1
|
Wang Y, Yokoi T, Shimabukuro M, Kawashita M. Calcium Citrate Amount and Gelatine Source Impact on Hydroxyapatite Formation in Bone Regeneration Material in Simulated Body Fluid. Molecules 2024; 29:3925. [PMID: 39203002 PMCID: PMC11357162 DOI: 10.3390/molecules29163925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Bone grafting is crucial for bone regeneration. Recent studies have proposed the use of calcium citrate (CC) as a potential graft material. Notably, citrate does not inhibit hydroxyapatite (HAp) formation at specific calcium-to-citrate molar ratios. Octacalcium phosphate (OCP)/gelatine (Gel) composites, which are commonly produced from porcine Gel, are valued for their biodegradability and bone replacement capability. This study introduces fish Gel as an alternative to porcine Gel because of its wide acceptance and eco-friendliness. This is the first study to examine the interaction effects between two osteogenic materials, OCP/CC, and the influence of different gelatine matrix components on HAp formation in an SBF. Samples with varying CC contents were immersed in an SBF for 7 d and analysed using various techniques, confirming that high CC doses prevent HAp formation, whereas lower doses facilitate it. Notably, small-sized OCP/CC/porcine Gel composites exhibit a high HAp generation rate. Porcine Gel composites form denser HAp clusters, whereas fish Gel composites form larger spherical HAps. This suggests that lower CC doses not only avoid inhibiting HAp formation but also enhance it with the OCP/Gel composite. Compared with porcine Gel, fish Gel composites show less nucleation but an increased crystal growth for HAp.
Collapse
Affiliation(s)
- Yuejun Wang
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (M.S.); (M.K.)
| | - Masaya Shimabukuro
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (M.S.); (M.K.)
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (M.S.); (M.K.)
| |
Collapse
|
2
|
Oopkaew L, Injongkol Y, Rimsueb N, Mahalapbutr P, Choowongkomon K, Hadsadee S, Rojanathanes R, Rungrotmongkol T. Targeted Therapy with Cisplatin-Loaded Calcium Citrate Nanoparticles Conjugated with Epidermal Growth Factor for Lung Cancer Treatment. ACS OMEGA 2024; 9:25668-25677. [PMID: 38911765 PMCID: PMC11191089 DOI: 10.1021/acsomega.3c08969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide with high incidence rates for new cases. Conventional cisplatin (CDDP) therapy has limitations due to severe side effects from nonspecific targeting. To address this challenge, nanomedicine offers targeted therapies. In this study, cisplatin-loaded calcium citrate nanoparticles conjugated with epidermal growth factor (CaCit@CDDP-EGF NPs) were synthesized. The resulting nanodrug had a size below 350 nm with a cation charge. Based on density functional theory (DFT), the CaCit@CDDP NP model containing two citrates substituted on two chlorides exhibited a favorable binding energy of -5.42 eV, and the calculated spectrum at 261 nm closely matched the experimental data. CaCit@CDDP-EGF NPs showed higher inhibition rates against EGFR-expressed and mutant carcinoma cells compared to those of cisplatin while displaying lower cytotoxicity to lung fibroblast cells. Integrating in vitro experiments with in silico studies, these nanoparticles hold promise as a novel nanomedicine for targeted therapy in clinical applications.
