1
|
Yuan T, Lu X, Jiang J, Chen N, Tang B, He C, Liu W, Wang J, Ci C. ACTN1 promotes malignant progression in cutaneous squamous cell carcinoma by downregulating the p53 signaling pathway. Chin Med J (Engl) 2024; 137:1759-1761. [PMID: 38835108 PMCID: PMC11268810 DOI: 10.1097/cm9.0000000000003168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 06/06/2024] Open
Affiliation(s)
- Tao Yuan
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Xiaohong Lu
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Jiahui Jiang
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Nan Chen
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Biao Tang
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Caifeng He
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Wenbei Liu
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Jun Wang
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| | - Chao Ci
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241004, China
| |
Collapse
|
2
|
Hu J, Dai C, Ding Z, Pan Y, Lu L, Bao J, Zheng J. IKBIP promotes tumor development via the akt signaling pathway in esophageal squamous cell carcinoma. BMC Cancer 2024; 24:759. [PMID: 38914958 PMCID: PMC11197280 DOI: 10.1186/s12885-024-12510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide. Inhibitor of kappa B kinase interacting protein (IKBIP) has been reported to promote glioma progression, but its role in other cancers remains unclear. This study aimed to investigate the role of IKBIP and its underlying molecular mechanisms in ESCC. METHODS The mRNA expression of IKBIP was analyzed using multiple cancer databases. Immunohistochemistry was performed to detect IKBIP protein expression in ESCC tissues and adjacent normal tissues, and Kaplan‒Meier survival and Cox regression analyses were carried out. The effects of IKBIP knockdown (or overexpression) on ESCC cells were detected by cell viability, cell migration, flow cytometry and Western blot assays. LY-294002 was used to validate the activation of the AKT signaling pathway by IKBIP. Finally, the role of IKBIP in ESCC was verified in a xenograft model. RESULTS Both bioinformatics analysis and immunohistochemistry indicated that IKBIP expression in ESCC tissues was significantly increased and was associated with the prognosis of ESCC patients. In vitro experiments revealed that IKBIP knockdown significantly inhibited the proliferation and migration of ESCC cells, and induced cell apoptosis and G1/S phase arrest. Molecular mechanism results showed that the AKT signaling pathway was further activated after IKBIP overexpression, thereby increasing the proliferation and migration abilities of ESCC cells. In vivo study confirmed that IKBIP promoted the initiation and development of ESCC tumors in mice. CONCLUSIONS IKBIP plays a tumor-promoting role in ESCC and may serve as a predictive biomarker and a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jiannan Hu
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Chuanjing Dai
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Zhaoji Ding
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Yixiao Pan
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Lingxiao Lu
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Jiaqian Bao
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Jingmin Zheng
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China.
| |
Collapse
|
3
|
Wang QL, Wang L, Li QY, Li HY, Lin L, Wei D, Xu JY, Luo XJ. Micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in tumor cells in an USP7/AKT/GSK-3β pathway-dependent manner. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4447-4459. [PMID: 38108838 DOI: 10.1007/s00210-023-02903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Breast cancer and osteosarcoma are common cancers in women and children, respectively, but ideal drugs for treating patients with breast cancer or osteosarcoma remain to be found. Micafungin is an antifungal drug with antitumor activity on leukemia. Based on the notion of drug repurposing, this study aims to evaluate the antitumor effects of micafungin on breast cancer and osteosarcoma in vitro and in vivo, and to elucidate the underlying mechanisms. Five breast cancer cell lines (MDA-MB-231, BT-549, SK-BR-3, MCF-7, and 4T1) and one osteosarcoma cell line (143B) were chosen for the in vitro studies. Micafungin exerted an inhibitory effect on the viability of all cell lines, and MCF-7 cells were most sensitive to micafungin among the breast cancer cell lines. In addition, micafungin showed an inhibitory effect on the proliferation, clone formation, and migration in MCF7 and 143B cells. The inhibitory effect of micafungin on the growth of breast cancer and osteosarcoma was further confirmed with xenograft tumor mouse models. To explore the underlying mechanisms, the effect of micafungin on epithelial-mesenchymal transition (EMT) was examined. As expected, the levels of matrix metalloproteinase 9 and vimentin in MCF-7 and 143B cells were notably reduced in the presence of micafungin, concomitant with the decreased levels of ubiquitin-specific protease 7 (USP7), p-AKT, and p-GSK-3β. Based on these observations, we conclude that micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in an USP7/AKT/GSK-3β pathway-dependent manner.
Collapse
Affiliation(s)
- Qian-Lin Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Laboratory Medicine, Changsha Blood Central, Changsha, 410005, China
| | - Li Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Qiong-Yu Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hui-Yin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ling Lin
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dan Wei
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jin-Yun Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
Buthasane W, Shotelersuk V, Chetruengchai W, Srichomthong C, Assawapitaksakul A, Tangphatsornruang S, Pootakham W, Sonthirod C, Tongsima S, Wangkumhang P, Wilantho A, Thongphakdee A, Sanannu S, Poksawat C, Nipanunt T, Kasorndorkbua C, Koepfli KP, Pukazhenthi BS, Suriyaphol P, Wongsurawat T, Jenjaroenpun P, Suriyaphol G. Comprehensive genome assembly reveals genetic diversity and carcass consumption insights in critically endangered Asian king vultures. Sci Rep 2024; 14:9455. [PMID: 38658744 PMCID: PMC11043450 DOI: 10.1038/s41598-024-59990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The Asian king vulture (AKV), a vital forest scavenger, is facing globally critical endangerment. This study aimed to construct a reference genome to unveil the mechanisms underlying its scavenger abilities and to assess the genetic relatedness of the captive population in Thailand. A reference genome of a female AKV was assembled from sequencing reads obtained from both PacBio long-read and MGI short-read sequencing platforms. Comparative genomics with New World vultures (NWVs) and other birds in the Family Accipitridae revealed unique gene families in AKV associated with retroviral genome integration and feather keratin, contrasting with NWVs' genes related to olfactory reception. Expanded gene families in AKV were linked to inflammatory response, iron regulation and spermatogenesis. Positively selected genes included those associated with anti-apoptosis, immune response and muscle cell development, shedding light on adaptations for carcass consumption and high-altitude soaring. Using restriction site-associated DNA sequencing (RADseq)-based genome-wide single nucleotide polymorphisms (SNPs), genetic relatedness and inbreeding status of five captive AKVs were determined, revealing high genomic inbreeding in two females. In conclusion, the AKV reference genome was established, providing insights into its unique characteristics. Additionally, the potential of RADseq-based genome-wide SNPs for selecting AKV breeders was demonstrated.
