allows for the transportability of existing NOECs to the ERA of conventionally-bred stacks, and that future tests of the stated hypothesis are no longer critically informative for ERA on breeding stacks.
Collapse
Affiliation(s)
- Justin McDonald
- Product Safety, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA.
| | - Andrea Burns
- Product Safety, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Alan Raybould
- Science, Technology and Innovation Studies and Global Academy of Agriculture and Food Security, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Wang C, Li W, Kessenich CR, Petrick JS, Rydel TJ, Sturman EJ, Lee TC, Glenn KC, Edrington TC. Safety of the Bacillus thuringiensis-derived Cry1A.105 protein: Evidence that domain exchange preserves mode of action and safety. Regul Toxicol Pharmacol 2018; 99:50-60. [DOI: 10.1016/j.yrtph.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
|
11
|
Bell E, Nakai S, Burzio LA. Stacked Genetically Engineered Trait Products Produced by Conventional Breeding Reflect the Compositional Profiles of Their Component Single Trait Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7794-7804. [PMID: 29953223 DOI: 10.1021/acs.jafc.8b02317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An expanding trend for genetically engineered (GE) crops is to cultivate varieties in which two or more single trait products have been combined using conventional breeding to produce a stacked trait product that provides a useful grouping of traits. Here, we report results from compositional analysis of several GE stacked trait products from maize and soybean. The results demonstrate that these products are each compositionally equivalent to a relevant non-GE comparator variety, except for predictable shifts in the fatty acid profile in the case of stacked trait products that contain a trait, MON 87705, that confers a high-oleic-acid phenotype in soybean. In each case, the conclusion on compositional equivalence for the stacked trait product reflects the conclusions obtained for the single trait products. These results provide strong support for conducting a reassessment of those regulatory guidelines that mandate explicit characterization of stacked trait products produced through conventional breeding.
Collapse
Affiliation(s)
- Erin Bell
- Monsanto Company , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| | - Shuichi Nakai
- Monsanto Japan, Limited , 2-5-18 Kyobashi , Chuo-ku, Tokyo 104-0031 , Japan
| | - Luis A Burzio
- Monsanto Company , 700 Chesterfield Parkway West , Chesterfield , Missouri 63017 , United States
| |
Collapse
|
12
|
Functional classification of protein toxins as a basis for bioinformatic screening. Sci Rep 2017; 7:13940. [PMID: 29066768 PMCID: PMC5655178 DOI: 10.1038/s41598-017-13957-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
Proteins are fundamental to life and exhibit a wide diversity of activities, some of which are toxic. Therefore, assessing whether a specific protein is safe for consumption in foods and feeds is critical. Simple BLAST searches may reveal homology to a known toxin, when in fact the protein may pose no real danger. Another challenge to answer this question is the lack of curated databases with a representative set of experimentally validated toxins. Here we have systematically analyzed over 10,000 manually curated toxin sequences using sequence clustering, network analysis, and protein domain classification. We also developed a functional sequence signature method to distinguish toxic from non-toxic proteins. The current database, combined with motif analysis, can be used by researchers and regulators in a hazard screening capacity to assess the potential of a protein to be toxic at early stages of development. Identifying key signatures of toxicity can also aid in redesigning proteins, so as to maintain their desirable functions while reducing the risk of potential health hazards.
