1
|
Li L, Jin T, Hu L, Ding J. Alternative splicing regulation and its therapeutic potential in bladder cancer. Front Oncol 2024; 14:1402350. [PMID: 39132499 PMCID: PMC11310127 DOI: 10.3389/fonc.2024.1402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Bladder cancer is one of the leading causes of mortality globally. The development of bladder cancer is closely associated with alternative splicing, which regulates human gene expression and enhances the diversity of functional proteins. Alternative splicing is a distinctive feature of bladder cancer, and as such, it may hold promise as a therapeutic target. This review aims to comprehensively discuss the current knowledge of alternative splicing in the context of bladder cancer. We review the process of alternative splicing and its regulation in bladder cancer. Moreover, we emphasize the significance of abnormal alternative splicing and splicing factor irregularities during bladder cancer progression. Finally, we explore the impact of alternative splicing on bladder cancer drug resistance and the potential of alternative splicing as a therapeutic target.
Collapse
Affiliation(s)
- Lina Li
- College of Medicine, Jinhua University of Vocational Technology, Jinhua, Zhejiang, China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Liang Hu
- Department of Urology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
Hong Z, Chen X, Wang L, Zhou X, He H, Zou G, Liu Q, Wang Y. ROCK2-RNA interaction map reveals multiple biological mechanisms underlying tumor progression in renal cell carcinoma. Hum Cell 2023; 36:1790-1803. [PMID: 37418232 DOI: 10.1007/s13577-023-00947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer in adults. Despite new therapeutic modalities, the outcomes for RCC patients remain unsatisfactory. Rho-associated coiled-coil forming protein kinase 2 (ROCK2) has previously been shown to be upregulated in RCC, and its expression was negatively correlated with patient survival. However, the precise molecular function of ROCK2 has remained unclear. Herein, using RNA-seq analysis of ROCK2 knockdown and control cells, we identified 464 differentially expressed genes, and 1287 alternative splicing events in 786-O RCC cells. Furthermore, mapping of iRIP-seq reads in 786-O cells showed a biased distribution at 5' UTR, intronic and intergenic regions. By comparing ROCK2-regulated alternative splicing and iRIP-seq data, we found 292 overlapping genes that are enriched in multiple tumorigenic pathways. Taken together, our work defined a complex ROCK2-RNA interaction map on a genomic scale in a human RCC cell line, which deepens our understanding of the molecular function of ROCK2 in cancer development.
Collapse
Affiliation(s)
- Zhengdong Hong
- Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuexin Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lei Wang
- School of Pharmacy, Nanchang Medical College, Nanchang, China
- Jiangxi Health Vocational College, Nanchang, China
| | - Xiaocheng Zhou
- Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haowei He
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China
| | - Gaode Zou
- Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingnan Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yiqian Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Zhou X, Chi K, Zhang C, Liu Q, Yang G. Sialylation: A Cloak for Tumors to Trick the Immune System in the Microenvironment. BIOLOGY 2023; 12:832. [PMID: 37372117 DOI: 10.3390/biology12060832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The tumor microenvironment (TME), where the tumor cells incite the surrounding normal cells to create an immune suppressive environment, reduces the effectiveness of immune responses during cancer development. Sialylation, a type of glycosylation that occurs on cell surface proteins, lipids, and glycoRNAs, is known to accumulate in tumors and acts as a "cloak" to help tumor cells evade immunological surveillance. In the last few years, the role of sialylation in tumor proliferation and metastasis has become increasingly evident. With the advent of single-cell and spatial sequencing technologies, more research is being conducted to understand the effects of sialylation on immunity regulation. This review provides updated insights into recent research on the function of sialylation in tumor biology and summarizes the latest developments in sialylation-targeted tumor therapeutics, including antibody-mediated and metabolic-based sialylation inhibition, as well as interference with sialic acid-Siglec interaction.
