1
|
Álvarez-Viñas M, Domínguez H, Torres MD. Evaluation of carrageenans extracted by an eco-friendly technology as source for gelled matrices with potential food application. Int J Biol Macromol 2024; 279:135288. [PMID: 39233176 DOI: 10.1016/j.ijbiomac.2024.135288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Red macroalgae are considered an immense source of hydrocolloids (agar and carrageenan) that are gaining momentum in the food industry as an alternative to animal-based ones, like gelatin. This work evaluates carrageenans extracted from four different red macroalgae (Chondrus crispus, Mastocarpus stellatus, Sarcopeltis skottsbergii and Gigartina pistillata) by an eco-friendly process (hydrothermal extraction), for their possible employment as food additives considering purity requirements stated by the European Regulation. In general, carrageenans presented a suitable composition, although some sample presented lower sulfate content than 15 % and higher As content than 3 mg/kg, being only carrageenans from Chondrus crispus and Sarcopeltis skottsbergii appropriate for gelled matrices formulation. Different concentrations of hydrocolloids (1-5 %) and salts (0.1-1 M NaCl, CaCl2 and KCl) were evaluated to reach a desired consistency. Rheological behavior of said gels revealed a gel-like behavior, with G' > G" and practically frequency independency of the parameters. Overall, gels formulated with KCl achieved higher G' with maximum values of 100-1000 Pa, whereas the commercial gelled dessert (used as control) only achieved values of around 10 Pa. After 3 months of cold storage, all gels exhibited a strengthening of the gelled matrix, without water syneresis. The colorimetric parameters were also evaluated, showing higher inclination for red and yellow tones with modest lightness values (around 60 %). In this work, hydrothermally extracted carrageenans from Chondrus crispus and Sarcopeltis skottsbergii were assessed, laying the groundwork for further studies in this area.
Collapse
Affiliation(s)
- Milena Álvarez-Viñas
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004, Ourense, Spain
| | - Herminia Domínguez
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004, Ourense, Spain
| | - María Dolores Torres
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004, Ourense, Spain.
| |
Collapse
|
2
|
Tsopanakis V, Anastasiadou E, Mikkelsen MD, Meyer AS, Pavlidis IV. Identification and characterization of a novel thermostable PL7 alginate lyase from a submarine volcanic metagenomic library. Enzyme Microb Technol 2024; 180:110486. [PMID: 39038418 DOI: 10.1016/j.enzmictec.2024.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Seaweed biomass is as an abundant and renewable source of complex polysaccharides, including alginate which has a variety of applications. A sustainable method for exploiting alginate towards the production of valuable oligosaccharides is through enzymatic processing, using alginate lyases. Industrial refinement methods demand robust enzymes. Metagenomic libraries from extreme environments are a new source of unique enzymes with great industrial potential. Herein we report the identification of a new thermostable alginate lyase with only 58 % identity to known sequences, identified by mining a metagenomic library obtained from the hydrothermal vents of the volcano Kolumbo in the Aegean Sea (Kolumbo Alginate Lyase, KAlLy). Sequence analysis and biochemical characterization of KAlLy showed that this new alginate lyase is a Polysaccharide Lyase of family 7 (PL7) enzyme with endo- and exo-action on alginate and poly-mannuronic acid, with high activity at 60°C (56 ± 8 U/mg) and high thermostability (half-life time of 30 h at 50°C). The response surface methodology analysis revealed that the reaction optimum conditions with poly-mannuronic acid as substrate are 44°C, pH of 5.5 with 440 mM NaCl. This novel alginate lyase is a valuable addition to the toolbox of alginate modifying enzymes, due to its diverse sequence and its good thermal stability.
Collapse
Affiliation(s)
- Vasileios Tsopanakis
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion 70013, Greece
| | - Elena Anastasiadou
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion 70013, Greece
| | - Maria D Mikkelsen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Ioannis V Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion 70013, Greece.
| |
Collapse
|
3
|
Hassanzadeh-Tabrizi SA. Alginate based hemostatic materials for bleeding management: A review. Int J Biol Macromol 2024; 274:133218. [PMID: 38901512 DOI: 10.1016/j.ijbiomac.2024.133218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Severe bleeding has caused significant financial losses as well as a major risk to the lives and health of military and civilian populations. Under some situations, the natural coagulation mechanism of the body is unable to achieve fast hemostasis without the use of hemostatic drugs. Thus, the development of hemostatic materials and techniques is essential. Improving the quality of life and survival rate of patients and minimizing bodily damage requires fast, efficient hemostasis and prevention of bleeding. Alginate is regarded as an outstanding hemostatic polymer because of its non-immunogenicity, biodegradability, good biocompatibility, simple gelation, non-toxicity, and easy availability. This review summarizes the basics of hemostasis and emphasizes the recent developments regarding alginate-based hemostatic systems. Structural modifications and mixing with other materials have widely been used for the improvement of hemostatic characteristics of alginate and for making multifunctional medical devices that not only prevent uncontrolled bleeding but also have antibacterial characteristics, drug delivery abilities, and curing effects. This review is hoped to prepare critical insights into alginate modifications for better hemostatic properties.