Collapse
Affiliation(s)
- Lipika Oopkaew
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Yuwanda Injongkol
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Natchanon Rimsueb
- National
Nanotechnology Center NANOTEC, National
Science and Technology Development Agency NSTDA, Pathum Thani 12120, Thailand
- Center
of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Sarinya Hadsadee
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Rojrit Rojanathanes
- Center of
Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Chemistry, Faculty of Science, Chulalongkorn
University Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Gruber R. How to explain the beneficial effects of platelet-rich plasma. Periodontol 2000 2024. [PMID: 38600634 DOI: 10.1111/prd.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 04/12/2024]
Abstract
Platelet-rich plasma (PRP) is the platelet and leukocyte-containing plasmatic fraction of anticoagulated autologous blood. While evidence supporting the clinical use of PRP in dentistry is low, PRP is widely used in sports medicine, orthopedics, and dermatology. Its beneficial activity is commonly attributed to the growth factors released from platelets accumulating in PRP; however, evidence is indirect and not comprehensive. There is thus a demand to revisit PRP with respect to basic and translational science. This review is to (i) recapitulate protocols and tools to prepare PRP; (ii) to discuss the cellular and molecular composition of PRP with a focus on platelets, leukocytes, and the fibrin-rich extracellular matrix of coagulated plasma; and finally (iii) to discuss potential beneficial effects of PRP on a cellular and molecular level with an outlook on its current use in dentistry and other medical fields.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Santos E, Montanha GS, Agostinho LF, Polezi S, Marques JPR, de Carvalho HWP. Foliar Calcium Absorption by Tomato Plants: Comparing the Effects of Calcium Sources and Adjuvant Usage. PLANTS (BASEL, SWITZERLAND) 2023; 12:2587. [PMID: 37514202 PMCID: PMC10385325 DOI: 10.3390/plants12142587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
The deficiency of calcium (Ca) reduces the quality and shelf life of fruits. In this scenario, although foliar spraying of Ca2+ has been used, altogether with soil fertilization, as an alternative to prevent deficiencies, little is known regarding its absorption dynamics by plant leaves. Herein, in vivo microprobe X-ray fluorescence was employed aiming to monitor the foliar absorption of CaCl2, Ca-citrate complex, and Ca3(PO4)2 nanoparticles with and without using adjuvant. We also investigated whether Sr2+ can be employed as Ca2+ proxy in foliar absorption studies. Moreover, the impact of treatments on the cuticle structure was evaluated by scanning electron microscopy. For this study, 45-day-old tomato (Solanum lycopersicum L., cv. Micro-Tom) plants were used as a model species. After 100 h, the leaves absorbed 90, 18, and 4% of aqueous CaCl2, Ca-citrate, and Ca3(PO4)2 nanoparticles, respectively. The addition of adjuvant increased the absorption of Ca-citrate to 28%, decreased that of CaCl2 to 77%, and did not affect Ca3(PO4)2. CaCl2 displayed an exponential decay absorption profile with half-lives of 15 h and 5 h without and with adjuvant, respectively. Ca-citrate and Ca3(PO4)2 exhibited absorption profiles that were closer to a linear behavior. Sr2+ was a suitable Ca2+ tracer because of its similar absorption profiles. Furthermore, the use of adjuvant affected the epicuticular crystal structure. Our findings reveal that CaCl2 was the most efficient Ca2+ source. The effects caused by adjuvant suggest that CaCl2 and Ca-citrate were absorbed mostly through hydrophilic and lipophilic pathways.
Collapse
Affiliation(s)
- Eduardo Santos
- Group of Specialty Fertilizers and Plant Nutrition, Laboratory of Nuclear Instrumentation, Centre for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba 13400-970, Brazil
| | - Gabriel Sgarbiero Montanha
- Group of Specialty Fertilizers and Plant Nutrition, Laboratory of Nuclear Instrumentation, Centre for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba 13400-970, Brazil
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology, Sapienza University of Rome, Via dei Sardi, 70, 00185 Rome, Italy
| | - Luís Fernando Agostinho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias, 11, Piracicaba 13418-900, Brazil
| | - Samira Polezi
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias, 11, Piracicaba 13418-900, Brazil
| | - João Paulo Rodrigues Marques
- Group of Specialty Fertilizers and Plant Nutrition, Laboratory of Nuclear Instrumentation, Centre for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba 13400-970, Brazil
- Department of Basic Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Hudson Wallace Pereira de Carvalho
- Group of Specialty Fertilizers and Plant Nutrition, Laboratory of Nuclear Instrumentation, Centre for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba 13400-970, Brazil
| |
Collapse
|
5
|
Dott A, Gavrilis DG, Drews A, Werner A. Preparation, Characterization and Experimental Investigation of the Separation Performance of a Novel CaO‐based CO
2
Sorbent for Direct Air Capture. Chem Eng Technol 2023. [DOI: 10.1002/ceat.202200430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Anton Dott
- Arcus Technologie GmbH & Co GTL Projekt KG Kleine Präsidentenstr. 1 10178 Berlin Germany
- HTW Berlin Dept. 2, Process Engineering in Life Science Engineering Wilhelminenhofstr. 75A 12459 Berlin Germany
| | | | - Anja Drews
- HTW Berlin Dept. 2, Process Engineering in Life Science Engineering Wilhelminenhofstr. 75A 12459 Berlin Germany
| | - Andre Werner
- Arcus Technologie GmbH & Co GTL Projekt KG Kleine Präsidentenstr. 1 10178 Berlin Germany
| |
Collapse
|
6
|
