1
|
Shi H, Tan Z, Duan B, Guo C, Li C, Luan T, Li N, Huang Y, Chen S, Gao J, Feng W, Xu H, Wang J, Fu S, Wang H. LASS2 enhances chemosensitivity to cisplatin by inhibiting PP2A-mediated β-catenin dephosphorylation in a subset of stem-like bladder cancer cells. BMC Med 2024; 22:19. [PMID: 38191448 PMCID: PMC10775422 DOI: 10.1186/s12916-023-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The benefits of first-line, cisplatin-based chemotherapy for muscle-invasive bladder cancer are limited due to intrinsic or acquired resistance to cisplatin. Increasing evidence has revealed the implication of cancer stem cells in the development of chemoresistance. However, the underlying molecular mechanisms remain to be elucidated. This study investigates the role of LASS2, a ceramide synthase, in regulating Wnt/β-catenin signaling in a subset of stem-like bladder cancer cells and explores strategies to sensitize bladder cancer to cisplatin treatment. METHODS Data from cohorts of our center and published datasets were used to evaluate the clinical characteristics of LASS2. Flow cytometry was used to sort and analyze bladder cancer stem cells (BCSCs). Tumor sphere formation, soft agar colony formation assay, EdU assay, apoptosis analysis, cell viability, and cisplatin sensitivity assay were used to investigate the functional roles of LASS2. Immunofluorescence, immunoblotting, coimmunoprecipitation, LC-MS, PCR array, luciferase reporter assays, pathway reporter array, chromatin immunoprecipitation, gain-of-function, and loss-of-function approaches were used to investigate the underlying mechanisms. Cell- and patient-derived xenograft models were used to investigate the effect of LASS2 overexpression and a combination of XAV939 on cisplatin sensitization and tumor growth. RESULTS Patients with low expression of LASS2 have a poorer response to cisplatin-based chemotherapy. Loss of LASS2 confers a stem-like phenotype and contributes to cisplatin resistance. Overexpression of LASS2 results in inhibition of self-renewal ability of BCSCs and increased their sensitivity to cisplatin. Mechanistically, LASS2 inhibits PP2A activity and dissociates PP2A from β-catenin, preventing the dephosphorylation of β-catenin and leading to the accumulation of cytosolic phospho-β-catenin, which decreases the transcription of the downstream genes ABCC2 and CD44 in BCSCs. Overexpression of LASS2 combined with a tankyrase inhibitor (XAV939) synergistically inhibits tumor growth and restores cisplatin sensitivity. CONCLUSIONS Targeting the LASS2 and β-catenin pathways may be an effective strategy to overcome cisplatin resistance and inhibit tumor growth in bladder cancer patients.
Collapse
Affiliation(s)
- Hongjin Shi
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Zhiyong Tan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Bowen Duan
- Kunming Medical University, Kunming, China
| | - Chunming Guo
- School for Life Science, Yunnan University, Kunming, China
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ting Luan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Ning Li
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Yinglong Huang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Shi Chen
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jixian Gao
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Wei Feng
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Haole Xu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jiansong Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Shi Fu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| | - Haifeng Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| |
Collapse
|
2
|
Wilczyński J, Paradowska E, Wilczyńska J, Wilczyński M. Prediction of Chemoresistance-How Preclinical Data Could Help to Modify Therapeutic Strategy in High-Grade Serous Ovarian Cancer. Curr Oncol 2023; 31:229-249. [PMID: 38248100 PMCID: PMC10814576 DOI: 10.3390/curroncol31010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is one of the most lethal tumors generally and the most fatal cancer of the female genital tract. The approved standard therapy consists of surgical cytoreduction and platinum/taxane-based chemotherapy, and of targeted therapy in selected patients. The main therapeutic problem is chemoresistance of recurrent and metastatic HGSOC tumors which results in low survival in the group of FIGO III/IV. Therefore, the prediction and monitoring of chemoresistance seems to be of utmost importance for the improvement of HGSOC management. This type of cancer has genetic heterogeneity with several subtypes being characterized by diverse gene signatures and disturbed peculiar epigenetic regulation. HGSOC develops and metastasizes preferentially in the specific intraperitoneal environment composed mainly of fibroblasts, adipocytes, and immune cells. Different HGSOC subtypes could be sensitive to distinct sets of drugs. Moreover, primary, metastatic, and recurrent tumors are characterized by an individual biology, and thus diverse drug responsibility. Without a precise identification of the tumor and its microenvironment, effective treatment seems to be elusive. This paper reviews tumor-derived genomic, mutational, cellular, and epigenetic biomarkers of HGSOC drug resistance, as well as tumor microenvironment-derived biomarkers of chemoresistance, and discusses their possible use in the novel complex approach to ovarian cancer therapy and monitoring.