Collapse
Affiliation(s)
- S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
4
|
Choque-Quispe Y, Choque-Quispe D, Ligarda-Samanez CA, Solano-Reynoso AM, Froehner S, Ramos-Pacheco BS, Carhuarupay-Molleda YF, Sumarriva-Bustinza LA. A High Andean Hydrocolloid Extracted by Microatomization: Preliminary Optimization in Aqueous Stability. Polymers (Basel) 2024; 16:1777. [PMID: 39000633 PMCID: PMC11244426 DOI: 10.3390/polym16131777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Aqueous suspensions rely on electrostatic interactions among suspended solids, posing a significant challenge to maintaining stability during storage, particularly in the food and pharmaceutical industries, where synthetic stabilizers are commonly employed. However, there is a growing interest in exploring new materials derived from natural and environmentally friendly sources. This study aimed to optimize the stability parameters of a novel Altoandino Nostoc Sphaericum hydrocolloid (NSH) extracted via micro atomization. Suspensions were prepared by varying the pH, gelatinization temperature and NSH dosage using a 23 factorial arrangement, resulting in eight treatments stored under non-controlled conditions for 20 days. Stability was assessed through turbidity, sedimentation (as sediment transmittance), ζ potential, particle size, color and UV-Vis scanning. Optimization of parameters was conducted using empirical equations, with evaluation based on the correlation coefficient (R2), average relative error (ARE) and X2. The suspensions exhibited high stability throughout the storage period, with optimized control parameters identified at a pH of 4.5, gelatinization temperature of 84.55 °C and NSH dosage of 0.08 g/L. Simulated values included turbidity (99.00%), sedimentation (72.34%), ζ potential (-25.64 mV), particle size (300.00 nm) and color index (-2.00), with simulated results aligning with practical application. These findings suggest the potential use of NSH as a substitute for commercial hydrocolloids, albeit with consideration for color limitations that require further investigation.
Collapse
Affiliation(s)
- Yudith Choque-Quispe
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - David Choque-Quispe
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Carlos A. Ligarda-Samanez
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Aydeé M. Solano-Reynoso
- Department of Basic Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.F.C.-M.)
| | - Sandro Froehner
- Department of Environmental Engineering, Federal University of Parana, Curitiba 80010, Brazil;
| | - Betsy S. Ramos-Pacheco
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | | | - Liliana Asunción Sumarriva-Bustinza
- Academic Department of Chemistry, Faculty of Science, Universidad Nacional de Educación Enrique Guzman y Valle, Lurigancho-Chosica 15472, Peru;
| |
Collapse
|
5
|
Anand K, Sharma R, Sharma N. Recent advancements in natural polymers-based self-healing nano-materials for wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35435. [PMID: 38864664 DOI: 10.1002/jbm.b.35435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The field of wound healing has witnessed remarkable progress in recent years, driven by the pursuit of advanced wound dressings. Traditional dressing materials have limitations like poor biocompatibility, nonbiodegradability, inadequate moisture management, poor breathability, lack of inherent therapeutic properties, and environmental impacts. There is a compelling demand for innovative solutions to transcend the constraints of conventional dressing materials for optimal wound care. In this extensive review, the therapeutic potential of natural polymers as the foundation for the development of self-healing nano-materials, specifically for wound dressing applications, has been elucidated. Natural polymers offer a multitude of advantages, possessing exceptional biocompatibility, biodegradability, and bioactivity. The intricate engineering strategies employed to fabricate these polymers into nanostructures, thereby imparting enhanced mechanical robustness, flexibility, critical for efficacious wound management has been expounded. By harnessing the inherent properties of natural polymers, including chitosan, alginate, collagen, hyaluronic acid, and so on, and integrating the concept of self-healing materials, a comprehensive overview of the cutting-edge research in this emerging field is presented in the review. Furthermore, the inherent self-healing attributes of these materials, wherein they exhibit innate capabilities to autonomously rectify any damage or disruption upon exposure to moisture or body fluids, reducing frequent dressing replacements have also been explored. This review consolidates the existing knowledge landscape, accentuating the benefits and challenges associated with these pioneering materials while concurrently paving the way for future investigations and translational applications in the realm of wound healing.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Rishi Sharma
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
6
|
Yuan M, Wang J, Geng L, Wu N, Yang Y, Zhang Q. A review: Structure, bioactivity and potential application of algal polysaccharides in skin aging care and therapy. Int J Biol Macromol 2024; 272:132846. [PMID: 38834111 DOI: 10.1016/j.ijbiomac.2024.132846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Skin is the first barrier of body which stands guard for defending aggressive pathogens and environmental pressures all the time. Cutaneous metabolism changes in harmful exposure, following with skin dysfunctions and diseases. Lots of researches have reported that polysaccharides extracted from seaweeds exhibited multidimensional bioactivities in dealing with skin disorder. However, few literature systematically reviews them. The aim of the present paper is to summarize structure, bioactivities and structure-function relationship of algal polysaccharides acting on skin. Algal polysaccharides show antioxidant, immunomodulating, hydration regulating, anti-melanogenesis and extracellular matrix (ECM) regulating abilities via multipath ways in skin. These bioactivities are determined by various parameters, including seaweed species, molecular weight, monosaccharides composition and substitute groups. In addition, potential usages of algae-derived polysaccharides in skin care and therapy are also elaborated. Algal polysaccharides are potential ingredients in formulation that providing anti-aging efficacy for skin.
Collapse
Affiliation(s)
- Mengyao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China.