Aenglong C, Ngasakul N, Limpawattana M, Sukketsiri W, Chockchaisawasdee S, Stathopoulos C, Tanasawet S, Klaypradit W. Characterization of novel calcium compounds from tilapia (Oreochromis niloticus) by-products and their effects on proliferation and differentiation of MC3T3-E1 cells. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Characterization of the white dots defect (“PIPS”) in “Doce de leite”. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Moghazy MAEF, Taha GM. Effect of precursor chemistry on purity and characterization of CaCO 3 nanoparticles and its application for adsorption of methyl orange from aqueous solutions. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2056478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marwa Abd El-Fatah Moghazy
- Environmental Applications of Nanomaterials Lab, Chemistry Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - Gharib Mahmoud Taha
- Environmental Applications of Nanomaterials Lab, Chemistry Department, Faculty of Science, Aswan University, Aswan, Egypt
| |
Collapse
|
9
|
Ouyang Y, Zhang R, Chen H, Chen L, Xi W, Li X, Zhang Q, Yan Y. Novel, degradable, and cytoactive bone cements based on magnesium polyphosphate and calcium citrate. NEW J CHEM 2022. [DOI: 10.1039/d2nj01706g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ideal bone-filling materials should be degradable and efficient for fast bone remodeling.
Collapse
Affiliation(s)
- Yalan Ouyang
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Rongguang Zhang
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Hong Chen
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Lichao Chen
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Wenjing Xi
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Xiaodan Li
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Qiyi Zhang
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Yonggang Yan
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| |
Collapse
|
10
|
Tarafdar A, Gaur VK, Rawat N, Wankhade PR, Gaur GK, Awasthi MK, Sagar NA, Sirohi R. Advances in biomaterial production from animal derived waste. Bioengineered 2021; 12:8247-8258. [PMID: 34814795 PMCID: PMC8806998 DOI: 10.1080/21655979.2021.1982321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Animal derived waste, if not disposed properly, could pose a threat to the environment and its inhabitants. Recent advancements in biotechnological and biomedical interventions have enabled us to bioengineer these valuable waste substrates into biomaterials with diversified applications. Rearing and processing of poultry, cattle, sheep, goat, pig, and slaughterhouse waste can aid in effective waste valorization for the fabrication of biopolymers, composites, heart valves, collagen, scaffolds, pigments and lipids, among other industrially important biomaterials. Feathers and eggshell waste from the poultry industry can be used for producing keratinous proteins and biocomposites, respectively. Cattle dung, hoofs and cattle hide can be used for producing hydroxyapatite for developing scaffolds and drug delivery systems. Porcine derived collagen can be used for developing skin grafts, while porcine urinary bladder has antiangiogenic, neurotrophic, tumor-suppressive and wound healing properties. Sheep teeth can be used for the production of low-cost hydroxyapatite while goat tissue is still underutilized and requires more in-depth investigation. However, hydrolyzed tannery fleshings show promising potential for antioxidant rich animal feed production. In this review, the recent developments in the production and application of biomaterials from animal waste have been critically analyzed. Standardized protocols for biomaterial synthesis on a pilot scale, and government policy framework for establishing an animal waste supply chain for end users seem to be lacking and require urgent attention. Moreover, circular bioeconomy concepts for animal derived biomaterial production need to be developed for creating a sustainable system.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environment Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Neha Rawat
- Department of Food Science and Technology, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Pratik Ramesh Wankhade
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&f University, Yangling, Shaanxi Province, China
| | - Narashans Alok Sagar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
11
|
Cherdchom S, Keawsongsaeng W, Buasorn W, Rimsueb N, Pienpinijtham P, Sereemaspun A, Rojanathanes R, Aramwit P. Development of Eugenol-Embedded Calcium Citrate Nanoparticles as a Local Anesthetic Agent. ACS OMEGA 2021; 6:28880-28889. [PMID: 34746580 PMCID: PMC8567392 DOI: 10.1021/acsomega.1c03831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Eugenol is a major phenolic component derived from clove oil with potential medical applications. Of particular interest, it has been used as a therapeutic agent in topical applications because of its analgesic and local anesthetic properties. However, topical formulations of eugenol produce skin irritation, which limits its clinical applications. One promising strategy to overcome this disadvantage is by using a biocompatible material that could be an appropriate topical vehicle for eugenol. Researchers have recently focused on the development of eugenol-embedded calcium citrate nanoparticles (Eu-CaCit NPs) without adverse effects. The Eu-CaCit NPs were developed as a topical delivery system and their biocompatibility and penetration ability were evaluated. Eu-CaCit NPs at 1.2 mg/mL did not show cytotoxicity effects in human cells. Moreover, the Eu-CaCit NPs presented the ability to penetrate the dermis layer of the human intact skin following 12 h exposure. All the results concluded that Eu-CaCit NPs have shown a potential as a carrier for topical delivery of eugenol. These novel nanoparticles represent a promising alternative for topical application of local anesthetic with natural pain relievers.
