1
|
Zhu Z, Jin Y, Zhou J, Chen F, Chen M, Gao Z, Hu L, Xuan J, Li X, Song Z, Guo X. PD1/PD-L1 blockade in clear cell renal cell carcinoma: mechanistic insights, clinical efficacy, and future perspectives. Mol Cancer 2024; 23:146. [PMID: 39014460 PMCID: PMC11251344 DOI: 10.1186/s12943-024-02059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The advent of PD1/PD-L1 inhibitors has significantly transformed the therapeutic landscape for clear cell renal cell carcinoma (ccRCC). This review provides an in-depth analysis of the biological functions and regulatory mechanisms of PD1 and PD-L1 in ccRCC, emphasizing their role in tumor immune evasion. We comprehensively evaluate the clinical efficacy and safety profiles of PD1/PD-L1 inhibitors, such as Nivolumab and Pembrolizumab, through a critical examination of recent clinical trial data. Furthermore, we discuss the challenges posed by resistance mechanisms to these therapies and potential strategies to overcome them. We also explores the synergistic potential of combination therapies, integrating PD1/PD-L1 inhibitors with other immunotherapies, targeted therapies, and conventional modalities such as chemotherapy and radiotherapy. In addition, we examine emerging predictive biomarkers for response to PD1/PD-L1 blockade and biomarkers indicative of resistance, providing a foundation for personalized therapeutic approaches. Finally, we outline future research directions, highlighting the need for novel therapeutic strategies, deeper mechanistic insights, and the development of individualized treatment regimens. Our work summarizes the latest knowledge and progress in this field, aiming to provide a valuable reference for improving clinical efficacy and guiding future research on the application of PD1/PD-L1 inhibitors in ccRCC.
Collapse
Affiliation(s)
- Zhaoyang Zhu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, P.R. China
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Yigang Jin
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Jing Zhou
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Jinyan Xuan
- Department of General Practice, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China.
| | - Xiao Guo
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China.
| |
Collapse
|
2
|
Zhu HX, Zheng WC, Chen H, Chen JY, Lin F, Chen SH, Xue XY, Zheng QS, Liang M, Xu N, Chen DN, Sun XL. Exploring Novel Genome Instability-associated lncRNAs and their Potential Function in Pan-Renal Cell Carcinoma. Comb Chem High Throughput Screen 2024; 27:1788-1807. [PMID: 37957851 DOI: 10.2174/0113862073258779231020052115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Genomic instability can drive clonal evolution, continuous modification of tumor genomes, and tumor genomic heterogeneity. The molecular mechanism of genomic instability still needs further investigation. This study aims to identify novel genome instabilityassociated lncRNAs (GI-lncRNAs) and investigate the role of genome instability in pan-Renal cell carcinoma (RCC). MATERIALS AND METHODS A mutator hypothesis was employed, combining the TCGA database of somatic mutation (SM) information, to identify GI-lncRNAs. Subsequently, a training cohort (n = 442) and a testing cohort (n = 439) were formed by randomly dividing all RCC patients. Based on the training cohort dataset, a multivariate Cox regression analysis lncRNAs risk model was created. Further validations were performed in the testing cohort, TCGA cohort, and different RCC subtypes. To confirm the relative expression levels of lncRNAs in HK-2, 786-O, and 769-P cells, qPCR was carried out. Functional pathway enrichment analyses were performed for further investigation. RESULTS A total of 170 novel GI-lncRNAs were identified. The lncRNA prognostic risk model was constructed based on LINC00460, AC073218.1, AC010789.1, and COLCA1. This risk model successfully differentiated patients into distinct risk groups with significantly different clinical outcomes. The model was further validated in multiple independent patient cohorts. Additionally, functional and pathway enrichment analyses revealed that GI-lncRNAs play a crucial role in GI. Furthermore, the assessments of immune response, drug sensitivity, and cancer stemness revealed a significant relationship between GI-lncRNAs and tumor microenvironment infiltration, mutational burden, microsatellite instability, and drug resistance. CONCLUSIONS In this study, we discovered four novel GI-lncRNAs and developed a novel signature that effectively predicted clinical outcomes in pan-RCC. The findings provide valuable insights for pan-RCC immunotherapy and shed light on potential underlying mechanisms.