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Yue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
7
|
Prokopiuk V, Onishchenko A, Tryfonyuk L, Posokhov Y, Gorbach T, Kot Y, Kot K, Maksimchuk P, Nakonechna O, Tkachenko A. Marine Polysaccharides Carrageenans Enhance Eryptosis and Alter Lipid Order of Cell Membranes in Erythrocytes. Cell Biochem Biophys 2024; 82:747-766. [PMID: 38334853 DOI: 10.1007/s12013-024-01225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Aim In the current study, hemocompatibility of three major commercially available types of carrageenans (ι, κ and λ) was investigated focusing on eryptosis. MATERIALS AND METHODS Carrageenans of ι-, κ- and λ-types were incubated with washed erythrocytes (hematocrit 0.4%) at 0-1-5-10 g/L for either 24 h or 48 h. Incubation was followed by flow cytometry-based quantitative analysis of eryptosis parameters, including cell volume, cell membrane scrambling and reactive oxygen species (ROS) production, lipid peroxidation markers and confocal microscopy-based evaluation of intracellular Ca2+ levels, assessment of lipid order in cell membranes and the glutathione antioxidant system. Confocal microscopy was used to assess carrageenan cellular internalization using rhodamine B isothiocyanate-conjugated carrageenans. RESULTS All three types of carrageenans were found to trigger eryptosis. Pro-eryptotic properties were type-dependent and λ-carrageenan had the strongest impact inducing phosphatidylserine membrane asymmetry, changes in cell volume, Ca2+ signaling and oxidative stress characterized by ROS overproduction, activation of lipid peroxidation and severe glutathione system depletion. Eryptosis induction by carrageenans does not require their uptake by erythrocytes. Changes in physicochemical properties of cell membrane were also type-dependent. No carrageenan-induced generation of superoxide and hydroxyl radicals was observed in cell-free milieu. CONCLUSIONS Our findings suggest that ι-, κ- and λ-types trigger eryptosis in a type-dependent manner and indicate that carrageenans can be further investigated as potential eryptosis-regulating therapeutic agents.
Collapse
Affiliation(s)
- Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna st, 33000, Rivne, Ukraine
| | - Yevgen Posokhov
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
- Department of Organic Chemistry, Biochemistry, Paints and Coatings, The National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova st, 61000, Kharkiv, Ukraine
| | - Tetyana Gorbach
- Department of Biochemistry, Kharkiv National Medical University, 4 Nauky ave., 61022, Kharkiv, Ukraine
| | - Yurii Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., 61022, Kharkiv, Ukraine
| | - Kateryna Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., 61022, Kharkiv, Ukraine
| | - Pavel Maksimchuk
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072, Kharkiv, Ukraine
| | - Oksana Nakonechna
- Department of Biochemistry, Kharkiv National Medical University, 4 Nauky ave., 61022, Kharkiv, Ukraine
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine.
| |
Collapse
|
8
|
McClements DJ. Novel animal product substitutes: A new category of plant-based alternatives to meat, seafood, egg, and dairy products. Compr Rev Food Sci Food Saf 2024; 23:e313330. [PMID: 38551190 DOI: 10.1111/1541-4337.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Many consumers are adopting plant-centric diets to address the adverse effects of livestock production on the environment, health, and animal welfare. Processed plant-based foods, including animal product analogs (such as meat, seafood, egg, or dairy analogs) and traditional animal product substitutes (such as tofu, seitan, or tempeh), may not be desirable to a broad spectrum of consumers. This article introduces a new category of plant-based foods specifically designed to overcome the limitations of current animal product analogs and substitutes: novel animal product substitutes (NAPS). NAPS are designed to contain high levels of nutrients to be encouraged (such as proteins, omega-3 fatty acids, dietary fibers, vitamins, and minerals) and low levels of nutrients to be discouraged (such as salt, sugar, and saturated fat). Moreover, they may be designed to have a wide range of appearances, textures, mouthfeels, and flavors. For instance, they could be red, orange, green, yellow, blue, or beige; they could be spheres, ovals, cubes, or pyramids; they could be hard/soft or brittle/pliable; and they could be lemon, thyme, curry, or chili flavored. Consequently, there is great flexibility in creating NAPS that could be eaten in situations where animal products are normally consumed, for example, with pasta, rice, potatoes, bread, soups, or salads. This article reviews the science behind the formulation of NAPS, highlights factors impacting their appearance, texture, flavor, and nutritional profile, and discusses methods that can be used to formulate, produce, and characterize them. Finally, it stresses the need for further studies on this new category of foods, especially on their sensory and consumer aspects.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
9
|
Komisarska P, Pinyosinwat A, Saleem M, Szczuko M. Carrageenan as a Potential Factor of Inflammatory Bowel Diseases. Nutrients 2024; 16:1367. [PMID: 38732613 PMCID: PMC11085445 DOI: 10.3390/nu16091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Carrageenan is a widely used food additive and is seen as a potential candidate in the pharmaceutical industry. However, there are two faces to carrageenan that allows it to be used positively for therapeutic purposes. Carrageenan can be used to create edible films and for encapsulating drugs, and there is also interest in the use of carrageenan for food printing. Carrageenan is a naturally occurring polysaccharide gum. Depending on the type of carrageenan, it is used in regulating the composition of intestinal microflora, including the increase in the population of Bifidobacterium bacteria. On the other hand, the studies have demonstrated the harmfulness of carrageenan in animal and human models, indicating a direct link between diet and intestinal inflammatory states. Carrageenan changes the intestinal microflora, especially Akkermansia muciniphilia, degrades the mucous barrier and breaks down the mucous barrier, causing an inflammatory reaction. It directly affects epithelial cells by activating the pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. The mechanism is based on activation of the TLR4 receptor, alterations in macrophage activity, production of proinflammatory cytokines and activation of innate immune pathways. Carrageenan increases the content of Bacteroidetes bacteria, also causing a reduction in the number of short chain fatty acid (SCFA)-producing bacteria. The result is damage to the integrity of the intestinal membrane and reduction of the mucin layer. The group most exposed to the harmful effects of carrageenan are people suffering from intestinal inflammation, including Crohn disease (CD) and ulcerative colitis (UC).