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kaijun Chi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chairui Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Quan Liu
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Lan J, Zhou Y, Liu Y, Xia Y, Wan Y, Cao J. Role of ADAM33 short isoform as a tumor suppressor in the pathogenesis of thyroid cancer via oncogenic function disruption of full-length ADAM33. Hum Cell 2023:10.1007/s13577-023-00898-3. [PMID: 36977901 DOI: 10.1007/s13577-023-00898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
Thyroid cancer is the most prevalent endocrine malignancy globally; however, its underlying pathogenesis remains unclarified. Reportedly, alternative splicing is involved in processes such as embryonic stem and precursor cell differentiation, cell lineage reprogramming, and epithelial-mesenchymal transitions. ADAM33-n, an alternative splicing isoform of ADAM33, encodes a small protein containing 138 amino acids of the N-terminal of full-length ADAM33, which constructs a chaperone-like domain that was previously reported to bind and block the proteolysis activity of ADAM33. In this study, we reported for the first time that ADAM33-n was downregulated in thyroid cancer. The results of cell counting kit-8 and colony formation assays showed that ectopic ADAM33-n in papillary thyroid cancer cell lines restricted cell proliferation and colony formation. Moreover, we demonstrated that ectopic ADAM33-n reversed the oncogenic function of full-length ADAM33 in cell growth and colony formation in the MDA-T32 and BCPAP cells. These findings indicate the tumor suppressor ability of ADAM33-n. Altogether, our study findings present a potential explanatory model of how the downregulation of the oncogenic gene ADAM33 promotes the pathogenesis of thyroid cancer.
Collapse
Affiliation(s)
- Jing Lan
- Department of General Surgery, The first affiliated hospital of Soochow University, 188 Shizi Street, Suzhou, 215000, People's Republic of China
| | - Yehui Zhou
- Department of General Surgery, The first affiliated hospital of Soochow University, 188 Shizi Street, Suzhou, 215000, People's Republic of China
| | - Yang Liu
- Department of General Surgery, The first affiliated hospital of Soochow University, 188 Shizi Street, Suzhou, 215000, People's Republic of China
| | - Yu Xia
- Department of General Surgery, The first affiliated hospital of Soochow University, 188 Shizi Street, Suzhou, 215000, People's Republic of China
| | - Yuqiu Wan
- Department of General Surgery, The first affiliated hospital of Soochow University, 188 Shizi Street, Suzhou, 215000, People's Republic of China.
| | - Jianbo Cao
- Department of General Surgery, The first affiliated hospital of Soochow University, 188 Shizi Street, Suzhou, 215000, People's Republic of China.
| |
Collapse
|
5
|
Yu X, Luo B, Lin J, Zhu Y. Alternative splicing event associated with immunological features in bladder cancer. Front Oncol 2023; 12:966088. [PMID: 36686818 PMCID: PMC9851621 DOI: 10.3389/fonc.2022.966088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Bladder cancer (BLCA) is the most prevalent urinary tumor with few treatments. Alternative splicing (AS) is closely related to tumor development and tumor immune microenvironment. However, the comprehensive analysis of AS and prognosis and immunological features in BLCA is still lacking. In this study, we downloaded RNA-Seq data and clinical information from The Cancer Genome Atlas (TCGA) database, and AS events were acquired from the TCGA Splice-seq. A total of eight prognostic AS events (C19orf57|47943|ES, ANK3|11845|AP, AK9|77203|AT, GRIK2|77096|AT, DYM|45472|ES, PTGER3|3415|AT, ACTG1|44120|RI, and TRMU|62711|AA) were identified by univariate analysis and least absolute shrinkage and selection operator (LASSO) regression analysis to construct a risk score model. The Kaplan-Meier analysis revealed that the high-risk group had a worse prognosis compared with the low-risk group. The area under the receiver operating characteristic (ROC) curves (AUCs) for this risk score model in 1, 3, and 5 years were 0.698, 0.742, and 0.772, respectively. One of the prognostic AS event-related genes, TRMU, was differentially expressed between tumor and normal tissues in BLCA. The single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithm showed that both the risk score model and TRMU were significantly associated with tumor immune microenvironment and immune status (immune cells, immune-related pathway, and immune checkpoint) in BLCA patients. The TIMER database confirmed the relationship between the expression of TRMU and immune cells and checkpoint genes. Furthermore, Cytoscape software 3.8.0 was used to construct the regulatory network between AS and splicing factors (SFs). Our study demonstrated that AS events were powerful biomarkers to predict the prognosis and immune status in BLCA, which may be potential therapeutic targets in BLCA.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bixian Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Yu Zhu,