Collapse
Affiliation(s)
- Hui-Xin Zhu
- Department of Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Cai Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Min Liang
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| |
Collapse
|
3
|
Liu Y, Zhang Z, Xi P, Chen R, Cheng X, Liu J, Zhu Q, Nie Y, Sun T, Gong B, Wang S. Systematic analysis of RNASET2 gene as a potential prognostic and immunological biomarker in clear cell renal cell carcinoma. BMC Cancer 2023; 23:837. [PMID: 37679715 PMCID: PMC10483861 DOI: 10.1186/s12885-023-11356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND RNASET2 has been identified as an oncogene with anti-angiogenic and immunomodulatory effects in a variety of cancers, but its function in clear cell renal cell carcinoma (ccRCC) is still not well understood. METHODS The RNASET2 expression matrix was extracted from the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets and analyzed for diagnostic and prognostic value. RNASET2 mRNA expression was detected by quantitative polymerase chain reaction (qPCR) in ccRCC patients and renal cancer cell lines. Wound healing assay, transwell assay, western blotting, and tube formation assays were used to evaluate the function of RNASET2 in renal cancer in vitro. In addition, transcriptome sequencing was performed on knockdown RNASET2 kidney cancer cells to analyze their potential signaling pathways. Moreover, the immune microenvironment and mutational status were evaluated to predict the potential mechanisms of RNASET2 involvement in renal cancer progression. Sensitivity to common chemotherapeutic and targeted agents was assessed according to the Genomics of Drug Sensitivity in Cancer (GDSC) database. RESULTS RNASET2 expression was significantly upregulated in ccRCC tissues and renal cancer cell lines, predicting poor prognosis for patients. In vitro experiments showed that silencing RNASET2 inhibited the migration and pro-angiogenic ability of renal cancer cells. Transcriptome sequencing suggested its possible involvement in the remodeling of the immune microenvironment in renal cell carcinoma. Furthermore, bioinformatics analysis and immunohistochemical staining showed that RNASET2 was positively correlated with the infiltration abundance of regulatory T cells. Finally, we mapped the mutational landscape of RNASET2 in ccRCC and found its predictive value for drug sensitivity. CONCLUSIONS Our results suggest that RNASET2 is a promising biomarker and therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Yifu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Ping Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Xiaofeng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Ji Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Qiqi Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Yechen Nie
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Center Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| | - Siyuan Wang
- Department of Urology, Sichuan Cancer Hospital School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Ördög N, Borsos BN, Majoros H, Ujfaludi Z, Pankotai-Bodó G, Bankó S, Sükösd F, Kuthi L, Pankotai T. The clinical significance of epigenetic and RNAPII variabilities occurring in clear cell renal cell carcinoma as a potential prognostic marker. Transl Oncol 2022; 20:101420. [PMID: 35417813 PMCID: PMC9018449 DOI: 10.1016/j.tranon.2022.101420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
30 ccRCC patients were used, to follow the epigenetic changes (γH2A.X, H3K4me3 and H3K9me3) and the alterations in the level of RNA polymerase II (RNAPII). The variabilities between the tumorous and non-tumorous parts of the tissue were measured by image analysis in which we monitored 30 cells from different positions of either the tumorous or the non-tumorous part of the tissue sections. These markers were classified to predict patient outcomes based on their individual cellular background. These results also support that detection of any alteration in the level of H3K4me3, H3K9me3, and γH2AX can account valuable information for presuming the progression of ccRCC and the clinical benefits to select the most efficient personalized therapy.
Patients diagnosed with clear cell renal cell carcinoma (ccRCC) have poor prognosis for recurrence and approximately 30–40% of them will later develop metastases. For this reason, the appropriate diagnosis and the more detailed molecular characterisation of the primary tumour, including its susceptibility to metastasis, are crucial to select the proper adjuvant therapy by which the most prosperous outcome can be achieved. Nowadays, clinicopathological variables are used for classification of the tumours. Apart from these, molecular biomarkers are also necessary to improve risk classification, which would be the most beneficial amongst modern adjuvant therapies. As a potential molecular biomarker, to follow the transcriptional kinetics in ccRCC patients (n=30), we analysed epigenetic changes (γH2A.X, H3K4me3, and H3K9me3) and the alterations in the level of RNA polymerase II (RNAPII) by immunohistochemical staining on dissected tissue sections. The variabilities between the tumorous and non-tumorous parts of the tissue were detected using quantitative image analysis by monitoring 30 cells from different positions of either the tumorous or the non-tumorous part of the tissue sections. Data obtained from the analyses were used to identify potential prognostic features and to associate them with the progression. These markers might have a value to predict patient outcomes based on their individual cellular background. These results also support that detection of any alteration in the level of H3K4me3, H3K9me3, and γH2A.X can account for valuable information for presuming the progression of ccRCC and the clinical benefits to select the most efficient personalised therapy.