Collapse
Affiliation(s)
| | | | | | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland (M.S.)
| |
Collapse
|
10
|
Kokkuvayil Ramadas B, Rhim JW, Roy S. Recent Progress of Carrageenan-Based Composite Films in Active and Intelligent Food Packaging Applications. Polymers (Basel) 2024; 16:1001. [PMID: 38611259 PMCID: PMC11014226 DOI: 10.3390/polym16071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, as concerns about petrochemical-derived polymers increase, interest in biopolymer-based materials is increasing. Undoubtedly, biopolymers are a better alternative to solve the problem of synthetic polymer-based plastics for packaging purposes. There are various types of biopolymers in nature, and mostly polysaccharides are used in this regard. Carrageenan is a hydrophilic polysaccharide extracted from red algae and has recently attracted great interest in the development of food packaging films. Carrageenan is known for its excellent film-forming properties, high compatibility and good carrier properties. Carrageenan is readily available and low cost, making it a good candidate as a polymer matrix base material for active and intelligent food packaging films. The carrageenan-based packaging film lacks mechanical, barrier, and functional properties. Thus, the physical and functional properties of carrageenan-based films can be enhanced by blending this biopolymer with functional compounds and nanofillers. Various types of bioactive ingredients, such as nanoparticles, natural extracts, colorants, and essential oils, have been incorporated into the carrageenan-based film. Carrageenan-based functional packaging film was found to be useful for extending the shelf life of packaged foods and tracking spoilage. Recently, there has been plenty of research work published on the potential of carrageenan-based packaging film. Therefore, this review discusses recent advances in carrageenan-based films for applications in food packaging. The preparation and properties of carrageenan-based packaging films were discussed, as well as their application in real-time food packaging. The latest discussion on the potential of carrageenan as an alternative to traditionally used synthetic plastics may be helpful for further research in this field.
Collapse
Affiliation(s)
- Bharath Kokkuvayil Ramadas
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| |
Collapse
|
11
|
Nakamura H, Morita R, Ito R, Sakurada A, Tomita N, Hirata Y, Kanari Y, Komatsu Y, Takanashi K, Anbo T, Katsuki S. Feasibility and safety of 0.6% sodium alginate in endoscopic submucosal dissection for colorectal neoplastic lesion: A pilot study. DEN OPEN 2024; 4:e313. [PMID: 37927953 PMCID: PMC10625103 DOI: 10.1002/deo2.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Objectives The usefulness of 0.6% sodium alginate (SA) as a submucosal (SM) injection solution for endoscopic SM dissection (ESD) has gained attention over the past few years. However, using ESD for colorectal neoplastic lesions is not explicitly researched as yet. Thus, we conducted this study to determine the feasibility and safety of 0.6% SA solution for colorectal ESD. Methods In this single-center, retrospective pilot study, a total of 100 cases treated with ESD using 0.6% SA as a SM injection solution for colorectal neoplasia at our institute were retrospectively reviewed to clarify the clinical feasibility and safety of 0.6% SA. The primary endpoint was to evaluate the complication rate, and the secondary endpoint was to determine the procedure time and the amount of solution used. Results Intraoperative perforation was observed in 1 case (1.0%), 2 cases (2.0%) presented with postprocedural hemorrhage, and no lethal adverse events were observed. The median ESD procedure times were 39.5 min (10-150), and the amount of solution used was less than 20 mL in 67 cases (67.0%). En-bloc resection could be achieved in 97 cases (97.0%). Although six cases underwent subsequent surgery due to the deep SM invasion (>1000 μm), there were no cases with nodal involvement, confirmed through histopathological evaluation. Conclusions Our findings indicate that 0.6% SA can potentially ensure safe and secure ESD for colorectal neoplasia.
Collapse
Affiliation(s)
- Hajime Nakamura
- Department of GastroenterologyOtaru Ekisaikai HospitalHokkaidoJapan
- Department of Medical OncologySapporo Medical University School of MedicineHokkaidoJapan
| | - Rie Morita
- Department of GastroenterologyOtaru Ekisaikai HospitalHokkaidoJapan
| | - Ryo Ito
- Department of GastroenterologyOtaru Ekisaikai HospitalHokkaidoJapan
| | - Akira Sakurada
- Department of GastroenterologyOtaru Ekisaikai HospitalHokkaidoJapan
| | - Natsumi Tomita
- Department of GastroenterologyOtaru Ekisaikai HospitalHokkaidoJapan
| | - Yuya Hirata
- Department of GastroenterologyOtaru Ekisaikai HospitalHokkaidoJapan
| | - Yusuke Kanari
- Department of GastroenterologyOtaru Ekisaikai HospitalHokkaidoJapan
| | - Yuya Komatsu
- Department of GastroenterologyOtaru Ekisaikai HospitalHokkaidoJapan
| | | | - Tomonori Anbo
- Department of GastroenterologyOtaru Ekisaikai HospitalHokkaidoJapan
| | - Shinichi Katsuki
- Department of GastroenterologyOtaru Ekisaikai HospitalHokkaidoJapan
| |
Collapse
|
12
|
Sahu S, Sharma S, Kaur A, Singh G, Khatri M, Arya SK. Algal carbohydrate polymers: Catalytic innovations for sustainable development. Carbohydr Polym 2024; 327:121691. [PMID: 38171696 DOI: 10.1016/j.carbpol.2023.121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Algal polysaccharides, harnessed for their catalytic potential, embody a compelling narrative in sustainable chemistry. This review explores the complex domains of algal carbohydrate-based catalysis, revealing its diverse trajectory. Starting with algal polysaccharide synthesis and characterization methods as catalysts, the investigation includes sophisticated techniques like NMR spectroscopy that provide deep insights into the structural variety of these materials. Algal polysaccharides undergo various preparation and modification techniques to enhance their catalytic activity such as immobilization. Homogeneous catalysis, revealing its significance in practical applications like crafting organic compounds and facilitating chemical transformations. Recent studies showcase how algal-derived catalysts prove to be remarkably versatile, showcasing their ability to customise reactions for specific substances. Heterogeneous catalysis, it highlights the significance of immobilization techniques, playing a central role in ensuring stability and the ability to reuse catalysts. The practical applications of heterogeneous algal catalysts in converting biomass and breaking down contaminants, supported by real-life case studies, emphasize their effectiveness. In sustainable chemistry, algal polysaccharides emerge as compelling catalysts, offering a unique intersection of eco-friendliness, structural diversity, and versatile catalytic properties. Tackling challenges such as dealing with complex structural variations, ensuring the stability of the catalyst, and addressing economic considerations calls for out-of-the-box and inventive solutions. Embracing the circular economy mindset not only assures sustainable catalyst design but also promotes efficient recycling practices. The use of algal carbohydrates in catalysis stands out as a source of optimism, paving the way for a future where chemistry aligns seamlessly with nature, guiding us toward a sustainable, eco-friendly, and thriving tomorrow. This review encapsulates-structural insights, catalytic applications, challenges, and future perspectives-invoking a call for collective commitment to catalyze a sustainable scientific revolution.