Collapse
Affiliation(s)
- Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| | - Justyna Wilczyńska
- Department of Tele-Radiotherapy, Mikolaj Kopernik Provincial Multi-Specialized Oncology and Traumatology Center, 62 Pabianicka Str., 93-513 Lodz, Poland;
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| |
Collapse
|
3
|
Ni K, Hong L. Current Progress and Perspectives of CDC20 in Female Reproductive Cancers. Curr Mol Med 2023; 23:193-199. [PMID: 35319365 DOI: 10.2174/1573405618666220321130102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
The cancers of the cervix, endometrium, ovary, and breast are great threats to women's health. Cancer is characterized by the uncontrolled proliferation of cells and deregulated cell cycle progression is one of the main causes of malignancy. Agents targeting cell cycle regulators may have potential anti-tumor effects. CDC20 (cell division cycle 20 homologue) is a co-activator of the anaphase-promoting complex/cyclosome (APC/C) and thus acts as a mitotic regulator. In addition, CDC20 serves as a subunit of the mitotic checkpoint complex (MCC) whose function is to inhibit APC/C. Recently, higher expression of CDC20 has been reported in these cancers and was closely associated with their clinicopathological parameters, indicating CDC20 a potential target for cancer treatment that is worth further study. In the present review, we summarized current progress and put forward perspectives of CDC20 in female reproductive cancers.
Collapse
Affiliation(s)
- Ke Ni
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
4
|
Liang ZQ, He RQ, Luo JY, Huang ZG, Li J, Zhong LY, Chen JH, Huang SN, Shi L, Wei KL, Zeng JH, Zeng JJ, Chen G. Downregulated Dual-Specificity Protein Phosphatase 1 in Ovarian Carcinoma: A Comprehensive Study With Multiple Methods. Pathol Oncol Res 2022; 28:1610404. [PMID: 35911442 PMCID: PMC9336223 DOI: 10.3389/pore.2022.1610404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022]
Abstract
Introduction: We aimed to explore the abnormal expression of dual-specificity protein phosphatase 1 (DUSP1) and its latent molecular mechanisms in ovarian carcinoma (OVCA). Materials and Methods: Two clinical cohorts collected from two different hospitals were used to evaluate the expression of DUSP1 protein in OVCA tissues. RNA-sequencing and microarray datasets were utilised to verify DUSP1 expression at mRNA levels in both OVCA tissues and in the peripheral blood of OVCA patients. Furthermore, an integrated calculation was performed to pool the standard mean difference (SMD) from each cohort in order to comprehensively assess the expression of DUSP1 in OVCA. Furthermore, we examined the relationship among DUSP1, tumour microenvironment (TME), and chemotherapy resistance in OVCA. Moreover, we used pathway enrichment analysis to explore the underlying mechanisms of DUSP1 in OVCA. Results: A pooled SMD of −1.19 (95% CI [−2.00, −0.38], p = 0.004) with 1,240 samples revealed that DUSP1 was downregulated in OVCA at both mRNA and protein levels. The area under the receiver operating characteristic curve of 0.9235 indicated the downregulated DUSP1 in peripheral blood may have a non-invasive diagnostic value in OVCA. Through six algorithms, we identified that DUSP1 may related to tumour-infiltrating T cells and cancer associated fibroblasts (CAFs) in OVCA. Pathway enrichment demonstrated that DUSP1 might participate in the mitogen-activated protein kinase (MAPK) signalling pathway. Furthermore, DUSP1 may have relations with chemotherapy resistance, and a favourable combining affinity was observed in the paclitaxel-DUSP1 docking model. Conclusion: DUSP1 was downregulated in OVCA, and this decreasing trend may affect the infiltration of CAFs. Finally, DUSP1 may have a targeting relation with paclitaxel and participate in MAPK signaling pathways.