Collapse
Affiliation(s)
- Sarocha Cherdchom
- Department
of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Wittawat Keawsongsaeng
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Wanida Buasorn
- Department
of Anatomy, Faculty of Medicine, Chulalongkorn
University, Rama 4 Road, Patumwan, Bangkok 10330, Thailand
| | - Natchanon Rimsueb
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Prompong Pienpinijtham
- Sensor
Research Unit (SRU) and National Nanotechnology Center of Advanced
Structural and Functional Nanomaterials, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Amornpun Sereemaspun
- Nanomedicine
Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rojrit Rojanathanes
- Center of
Excellence in Materials and Bio-Interfaces, Faculty of Science, Chulalongkorn University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Pornanong Aramwit
- Department
of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center
of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Phayathai road, Wangmai, Patumwan, Bangkok 10330, Thailand
- The
Academy of Science, The Royal Society of
Thailand, Dusit, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Chalermnon M, Cherdchom S, Sereemaspun A, Rojanathanes R, Khotavivattana T. Biguanide-Based Synthesis of 1,3,5-Triazine Derivatives with Anticancer Activity and 1,3,5-Triazine Incorporated Calcium Citrate Nanoparticles. Molecules 2021; 26:1028. [PMID: 33672071 PMCID: PMC7919653 DOI: 10.3390/molecules26041028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/24/2022] Open
Abstract
Twelve derivatives of biguanide-derived 1,3,5-triazines, a promising class of anticancer agent, were synthesised and evaluated for their anticancer activity against two colorectal cancer cell lines-HCT116 and SW620. 2c and 3c which are the derivatives containing o-hydroxyphenyl substituents exhibited the highest activity with IC50 against both cell lines in the range of 20-27 µM, which is comparable to the IC50 of cisplatin reference. Moreover, the potential use of the calcium citrate nanoparticles (CaCit NPs) as a platform for drug delivery system was studied on a selected 1,3,5-triazine derivative 2a. Condition optimisation revealed that the source of citrate ions and reaction time significantly influence the morphology, size and %drug loading of the particles. With the optimised conditions, "CaCit-2a NPs" were successfully synthesised with the size of 148 ± 23 nm and %drug loading of up to 16.3%. Furthermore, it was found that the release of 2a from the synthesised CaCit-2a NPs is pH-responsive, and 2a could be control released under the acidic cancer environment. The knowledge from this study is perceptive for further development of the 1,3,5-triazine-based anticancer drugs and provide the platform for the incorporation of other drugs in the CaCit NPs in the future.