Collapse
|
5
|
Yu Y, Niu J, Zhang X, Wang X, Song H, Liu Y, Jiao X, Chen F. Identification and Validation of HOTAIRM1 as a Novel Biomarker for Oral Squamous Cell Carcinoma. Front Bioeng Biotechnol 2022; 9:798584. [PMID: 35087800 PMCID: PMC8787327 DOI: 10.3389/fbioe.2021.798584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
ORAL squamous cell carcinoma (OSCC) is a malignant tumor with the highest incidence among tumors involving the oral cavity maxillofacial region, and is notorious for its high recurrence and metastasis potential. Long non-coding RNAs (lncRNAs), which regulate the genesis and evolution of cancers, are potential prognostic biomarkers. This study identified HOTAIRM1 as a novel significantly upregulated lncRNA in OSCC, which is strongly associated with unfavorable prognosis of OSCC. Systematic bioinformatics analyses demonstrated that HOTAIRM1 was closely related to tumor stage, overall survival, genome instability, the tumor cell stemness, the tumor microenvironment, and immunocyte infiltration. Using biological function prediction methods, including Weighted gene co-expression network analysis (WGCNA), Gene set enrichment analysis (GSEA), and Gene set variation analysis (GSVA), HOTAIRM1 plays a pivotal role in OSCC cell proliferation, and is mainly involved in the regulation of the cell cycle. In vitro, cell loss-functional experiments confirmed that HOTAIRM1 knockdown significantly inhibited the proliferation of OSCC cells, and arrested the cell cycle in G1 phase. At the molecular level, PCNA and CyclinD1 were obviously reduced after HOTAIRM1 knockdown. The expression of p53 and p21 was upregulated while CDK4 and CDK6 expression was decreased by HOTAIRM1 knockdown. In vivo, knocking down HOTAIRM1 significantly inhibited tumor growth, including the tumor size, weight, volume, angiogenesis, and hardness, monitored by ultrasonic imaging and magnetic resonance imaging In summary, our study reports that HOTAIRM1 is closely associated with tumorigenesis of OSCC and promotes cell proliferation by regulating cell cycle. HOTAIRM1 could be a potential prognostic biomarker and a therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yixiu Yu
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamei Niu
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingwei Zhang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongquan Song
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingqun Liu
- Pediatric Dentistry Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohui Jiao
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| | - Fuyang Chen
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| |
Collapse
|
6
|
Anker J, Miller J, Taylor N, Kyprianou N, Tsao CK. From Bench to Bedside: How the Tumor Microenvironment Is Impacting the Future of Immunotherapy for Renal Cell Carcinoma. Cells 2021; 10:3231. [PMID: 34831452 PMCID: PMC8619121 DOI: 10.3390/cells10113231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has revolutionized the treatment landscape for many cancer types. The treatment for renal cell carcinoma (RCC) has especially evolved in recent years, from cytokine-based immunotherapies to immune checkpoint inhibitors. Although clinical benefit from immunotherapy is limited to a subset of patients, many combination-based approaches have led to improved outcomes. The success of such approaches is a direct result of the tumor immunology knowledge accrued regarding the RCC microenvironment, which, while highly immunogenic, demonstrates many unique characteristics. Ongoing translational work has elucidated some of the mechanisms of response, as well as primary and secondary resistance, to immunotherapy. Here, we provide a comprehensive review of the RCC immunophenotype with a specific focus on how preclinical and clinical data are shaping the future of immunotherapy.
Collapse
Affiliation(s)
- Jonathan Anker
- Division of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Justin Miller
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.M.); (N.T.)
| | - Nicole Taylor
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.M.); (N.T.)
| | - Natasha Kyprianou
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Pathology and Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Che-Kai Tsao
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.M.); (N.T.)
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
7
|
Zhang F, Wang X, Hu H, Yang Y, Wang J, Tang Y, Li D, Bai Y, Han P. A hypoxia related long non-coding RNA signature could accurately predict survival outcomes in patients with bladder cancer. Bioengineered 2021; 12:3802-3823. [PMID: 34281486 PMCID: PMC8806425 DOI: 10.1080/21655979.2021.1948781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hypoxia plays a significant role in tumor progression. This study aimed to develop a hypoxia-related long noncoding RNA (lncRNA) signature for predicting survival outcomes of patients with bladder cancer (BC). The transcriptome and clinicopathologic data were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis and Lasso regression analysis were used to screened lncRNAs. Ten lncRNAs were screened out and included into the hypoxia lncRNA signature. The risk score based on hypoxia lncRNA signature could accurately predict the survival outcomes of BC patients. Immune infiltration analysis showed that six types of immune cells had significant different infiltration. Tumor mutation burden (TMB) analysis showed that the risk scores between the wild types and the mutation types of TP53, FGFR3, and RB1 were significantly different. Gene Set Enrichment Analysis (GSEA) showed that cancer-associated pathways belonged to the high risk groups and immune-related signal pathways were enriched into the low risk group. Then, we constructed a predictive model with the risk score, age, and clinical stage, which showed a robust prognostic performance. An lncRNA-mRNA coexpression network was constructed, which contained 62 lncRNA-mRNA links among 10 lncRNAs and 40 related mRNAs. In summary, the hypoxia lncRNA signature could accurately predict prognosis, chemotherapy and immunotherapy response in patients with BC and was relevant to clinicopathologic parameters and immune cell infiltration.
Collapse
Affiliation(s)
- Facai Zhang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China.,Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guizhou Province, China
| | - Xiaoming Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Huan Hu
- School of Clinical Medicine, Guizhou Medical University, Guizhou Province, China
| | - Yubo Yang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Jiahao Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Yin Tang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Dengxiong Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Yunjin Bai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China
| | - Ping Han
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan Province, China.,Department of Urology, The Second People's Hospital of Yibin, Sichuan Province, China
| |
Collapse
|