Collapse
Affiliation(s)
- Sudarshan Sahu
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shalini Sharma
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Anupreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
13
|
Yin Q, Batbatan CG, Li Y, Zhang Y, Yang Q, Xiao A. Preparation and Characterization of Carrageenase Immobilized onto Polyethyleneimine-Modified Pomelo Peel. J Microbiol Biotechnol 2024; 34:132-140. [PMID: 37957113 PMCID: PMC10840462 DOI: 10.4014/jmb.2304.04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 11/15/2023]
Abstract
In this study, carrageenase immobilization was evaluated with a concise and efficient strategy. Pomelo peel cellulose (PPC) modified by polyethyleneimine (PEI) using the physical absorption method was used as a carrier to immobilize carrageenase and achieved repeated batch catalysis. In addition, various immobilization and reaction parameters were scrutinized to enhance the immobilization efficiency. Under the optimized conditions, the enzyme activity recovery rate was more than 50% and 4.1 times higher than immobilization with non-modified pomelo peels. The optimum temperature and pH of carrageenase after immobilization by PEI-modified pomelo peel, at 60°C and 7.5 respectively, were in line with the free enzyme. The temperature resistance was reduced, inconsistent with free enzyme, and pH resistance was increased. A significant loss of activity (46.8%) was observed after reusing it thrice under optimal reaction conditions. In terms of stability, the immobilized enzyme conserved 76.0% of the initial enzyme activity after 98 days of storage. Furthermore, a modest decrease in the kinetic constant (Km) value was observed, indicating the improved substrate affinity of the immobilized enzyme. Therefore, modified pomelo peel is a verified and promising enzyme immobilization system for the synthesis of inorganic solvents.
Collapse
Affiliation(s)
- Qin Yin
- College of Biological and Food Engineering, Suzhou University, Suzhou, Anhui, 234000, P.R. China
- Department of Biology, Central Mindanao University, Maramag, Bukidnon, 8710, Philippines
| | | | - Yongxing Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Qiuming Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| |
Collapse
|
14
|
Tahiri M, Johnsrud C, Steffensen IL. Evidence and hypotheses on adverse effects of the food additives carrageenan (E 407)/processed Eucheuma seaweed (E 407a) and carboxymethylcellulose (E 466) on the intestines: a scoping review. Crit Rev Toxicol 2023; 53:521-571. [PMID: 38032203 DOI: 10.1080/10408444.2023.2270574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
This scoping review provides an overview of publications reporting adverse effects on the intestines of the food additives carrageenan (CGN) (E 407)/processed Eucheuma seaweed (PES) (E 407a) and carboxymethylcellulose (CMC) (E 466). It includes evidence from human, experimental mammal and in vitro research publications, and other evidence. The databases Medline, Embase, Scopus, Web of Science Core Collection, Cochrane Database of Systematic Reviews and Epistemonikos were searched without time limits, in addition to grey literature. The publications retrieved were screened against predefined criteria. From two literature searches, 2572 records were screened, of which 224 records were included, as well as 38 records from grey literature, making a total of 262 included publications, 196 on CGN and 101 on CMC. These publications were coded and analyzed in Eppi-Reviewer and data gaps presented in interactive maps. For CGN, five, 69 and 33 research publications on humans, experimental mammals and in vitro experiments were found, further separated as degraded or native (non-degraded) CGN. For CMC, three human, 20 animal and 14 in vitro research publications were obtained. The most studied adverse effects on the intestines were for both additives inflammation, the gut microbiome, including fermentation, intestinal permeability, and cancer and metabolic effects, and immune effects for CGN. Further studies should focus on native CGN, in the form and molecular weight used as food additive. For both additives, randomized controlled trials of sufficient power and with realistic dietary exposure levels of single additives, performed in persons of all ages, including potentially vulnerable groups, are needed.
Collapse
Affiliation(s)
- Mirlinda Tahiri
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Celine Johnsrud
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Inger-Lise Steffensen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
15
|
Murakami S, Hirazawa C, Mizutani T, Ohya T, Yoshikawa R, Ma N, Ikemori T, Ito T, Matsuzaki C. Edible Red Seaweed Hypnea asiatica Ameliorates High-Fat Diet-Induced Metabolic Diseases in Mice. J Med Food 2023; 26:799-808. [PMID: 37939270 DOI: 10.1089/jmf.2023.k.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Metabolic diseases, including obesity, diabetes, and fatty liver disease, are dramatically increasing around the world. Seaweed is low in calories and rich in many active ingredients that are necessary for maintaining good health, and is expected to be effective for preventing metabolic diseases. The purpose of this study was to examine the effects of a traditional Japanese edible seaweed Hypnea asiatica (H. asiatica) on obesity, using a mouse model. H. asiatica was dried and powdered, mixed with a high-fat diet, and fed to male C57BL/6J mice for 13 weeks. On the last day of the experiment, blood samples were collected under anesthesia and biochemical parameters such as lipids and adipokines were measured. Liver and adipose tissue were excised, weighed, and oxidant/antioxidant parameters were measured. Some mice were perfused with a fixative solution containing formalin, and tissue specimens were prepared. A glucose tolerance test was used to assess insulin resistance. The inhibition of lipase activity was evaluated in vitro. Thirteen-week supplementation with H. asiatica suppressed body weight gain, body fat accumulation, and blood glucose levels. H. asiatica also improved fatty liver and hypercholesterolemia, and reduced the oxidant and inflammatory parameters of serum and liver. H. asiatica increased fecal triglyceride excretion and polyphenol-rich ethanol extract of H. asiatica inhibited lipase activity in vitro. These results suggest that polysaccharides and polyphenols in H. asiatica may ameliorate obesity and diabetes by inhibiting intestinal fat absorption and reducing oxidative stress and inflammation. H. asiatica may be useful in preventing metabolic diseases such as obesity, diabetes, and fatty liver.