Collapse
Affiliation(s)
- Monnaya Chalermnon
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Sarocha Cherdchom
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Wangmai, Patumwan, Bangkok 10330, Thailand;
- NanoMedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Rama 4 Road, Patumwan, Bangkok 10330, Thailand
| | - Amornpun Sereemaspun
- Chula Medical Innovation Centre (CMIC), Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Rojrit Rojanathanes
- Centre of Excellence in Materials and Bio-Interfaces, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Tanatorn Khotavivattana
- Centre of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Waheed M, Yousaf M, Shehzad A, Inam-Ur-Raheem M, Khan MKI, Khan MR, Ahmad N, Abdullah, Aadil RM. Channelling eggshell waste to valuable and utilizable products: A comprehensive review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Tran NMP, Dang NTN, Nguyen NTP, Nguyen LVH, Quyen TN, Tran PA, Lee BT, Hiep NT. Fabrication of injectable bone substitute loading porous simvastatin-loaded poly(lactic- co-glycolic acid) microspheres. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1566726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nam Minh-Phuong Tran
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Nhi Thao-Ngoc Dang
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Nghi Thi-Phuong Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Long Vuong-Hoang Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Tran Ngoc Quyen
- Institute of Applied Materials Science, Vietnam Academy Science and Technology, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Phong A. Tran
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Byong-Taek Lee
- Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Nguyen Thi Hiep
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Rimsueb N, Cherdchom S, Aksornkitti V, Khotavivattana T, Sereemaspun A, Rojanathanes R. Feeding Cells with a Novel "Trojan" Carrier: Citrate Nanoparticles. ACS OMEGA 2020; 5:7418-7423. [PMID: 32280883 PMCID: PMC7144169 DOI: 10.1021/acsomega.0c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
In this work, the preparation of novel calcium citrate (CaCit) nanoparticles (NPs) has been disclosed and the use of these NPs as "Trojan" carriers has been demonstrated. The concentration ratio between calcium ions and citrate ions was optimized, yielding spherical NPs with size in the range of 100-200 nm. Additionally, a fluorescent dye, fluorescein isothiocyanate (FITC), was successfully encapsulated by the coprecipitation method. The products were characterized by thermogravimetric analysis and scanning electron microscopy. The cellular uptake was investigated by incubating the synthesized fluorescent-tagged NPs with human keratinocytes using a confocal microscope. The accumulation of the FITC in the cells suggested that the CaCit NPs can potentially be used as novel drug carriers.
Collapse
Affiliation(s)
- Natchanon Rimsueb
- Faculty
of Science, Department of Chemistry, Chulalongkorn
University, Phayathai Road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Sarocha Cherdchom
- Chula
Medical Innovation Center (CMIC), Nanomedicine Research Unit, Department
of Anatomy, Faculty of Medicine, Chulalongkorn
University, Rama 4 Road,
Patumwan, Bangkok 10330, Thailand
| | - Vitavat Aksornkitti
- Chula
Medical Innovation Center (CMIC), Nanomedicine Research Unit, Department
of Anatomy, Faculty of Medicine, Chulalongkorn
University, Rama 4 Road,
Patumwan, Bangkok 10330, Thailand
| | - Tanatorn Khotavivattana
- Center
of Excellence in Natural Products Chemistry, Department of Chemistry, Chulalongkorn University, Phayathai Road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Amornpun Sereemaspun
- Chula
Medical Innovation Center (CMIC), Nanomedicine Research Unit, Department
of Anatomy, Faculty of Medicine, Chulalongkorn
University, Rama 4 Road,
Patumwan, Bangkok 10330, Thailand
| | - Rojrit Rojanathanes
- Center
of Excellence in Materials and Bio-Interfaces Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
16
|
Xiao Y, Yang Y, Li J, Ma Y, Wang H, Wang L, Huang Y, Zhang P, Zou Q, Lai X. Porous composite calcium citrate/polylactic acid materials with high mineralization activity and biodegradability for bone repair tissue engineering. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yifei Xiao
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, P. R. China
| | - Yanan Yang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, P. R. China
| | - Junfeng Li
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, P. R. China
| | - Yue Ma
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, P. R. China
| | - Hao Wang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, P. R. China
| | - Li Wang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, P. R. China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Environment and Ecology, Chengdu University of Technology, Chengdu, Sichuan, P. R. China
| | - Peicong Zhang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, P. R. China
| | - Qin Zou