Collapse
Affiliation(s)
- Zi-Qian Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu-Yang Zhong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Hong Chen
- Department of Pathology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lin Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kang-Lai Wei
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People’s Hospital, Nanning, China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Gang Chen,
| |
Collapse
|
5
|
Yuan H, Yu Q, Pang J, Chen Y, Sheng M, Tang W. The Value of the Stemness Index in Ovarian Cancer Prognosis. Genes (Basel) 2022; 13:genes13060993. [PMID: 35741755 PMCID: PMC9222264 DOI: 10.3390/genes13060993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common gynecological malignancies. It is associated with a difficult diagnosis and poor prognosis. Our study aimed to analyze tumor stemness to determine the prognosis feature of patients with OC. At this job, we selected the gene expression and the clinical profiles of patients with OC in the TCGA database. We calculated the stemness index of each patient using the one-class logistic regression (OCLR) algorithm and performed correlation analysis with immune infiltration. We used consensus clustering methods to classify OC patients into different stemness subtypes and compared the differences in immune infiltration between them. Finally, we established a prognostic signature by Cox and LASSO regression analysis. We found a significant negative correlation between a high stemness index and immune score. Pathway analysis indicated that the differentially expressed genes (DEGs) from the low- and high-mRNAsi groups were enriched in multiple functions and pathways, such as protein digestion and absorption, the PI3K-Akt signaling pathway, and the TGF-β signaling pathway. By consensus cluster analysis, patients with OC were split into two stemness subtypes, with subtype II having a better prognosis and higher immune infiltration. Furthermore, we identified 11 key genes to construct the prognostic signature for patients with OC. Among these genes, the expression levels of nine, including SFRP2, MFAP4, CCDC80, COL16A1, DUSP1, VSTM2L, TGFBI, PXDN, and GAS1, were increased in the high-risk group. The analysis of the KM and ROC curves indicated that this prognostic signature had a great survival prediction ability and could independently predict the prognosis for patients with OC. We established a stemness index-related risk prognostic module for OC, which has prognostic-independent capabilities and is expected to improve the diagnosis and treatment of patients with OC.
Collapse
|
6
|
Gan L, Li Y, Chen Y, Huang M, Cao J, Cao M, Wang Z, Wan G, Gui T. Transcriptome analysis of eutopic endometrial stromal cells in women with adenomyosis by RNA-sequencing. Bioengineered 2022; 13:12637-12649. [PMID: 35603555 PMCID: PMC9275863 DOI: 10.1080/21655979.2022.2077614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Lin Gan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yongrong Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Chen
- Department of Obstetrics and Gynecology, Suzhou Xiangcheng People’s Hospital, Suzhou, Jiangsu, China
| | - Meihua Huang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Laboratory of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jian Cao
- Department of Gynecology, Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
| | - Meiling Cao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhihui Wang
- Department of Obstetrics and Gynecology, Suzhou Xiangcheng People’s Hospital, Suzhou, Jiangsu, China
| | - Guiping Wan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Laboratory of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Tao Gui
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Laboratory of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Wang S, Sun L. Silencing Aurora-kinase-A (AURKA) reinforced the sensitivity of diffuse large B-cell lymphoma cells to cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) via suppressing β-Catenin and RAS-extracellular signal-regulated protein kinase (ERK1/2) pathway. Bioengineered 2021; 12:8296-8308. [PMID: 34565287 PMCID: PMC8806979 DOI: 10.1080/21655979.2021.1985346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The therapeutic effects of standard cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) therapy for prevalent lymphoma diffuse large B-cell lymphoma (DLBC, DLBCL) still require improvement. Cancer-related aurora-kinase-A (AURKA) may work as a target for DLBCL treatment and its effect on CHOP therapy was investigated in the present study. The Gene Expression Profiling Interactive Analysis 2 was applied to analyze AURKA expression in DLBC tumor tissues and normal lymphoid tissues. The DLBCL tissues and normal lymphoid tissues were obtained from the DLBCL patients and healthy volunteers. Clinic data of patients were recorded, and AURKA expression in tissues and cells was detected and analyzed using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry. After AURKA in DLBCL cells was silenced or overexpressed and treated with CHOP, viability and apoptosis were detected by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Expressions of AURKA, β-Catenin, phosphorylated (p)-β-Catenin, extracellular signal-regulated protein kinase (ERK1/2), p-ERK1/2 and RAS were detected using qRT-PCR and Western blot. AURKA was highly expressed in DLBCL tissues and cells. Silencing AURKA inhibited AURKA expression and viability, but promoted apoptosis of DLBCL cells. CHOP had no obvious effects on AURKA expression while reducing viability and promoting apoptosis of DLBCL cells. Silencing AURKA enhanced the effects of CHOP on cell apoptosis of DLBCL cells by inhibiting the expressions of RAS and β-Catenin as well as the ratio of p-ERK1/2/ERK1/2 and promoting the ratio of p-β-Catenin/β-Catenin. Silencing AURKA reinforced the therapeutic effects of CHOP on reducing viability and promoting apoptosis of DLBCL cell via repressing β-Catenin and RAS-ERK1/2 pathway.
Collapse
Affiliation(s)
- Shaoxiong Wang
- Department of Hematology, Quanzhou First Hospital, Quanzhou City, Fujian Province, China
| | - Li Sun
- Department of Hematology, Quanzhou First Hospital, Quanzhou City, Fujian Province, China
| |
Collapse
|