| |
Collapse
|
6
|
Ye F, Liang Y, Cheng Z, Liu Y, Hu J, Li W, Chen X, Gao J, Jiang H. Immunological Characteristics of Alternative Splicing Profiles Related to Prognosis in Bladder Cancer. Front Immunol 2022; 13:911902. [PMID: 35769470 PMCID: PMC9234272 DOI: 10.3389/fimmu.2022.911902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022] Open
Abstract
Several studies have found that pathological imbalance of alterative splicing (AS) events is associated with cancer susceptibility. carcinogenicity. Nevertheless, the relationship between heritable variation in AS events and carcinogenicity has not been extensively explored. Here, we downloaded AS event signatures, transcriptome profiles, and matched clinical information from The Cancer Genome Atlas (TCGA) database, identified the prognostic AS-related events via conducting the univariate Cox regression algorism. Subsequently, the prognostic AS-related events were further reduced by the least absolute shrinkage and selection operator (LASSO) logistic regression model, and employed for constructing the risk model. Single-sample (ssGSEA), ESTIMATE, and the CIBERSORT algorithms were conducted to evaluate tumor microenvironment status. CCK8, cell culture scratch, transwell invasion assays and flow cytometry were conducted to confirm the reliability of the model. We found 2751 prognostic-related AS events, and constructed a risk model with seven prognostic-related AS events. Compared with high-risk score patients, the overall survival rate of the patients with low-risk score was remarkably longer. Besides, we further found that risk score was also closely related to alterations in immune cell infiltration and immunotherapeutic molecules, indicating its potential as an observation of immune infiltration and clinical response to immunotherapy. In addition, the downstream target gene (DYM) could be a promising prognostic factor for bladder cancer. Our investigation provided an indispensable reference for ulteriorly exploring the role of AS events in the tumor microenvironment and immunotherapy efficiency, and rendered personalized prognosis monitoring for bladder cancer.
Collapse
Affiliation(s)
- Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yufei Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jimeng Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiahao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Haowen Jiang,
| |
Collapse
|
7
|
Abedi Z, MotieGhader H, Hosseini SS, Sheikh Beig Goharrizi MA, Masoudi-Nejad A. mRNA-miRNA bipartite networks reconstruction in different tissues of bladder cancer based on gene co-expression network analysis. Sci Rep 2022; 12:5885. [PMID: 35393513 PMCID: PMC8991185 DOI: 10.1038/s41598-022-09920-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is one of the most important cancers worldwide, and if it is diagnosed early, its progression in humans can be prevented and long-term survival will be achieved accordingly. This study aimed to identify novel micro-RNA (miRNA) and gene-based biomarkers for diagnosing BC. The microarray dataset of BC tissues (GSE13507) listed in the GEO database was analyzed for this purpose. The gene expression data from three BC tissues including 165 primary bladder cancer (PBC), 58 normal looking-bladder mucosae surrounding cancer (NBMSC), and 23 recurrent non-muscle invasive tumor tissues (RNIT) were used to reconstruct gene co-expression networks. After preprocessing and normalization, deferentially expressed genes (DEGs) were obtained and used to construct the weighted gene co-expression network (WGCNA). Gene co-expression modules and low-preserved modules were extracted among BC tissues using network clustering. Next, the experimentally validated mRNA-miRNA interaction information were used to reconstruct three mRNA-miRNA bipartite networks. Reactome pathway database and Gene ontology (GO) was subsequently performed for the extracted genes of three bipartite networks and miRNAs, respectively. To further analyze the data, ten hub miRNAs (miRNAs with the highest degree) were selected in each bipartite network to reconstruct three bipartite subnetworks. Finally, the obtained biomarkers were comprehensively investigated and discussed in authentic studies. The obtained results from our study indicated a group of genes including PPARD, CST4, CSNK1E, PTPN14, ETV6, and ADRM1 as well as novel miRNAs (e.g., miR-16-5p, miR-335-5p, miR-124-3p, and let-7b-5p) which might be potentially associated with BC and could be a potential biomarker. Afterward, three drug-gene interaction networks were reconstructed to explore candidate drugs for the treatment of BC. The hub miRNAs in the mRNA-miRNA bipartite network played a fundamental role in BC progression; however, these findings need further investigation.