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xuefei Lai
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
17
|
|
18
|
Sopcak T, Medvecky L, Giretova M, Stulajterova R, Molcanova Z, Podobova M, Girman V. Physical, mechanical and in vitro evaluation of a novel cement based on akermantite and dicalcium phosphate dihydrate phase. ACTA ACUST UNITED AC 2019; 14:045011. [PMID: 31134897 DOI: 10.1088/1748-605x/ab216d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Magnesium containing calcium silicates have recently shown that they are promising materials for various biomedical application with potential use in the form of bulk ceramic, composite scaffold or coatings on metallic substrates. A novel akermanite (AK; Ca2MgSi2O7)/dicalcium phosphate dihydrate (DCPD, CaHPO4. H2O) cement mixture was tested in this work in order to produce an alternative AK/DCPD biocement for orthopedic applications. For comparison, we have prepared two cements mixed with 2.5 wt% NaH2PO4 solution (labeled as NaH2PO4 cement) and with the solution composed of organic 2.5 wt% citric acid a 2.5 wt% trisodium citrate (citrate cement) respectively. The results demonstrated only a partial dissolution of AK, regardless of the type of liquid used. On the other hand, the DCPD was completely hydrolyzed much faster in the citrate cement. The final hydration product was an amorhous quarternary phase of CaO-MgO-SiO2-P2O5 composition with the remaining unreacted akermanite embeded in the cement matrix. The highest early compressive strength was observed in the citrate cement (33 MPa), but much lower value was measured in NaH2PO4 cement (7 MPa) after 1 d setting. Different cell responses have been observed when the cells were cultured on the surfaces of cement substrates. While the NaH2PO4 cement demonstrated high proliferation activity of osteoblast, the citrate cement showed strong cytotoxic cell response, probably as a result of higher concentration of citrates on the cement surface, which can negatively affect the attachment and proliferation of osteoblastic cells.
Collapse
Affiliation(s)
- T Sopcak
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia
| | | | | | | | | | | | | |
Collapse
|
19
|
Niedermeier M, Gierlinger N, Lütz-Meindl U. Biomineralization of strontium and barium contributes to detoxification in the freshwater alga Micrasterias. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:80-91. [PMID: 30195163 DOI: 10.1016/j.jplph.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/27/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
The unicellular model alga Micrasterias denticulata inhabits acid peat bogs that are highly endangered by pollutants due to their high humidity. As it was known from earlier studies that algae like Micrasterias are capable of storing barium naturally in form of BaSO4 crystals, it was interesting to experimentally investigate distribution and sequestration of barium and the chemically similar alkaline earth metal strontium. Additionally, we intended to analyze whether biomineralization by crystal formation contributes to diminution of the generally toxic effects of these minerals to physiology and structure of this alga which is closely related to higher plants. The results show that depending on the treatment differently shaped crystals are formed in BaCl2 and Cl2Sr exposed Micrasterias cells. Modern microscopic techniques such as analytical TEM by electron energy loss spectroscopy and Raman microscopy provide evidence for the chemical composition of these crystals. It is shown that barium treatment results in the formation of insoluble BaSO4 crystals that develop within distinct compartments. During strontium exposure long rod-like crystals are formed and are surrounded by membranes. Based on the Raman signature of these crystals their composition is attributed to strontium citrate. These crystals are instable and are dissolved during cell death. During strontium as well as barium treatment cell division rates and photosynthetic oxygen production decreased in dependence of the concentration, whereas cell vitality was reduced only slightly. Together with the fact that TEM analyses revealed only minor ultrastructural alterations as consequence of relatively high concentrated BaCl2 and Cl2Sr exposure, this indicates that biomineralization of Sr and Ba protects the cells from severe damage or cell death at least within a particular concentration range and time period. In the case of Sr treatment where ROS levels were found to be elevated, hallmarks for autophagy of single organelles were observed by TEM, indicating beginning degradation processes.
Collapse
Affiliation(s)
- Martin Niedermeier
- University of Salzburg, Department of Biosciences, Hellbrunner Straße 34, 5020 Salzburg, Austria.
| | - Notburga Gierlinger
- BOKU-University of Natural Resources and Life Sciences, Department of Nanobiotechnology, Muthgasse 11/II, 1190 Vienna, Austria.
| | - Ursula Lütz-Meindl
- University of Salzburg, Department of Biosciences, Hellbrunner Straße 34, 5020 Salzburg, Austria.
| |
Collapse
|