Collapse
Affiliation(s)
- Shigeru Murakami
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
- Fukui Bioincubation Center, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Chihiro Hirazawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Toshiki Mizutani
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Takuma Ohya
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Rina Yoshikawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Ning Ma
- Division of Health Science, Graduate School of Health Science, Suzuka University, Suzuka, Mie, Japan
| | - Takahiko Ikemori
- Ishikawa Prefecture Fisheries Division, Kanazawa, Ishikawa, Japan
| | - Takashi Ito
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
- Fukui Bioincubation Center, Fukui Prefectural University, Yoshida-Gun, Fukui, Japan
| | - Chiaki Matsuzaki
- Research Institute for Bioscience and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
16
|
Bukhari NTM, Rawi NFM, Hassan NAA, Saharudin NI, Kassim MHM. Seaweed polysaccharide nanocomposite films: A review. Int J Biol Macromol 2023; 245:125486. [PMID: 37355060 DOI: 10.1016/j.ijbiomac.2023.125486] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
A million tonnes of plastic produced each year are disposed of after single use. Biodegradable polymers have become a promising material as an alternative to petroleum-based polymers. Utilising biodegradable polymers will promote environmental sustainability which has emerged with potential features and performances for various applications in different sectors. Seaweed-derived polysaccharides-based composites have been the focus of numerous studies due to the composites' renewability and sustainability for industries (food packaging and medical fields like tissue engineering and drug delivery). Due to their biocompatibility, abundance, and gelling ability, seaweed derivatives such as alginate, carrageenan, and agar are commonly used for this purpose. Seaweed has distinct film-forming characteristics, but its mechanical and water vapour barrier qualities are weak. Thus, modifications are necessary to enhance the seaweed properties. This review article summarises and discusses the effect of incorporating seaweed films with different types of nanoparticles on their mechanical, thermal, and water barrier properties.
Collapse
Affiliation(s)
- Nur Thohiroh Md Bukhari
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nur Adilah Abu Hassan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nur Izzaati Saharudin
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Haafiz Mohamad Kassim
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
17
|
Moreira ASP, Gaspar D, Ferreira SS, Correia A, Vilanova M, Perrineau MM, Kerrison PD, Gachon CMM, Domingues MR, Coimbra MA, Coreta-Gomes FM, Nunes C. Water-Soluble Saccharina latissima Polysaccharides and Relation of Their Structural Characteristics with In Vitro Immunostimulatory and Hypocholesterolemic Activities. Mar Drugs 2023; 21:183. [PMID: 36976232 PMCID: PMC10054259 DOI: 10.3390/md21030183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Brown macroalgae are an important source of polysaccharides, mainly fucose-containing sulphated polysaccharides (FCSPs), associated with several biological activities. However, the structural diversity and structure-function relationships for their bioactivities are still undisclosed. Thus, the aim of this work was to characterize the chemical structure of water-soluble Saccharina latissima polysaccharides and evaluate their immunostimulatory and hypocholesterolemic activities, helping to pinpoint a structure-activity relationship. Alginate, laminarans (F1, neutral glucose-rich polysaccharides), and two fractions (F2 and F3) of FCSPs (negatively charged) were studied. Whereas F2 is rich in uronic acids (45 mol%) and fucose (29 mol%), F3 is rich in fucose (59 mol%) and galactose (21 mol%). These two fractions of FCSPs showed immunostimulatory activity on B lymphocytes, which could be associated with the presence of sulphate groups. Only F2 exhibited a significant effect in reductions in in vitro cholesterol's bioaccessibility attributed to the sequestration of bile salts. Therefore, S. latissima FCSPs were shown to have potential as immunostimulatory and hypocholesterolemic functional ingredients, where their content in uronic acids and sulphation seem to be relevant for the bioactive and healthy properties.