Collapse
Affiliation(s)
- Zahra Abedi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Habib MotieGhader
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Sahar Sadat Hosseini
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Zhang X, Xiong H, Zhao Y, Lin S, Huang X, Lin C, Mao S, Chen D. Circular RNA LONP2 regulates proliferation, invasion, and apoptosis of bladder cancer cells by sponging microRNA-584-5p. Bioengineered 2022; 13:8823-8835. [PMID: 35358000 PMCID: PMC9161836 DOI: 10.1080/21655979.2022.2054753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bladder cancer (BC) is the most frequent type of urinary tumor and a barely treatable disease. Although extensive efforts have been invested in the research of BC, the underlying etiology and pathophysiology remain unclear. CircLONP2 is a circular RNA implicated in the development of many cancers, and miR-584-5p and YAP1 have been reported to contribute to the progression of BC. In this research, we presented novel evidence supporting circLONP2/miR-584-5p/YAP1 axis as a novel regulatory module in the progression of BC. We analyzed the expression of circLONP2 between precancerous BC samples and normal tissues using a published RNA-seq dataset. The expression of circLONP2 was also validated in clinical samples and cell lines by quantitative RT-PCR. Small interfering RNA (siRNA) and miRNA inhibitor was utilized to modulate the expression of circLONP2 and miR-584-5p and investigate their functions on cell proliferation and invasion. Luciferase reporter assay and RNA pull-down were performed to confirm the functional interactions among circLONP2/miR-584-5p/YAP1. CircLONP2 was significantly upregulated in precancerous BC tissues and BC cells. CircLONP2 depletion inhibited cell viability, proliferation, and invasion of BC cell lines, which could be partially rescued by miR-584-5p inhibitor. Further experiments indicated that miR-584-5p regulates cell viability, proliferation, and invasion via directly targeting YAP1. In summary, our work indicates that circLONP2 plays an oncogenic function in BC by regulating miR-584-5p/YAP1 axis, and its interaction with miR-584-5p provides a potential strategy to target BC.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Hao Xiong
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Yong Zhao
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Shengqiang Lin
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Xiang Huang
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Cheng Lin
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Shihui Mao
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| | - Demin Chen
- Department of Urology, The Affiliated Nanping First Hospital of Fujian Medical University, Nanping, Fujian, China
| |
Collapse
|
9
|
Gong Y, Wu S, Dong S, Chen S, Cai G, Bao K, Yang H, Jiao Y. Development of a prognostic metabolic signature in stomach adenocarcinoma. Clin Transl Oncol 2022; 24:1615-1630. [PMID: 35355155 DOI: 10.1007/s12094-022-02809-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/19/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The growth and aggressiveness of Stomach adenocarcinoma (STAD) is significantly affected by basic metabolic changes. This study aimed to identify metabolic gene prognostic signatures in STAD. METHODS An integrative analysis of datasets from the Cancer Genome Atlas and Gene Expression Omnibus was performed. A metabolic gene prognostic signature was developed using univariable Cox regression and Kaplan-Meier survival analysis. A nomogram model was developed to predict the prognosis of STAD patients. Finally, Gene Set Enrichment Analysis (GESA) was used to explore the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways significantly associated with the risk grouping. RESULTS A total of 327 metabolism-related differentially expressed genes were identified. Three subtypes of STAD were identified and nine immune cell types, including memory B cell, resting and activated CD4+ memory T cells, were significantly different among the three subgroups. A risk score model including nine survival-related genes which could separate high-risk patients from low-risk patients was developed. The prognosis of STAD patients likely benefited from lower expression levels of genes, including ABCG4, ABCA6, GPX8, KYNU, ST8SIA5, and CYP19A1. Age, radiation therapy, tumor recurrence, and risk score model status were found to be independent risk factors for STAD and were used for developing a nomogram. Nine KEGG pathways, including spliceosome, pentose phosphate pathway, and citrate TCA cycle were significantly enriched in GESA. CONCLUSION We propose a metabolic gene signature and a nomogram for STAD which might be used for predicting the survival of STAD patients and exploring prognostic markers.
Collapse
Affiliation(s)
- Yu Gong
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 68 GeHu Road, Changzhou, 213000, Jiangsu, China
| | - Siyuan Wu
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Sen Dong
- Bengbu Medical University, Benbu, 233000, China
| | - Shuai Chen
- Nanjing Medical University, Jiangsu, 213000, China
| | - Gengdi Cai
- Dalian Medical University, Dalian, 116000, China
| | - Kun Bao
- Dalian Medical University, Dalian, 116000, China
| | - Haojun Yang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 68 GeHu Road, Changzhou, 213000, Jiangsu, China
| | - Yuwen Jiao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 68 GeHu Road, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|