Collapse
|
13
|
Herman RA, Fast BJ, Scherer PN, Brune AM, de Cerqueira DT, Schafer BW, Ekmay RD, Harrigan GG, Bradfisch GA. Stacking transgenic event DAS-Ø15Ø7-1 alters maize composition less than traditional breeding. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1264-1272. [PMID: 28218975 PMCID: PMC5595772 DOI: 10.1111/pbi.12713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 05/20/2023]
Abstract
The impact of crossing ('stacking') genetically modified (GM) events on maize-grain biochemical composition was compared with the impact of generating nonGM hybrids. The compositional similarity of seven GM stacks containing event DAS-Ø15Ø7-1, and their matched nonGM near-isogenic hybrids (iso-hybrids) was compared with the compositional similarity of concurrently grown nonGM hybrids and these same iso-hybrids. Scatter plots were used to visualize comparisons among hybrids and a coefficient of identity (per cent of variation explained by line of identity) was calculated to quantify the relationships within analyte profiles. The composition of GM breeding stacks was more similar to the composition of iso-hybrids than was the composition of nonGM hybrids. NonGM breeding more strongly influenced crop composition than did transgenesis or stacking of GM events. These findings call into question the value of uniquely requiring composition studies for GM crops, especially for breeding stacks composed of GM events previously found to be compositionally normal.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - George G. Harrigan
- Dow AgroSciences LLCIndianapolisINUSA
- Present address:
The Coca‐Cola Company1 Coca Cola PlazaAtlantaGA30313USA
| | | |
Collapse
|
14
|
Tsatsakis AM, Nawaz MA, Kouretas D, Balias G, Savolainen K, Tutelyan VA, Golokhvast KS, Lee JD, Yang SH, Chung G. Environmental impacts of genetically modified plants: A review. ENVIRONMENTAL RESEARCH 2017; 156:818-833. [PMID: 28347490 DOI: 10.1016/j.envres.2017.03.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
Powerful scientific techniques have caused dramatic expansion of genetically modified crops leading to altered agricultural practices posing direct and indirect environmental implications. Despite the enhanced yield potential, risks and biosafety concerns associated with such GM crops are the fundamental issues to be addressed. An increasing interest can be noted among the researchers and policy makers in exploring unintended effects of transgenes associated with gene flow, flow of naked DNA, weediness and chemical toxicity. The current state of knowledge reveals that GM crops impart damaging impacts on the environment such as modification in crop pervasiveness or invasiveness, the emergence of herbicide and insecticide tolerance, transgene stacking and disturbed biodiversity, but these impacts require a more in-depth view and critical research so as to unveil further facts. Most of the reviewed scientific resources provide similar conclusions and currently there is an insufficient amount of data available and up until today, the consumption of GM plant products are safe for consumption to a greater extent with few exceptions. This paper updates the undesirable impacts of GM crops and their products on target and non-target species and attempts to shed light on the emerging challenges and threats associated with it. Underpinning research also realizes the influence of GM crops on a disturbance in biodiversity, development of resistance and evolution slightly resembles with the effects of non-GM cultivation. Future prospects are also discussed.
Collapse
Affiliation(s)
- Aristidis M Tsatsakis
- Department of Toxicology and Forensics, School of Medicine, University of Crete, Heraklion, Crete, Greece; Educational Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, Larisa, Greece
| | | | - Kai Savolainen
- Finnish Institute of Occupational Health, POB 40 Helsinki, Finland
| | - Victor A Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Kirill S Golokhvast
- Educational Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690950, Russian Federation; Pacific Institute of Geography, FEB RAS, Vladivostok 690041, Russian Federation
| | - Jeong Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea.
| |
Collapse
|
15
|
Vélez AM, Vellichirammal NN, Jurat-Fuentes JL, Siegfried BD. Cry1F resistance among lepidopteran pests: a model for improved resistance management? CURRENT OPINION IN INSECT SCIENCE 2016; 15:116-124. [PMID: 27436741 DOI: 10.1016/j.cois.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
The Cry1Fa protein from the bacterium Bacillus thuringiensis (Bt) is known for its potential to control lepidopteran pests, especially through transgenic expression in maize and cotton. The maize event TC1507 expressing the cry1Fa toxin gene became commercially available in the United States in 2003 for the management of key lepidopteran pests including the European corn borer, Ostrinia nubilalis, and the fall armyworm, Spodoptera frugiperda. A high-dose/refuge strategy has been widely adopted to delay evolution of resistance to event TC1507 and other transgenic Bt crops. Efficacy of this strategy depends on the crops expressing a high dose of the Bt toxin to targeted pests and adjacent refuges of non-Bt host plants serving as a source of abundant susceptible insects. While this strategy has proved effective in delaying O. nubilalis resistance, field-evolved resistance to event TC1507 has been reported in S. frugiperda populations in Puerto Rico, Brazil, and the southeastern United States. This paper examines available information on resistance to Cry1Fa in O. nubilalis and S. frugiperda and discusses how this information identifies opportunities to refine resistance management recommendations for Bt maize.
Collapse
Affiliation(s)
- Ana M Vélez
- University of Nebraska-Lincoln, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States.
| | - Neetha Nanoth Vellichirammal
- University of Nebraska-Lincoln, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States
| | - Juan Luis Jurat-Fuentes
- University of Tennessee, Department of Entomology and Plant Pathology, Plant Biotechnology Building, Knoxville, TN 37996, United States
| | - Blair D Siegfried
- University of Florida, Entomology and Nematology Department, Charles Steinmetz Hall, PO Box 110620, Gainesville, FL 32611-0620, United States
| |
Collapse
|