Collapse
Affiliation(s)
- Ana S. P. Moreira
- LAQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana Gaspar
- LAQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sónia S. Ferreira
- LAQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Alexandra Correia
- i3S—Institute for Research and Innovation in Health and IBMC—Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Manuel Vilanova
- i3S—Institute for Research and Innovation in Health and IBMC—Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | | | - Philip D. Kerrison
- Scottish Association for Marine Sciences, Scottish Marine Institute, Oban PA37 1QA, UK
- Hortimare BV, Altonstraat 25A, 1704 CC Heerhugowaard, The Netherlands
| | - Claire M. M. Gachon
- Scottish Association for Marine Sciences, Scottish Marine Institute, Oban PA37 1QA, UK
- Unité Molécules de Communication et Adaptation des Micro-Organismes (UMR 7245), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique (CNRS), 75005 Paris, France
| | - Maria Rosário Domingues
- LAQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel A. Coimbra
- LAQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Filipe M. Coreta-Gomes
- LAQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CQC-IMS—Coimbra Chemistry Centre, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Cláudia Nunes
- CICECO—Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Liu F, Duan G, Yang H. Recent advances in exploiting carrageenans as a versatile functional material for promising biomedical applications. Int J Biol Macromol 2023; 235:123787. [PMID: 36858089 DOI: 10.1016/j.ijbiomac.2023.123787] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
Carrageenans are a group of biopolymers widely found in red seaweeds. Commercial carrageenans have been traditionally used as emulsifiers, stabilizers, and thickening and gelling agents in food products. Carrageenans are regarded as bioactive polysaccharides with disease-modifying and microbiota-modulating activities. Novel biomedical applications of carrageenans as biocompatible functional materials for fabricating hydrogels and nanostructures, including carbon dots, nanoparticles, and nanofibers, have been increasingly exploited. In this review, we describe the unique structural characteristics of carrageenans and their functional relevance. We summarize salient physicochemical features, including thixotropic and shear-thinning properties, of carrageenans. Recent results from clinical trials in which carrageenans were applied as both antiviral and antitumor agents and functional materials are discussed. We also highlight the most recent advances in the development of carrageenan-based targeted drug delivery systems with various pharmaceutical formulations. Promising applications of carrageenans as a bioink material for 3D printing in tissue engineering and regenerative medicine are systematically evaluated. We envisage some key hurdles and challenges in the commercialization of carrageenans as a versatile material for clinical practice. This comprehensive review of the intimate relationships among the structural features, unique rheological properties, and biofunctionality of carrageenans will provide novel insights into their biomedicine application potential.
Collapse
Affiliation(s)
- Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
19
|
Pehlivan AD, Yadel İ, Kılıç N, Öztürk Hİ. The incorporation of Chlorella vulgaris and Chondrus crispus algae in the production of functional ayran drinks: effects on physicochemical, microbiological, and sensory characteristics. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
20
|
Alvarado-Ramírez L, Santiesteban-Romero B, Poss G, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R, Bonaccorso AD, Melchor-Martínez EM. Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1072761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The annual global fish production reached a record 178 million tonnes in 2020, which continues to increase. Today, 49% of the total fish is harvested from aquaculture, which is forecasted to reach 60% of the total fish produced by 2030. Considering that the wastes of fishing industries represent up to 75% of the whole organisms, the fish industry is generating a large amount of waste which is being neglected in most parts of the world. This negligence can be traced to the ridicule of the value of this resource as well as the many difficulties related to its valorisation. In addition, the massive expansion of the aquaculture industry is generating significant environmental consequences, including chemical and biological pollution, disease outbreaks that increase the fish mortality rate, unsustainable feeds, competition for coastal space, and an increase in the macroalgal blooms due to anthropogenic stressors, leading to a negative socio-economic and environmental impact. The establishment of integrated multi-trophic aquaculture (IMTA) has received increasing attention due to the environmental benefits of using waste products and transforming them into valuable products. There is a need to integrate and implement new technologies able to valorise the waste generated from the fish and aquaculture industry making the aquaculture sector and the fish industry more sustainable through the development of a circular economy scheme. This review wants to provide an overview of several approaches to valorise marine waste (e.g., dead fish, algae waste from marine and aquaculture, fish waste), by their transformation into biofuels (biomethane, biohydrogen, biodiesel, green diesel, bioethanol, or biomethanol) and recovering biomolecules such as proteins (collagen, fish hydrolysate protein), polysaccharides (chitosan, chitin, carrageenan, ulvan, alginate, fucoidan, and laminarin) and biosurfactants.
Collapse
|
21
|
Barciela P, Carpena M, Li NY, Liu C, Jafari SM, Simal-Gandara J, Prieto MA. Macroalgae as biofactories of metal nanoparticles; biosynthesis and food applications. Adv Colloid Interface Sci 2023; 311:102829. [PMID: 36603300 DOI: 10.1016/j.cis.2022.102829] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Nanotechnology has opened a new frontier in recent years, capable of providing new ways of controlling and structuring products with greater market value and offering significant opportunities for the development of innovative applications in food processing, preservation, and packaging. Macroalgae (MAG) are the major photoautotrophic group of living beings known as a potential source of secondary metabolites, namely phenolic compounds, pigments, and polysaccharides. Biosynthesis based on the abilities of MAG as "nanobiofactories" targets the use of algal secondary metabolites as reducing agents to stabilize nanoparticles (NPs). Nowadays, most of the studies are focused on the use of metal (Ag, Au) and metal-oxide (CuO, ZnO) NPs derived from algae. The eco-friendly biosynthesis of metal NPs reduces the cost and production time and increases their biocompatibility, due to the presence of bioactive compounds in MAG, making them suitable for a wide variety of applications. These compounds have been attributed to the antimicrobial and antioxidant properties responsible for their application through innovative technologies such as nanoencapsulation, nanocomposites, or biosensors in the food industry. Nevertheless, toxicity is a key factor that should be considered, so the applicable regulation needs to guarantee the safe use of metal NPs. Consequently, the aim of this review will be to compile the available information on MAG-mediated metal NPs, their biosynthesis, and potential food applications.
Collapse
Affiliation(s)
- P Barciela
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - M Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Ning-Yang Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, PR China.
| | - S M Jafari
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, PR China.
| | - J Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - M A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal.
| |
Collapse
|
22
|
Azelee NIW, Noor NM, Rasid ZIA, Suhaimi SH, Salamun N, Jasman SM, Manas NHA, Hasham@Hisam R. Marine waste for nutraceutical and cosmeceutical production. VALORIZATION OF WASTES FOR SUSTAINABLE DEVELOPMENT 2023:241-272. [DOI: 10.1016/b978-0-323-95417-4.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Babich O, Sukhikh S, Larina V, Kalashnikova O, Kashirskikh E, Prosekov A, Noskova S, Ivanova S, Fendri I, Smaoui S, Abdelkafi S, Michaud P, Dolganyuk V. Algae: Study of Edible and Biologically Active Fractions, Their Properties and Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060780. [PMID: 35336662 PMCID: PMC8949465 DOI: 10.3390/plants11060780] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
The beneficial properties of algae make them perfect functional ingredients for food products. Algae have a high energy value and are a source of biologically active substances, proteins, fats, carbohydrates, vitamins, and macro- and microelements. They are also rich in polyunsaturated fatty acids, proteins, mycosporine-like amino acids, polysaccharides, polyphenols, carotenoids, sterols, steroids, lectins, halogenated compounds, polyketides, alkaloids, and carrageenans. Different extraction parameters are used depending on the purpose and the substances to be isolated. In this study, the following parameters were used: hydromodule 1:10 and an extraction duration of 1-2 h at the extraction temperature of 25-40 °C. A 30-50% solution of ethanol in water was used as an extractant. Algae extracts can be considered as potential natural sources of biologically active compounds with antimicrobial activity and antiviral properties. The content of crude protein, crude fat, and carbohydrates in U. Prolifera, C. racemosa var. peltata (Chlorophyta), S. oligocystum and S. fusiforme (SF-1) was studied. It was found that C. muelleri (Bacillariophyta), I. galbana (Haptophyta), and T. weissflogii (Bacillariophyta) contain about 1.9 times more omega-3 than omega-6 fatty acids. N. gaditana (Ochrophyta), D. salina (Chlorophyta), P. tricornutum (Bacillaryophyta) and I. galbana (Haptophyta) extracts showed inhibitory activity of varying intensities against E. coli or P. aeruginosa. In addition, algae and algae-derived compounds have been proposed to offer attractive possibilities in the food industry, especially in the meat sector, to evolve functional foods with myriad functionalities. Algae can increase the biological activity of food products, while the further study of the structure of compounds found in algae can broaden their future application possibilities.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Viktoria Larina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Olga Kalashnikova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Egor Kashirskikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, Sfax 3018, Tunisia;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
| | - Vyacheslav Dolganyuk
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| |
Collapse
|
24
|
Mendez-López M, Ramos-Hernández A, Moreno-Serna V, Bonardd S, Ramírez O, Silva H, Inostroza-Rivera R, Diaz DD, Leiva A, Saldías C. A facile approach for tuning optical and surface properties of novel biobased Alginate/POTE handleable films via solvent vapor exposure. Int J Biol Macromol 2021; 193:258-268. [PMID: 34655589 DOI: 10.1016/j.ijbiomac.2021.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
Novel biobased films consisting of alginate blends with poly (octanoic acid 2-thiophen-3-yl-ethyl ester) (POTE), a conducting polymer, were prepared by solution casting, and their optical, morphological, thermal, and surface properties were studied. Using UV-visible spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM), the effects of tetrahydrofuran solvent vapors on the optical properties and surface morphology of biobased films with different POTE contents were studied. Results indicate that morphological rearrangements of POTE take place during the process of solvent exposure. Specifically, the solvent vapor induced the formation of POTE small crystalline domains, which allows envisioning the potential of tuning UV-visible absorbance and wettability behavior of biobased films. Finally, theoretical electronic calculations (specifically frontier molecular orbitals analysis) provided consistent evidence on POTE's preferential orientation and selectivity toward the THF-vapor medium.
Collapse
Affiliation(s)
- M Mendez-López
- Departamento de Química y Biología, Universidad el Norte, km 5 vía Pto Colombia, P. O. Box 1569-51820, Barranquilla, Atlántico, Colombia
| | - A Ramos-Hernández
- Grupo de investigación Química Supramolecular Aplicada, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Cra 30# 8-49 Pto Colombia, Atlántico, Colombia
| | - V Moreno-Serna
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo de Polímeros, Chile
| | - S Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, 38206 La Laguna, Tenerife, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - O Ramírez
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Macul, 7820436 Santiago, Chile
| | - Hernán Silva
- Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Inostroza-Rivera
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, 7820436 Santiago, Chile
| | - D Diaz Diaz
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, 38206 La Laguna, Tenerife, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain; Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - A Leiva
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Macul, 7820436 Santiago, Chile
| | - C Saldías
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Macul, 7820436 Santiago, Chile.
| |
Collapse
|
25
|
V GS, M DK, Pugazhendi A, Bajhaiya AK, Gugulothu P, J RB. Biofuel production from Macroalgae: present scenario and future scope. Bioengineered 2021; 12:9216-9238. [PMID: 34709971 PMCID: PMC8809944 DOI: 10.1080/21655979.2021.1996019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The current fossil fuel reserves are not sufficient to meet the increasing demand and very soon will become exhausted. Pollution, global warming, and inflated oil prices have led the quest for renewable energy sources. Macroalgae (green, brown, and red marine seaweed) is gaining popularity as a viable and promising renewable source for biofuels production. Numerous researches have been conducted to access the potential of macroalgae for generating diverse bioproducts such as biofuels. The existence of components such as carbohydrates and lipids, and the lack or deficiency of lignin, create macroalgae an enviable feedstock for biofuels generation. This review briefly covers the potential macroalgal species promoting the production of biofuels and their cultivation methods. It also illustrates the biofuel generation pathway and its efficiency along with the recent techniques to accelerate the product yield. In addition, the current analysis focuses on a cost-effective sustainable generation of biofuel along with commercialization and scaleup.
Collapse
Affiliation(s)
- Godvin Sharmila V
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, India
| | - Dinesh Kumar M
- Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences(SIMATS), Chennai, India
| | - Arulazhagan Pugazhendi
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amit Kumar Bajhaiya
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | | | - Rajesh Banu J
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|