Collapse
Affiliation(s)
- Wannapol Buthasane
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Adjima Assawapitaksakul
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Pongsakorn Wangkumhang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Alisa Wilantho
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Ampika Thongphakdee
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Saowaphang Sanannu
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Chaianan Poksawat
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Tarasak Nipanunt
- Huai Kha Khaeng Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Uthai Thani, 61160, Thailand
| | - Chaiyan Kasorndorkbua
- Laboratory of Raptor Research and Conservation Medicine, Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, 22630, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Budhan S Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Prapat Suriyaphol
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Huseinovic A, Xu M, Jaspers A, Bais B, Steenbergen RDM. miR-129-5p inhibits anchorage-independent growth through silencing of ACTN1 and the ELK4/c-FOS axis in HPV-transformed keratinocytes. J Med Virol 2024; 96:e29580. [PMID: 38566572 DOI: 10.1002/jmv.29580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
A persistent infection with human papillomavirus (HPV) can induce precancerous lesions of the cervix that may ultimately develop into cancer. Cervical cancer development has been linked to altered microRNA (miRNA) expression, with miRNAs regulating anchorage-independent growth being particularly important for the progression of precancerous lesions to cancer. In this study, we set out to identify and validate targets of miR-129-5p, a previously identified tumor suppressive miRNA involved in anchorage-independent growth and HPV-induced carcinogenesis. We predicted 26 potential miR-129-5p targets using online databases, followed by KEGG pathway enrichment analysis. RT-qPCR and luciferase assays confirmed that 3'UTR regions of six genes (ACTN1, BMPR2, CAMK4, ELK4, EP300, and GNAQ) were targeted by miR-129-5p. Expressions of ACTN1, CAMK4, and ELK4 were inversely correlated to miR-129-5p expression in HPV-transformed keratinocytes, and their silencing reduced anchorage-independent growth. Concordantly, miR-129-5p overexpression decreased protein levels of ACTN1, BMPR2, CAMK4 and ELK4 in anchorage-independent conditions. Additionally, c-FOS, a downstream target of ELK4, was downregulated upon miR-129-5p overexpression, suggesting regulation through the ELK4/c-FOS axis. ACTN1 and ELK4 expression was also upregulated in high-grade precancerous lesions and cervical cancers, supporting their clinical relevance. In conclusion, we identified six targets of miR-129-5p involved in the regulation of anchorage-independent growth, with ACTN1, BMPR2, ELK4, EP300, and GNAQ representing novel targets for miR-129-5p. For both ACTN1 and ELK4 functional and clinical relevance was confirmed, indicating that miR-129-5p-regulated ACTN1 and ELK4 expression contributes to HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Angelina Huseinovic
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Mengfei Xu
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Annelieke Jaspers
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Brigitte Bais
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Renske D M Steenbergen
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Liu YF, Feng ZQ, Chu TH, Yi B, Liu J, Yu H, Xue J, Wang YJ, Zhang CZ. Andrographolide sensitizes KRAS-mutant colorectal cancer cells to cetuximab by inhibiting the EGFR/AKT and PDGFRβ/AKT signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155462. [PMID: 38394734 DOI: 10.1016/j.phymed.2024.155462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Cetuximab, an inhibitor targeting EGFR, is widely applied in clinical management of colorectal cancer (CRC). Nevertheless, drug resistance induced by KRAS-mutations limits cetuximab's anti-cancer effectiveness. Furthermore, the persistent activation of EGFR-independent AKT is another significant factor in cetuximab resistance. Nevertheless, the mechanism that EGFR-independent AKT drives cetuximab resistance remains unclear. Thus, highlighting the need to optimize therapies to overcome cetuximab resistance and also to explore the underlying mechanism. PURPOSE This work aimed to investigate whether and how andrographolide enhance the therapeutic efficacy of cetuximab in KRAS-mutant CRC cells by modulating AKT. METHODS The viabilities of CRC cell lines were analyzed by CCK-8. The intracellular proteins phosphorylation levels were investigated by Human Phospho-kinase Antibody Array analysis. Knockdown and transfection of PDGFRβ were used to evaluate the role of andrographolide on PDGFRβ. The western blotting was used to investigate Wnt/β-catenin pathways, PI3K/AKT, and EMT in KRAS-mutant CRC cells. The animal models including subcutaneous tumor and lung metastasis were performed to assess tumor response to therapy in vivo. RESULTS Andrographolide was demonstrated to decrease the expression of PI3K and AKT through targeting PDGFRβ and EGFR, and it enhanced cetuximab effect on KRAS-mutant CRC cells by this mechanism. Meanwhile, andrographolide helped cetuximab to inhibit Wnt/β-catenin, CRC cell migration and reduced Vimentin expression, while increasing that of E-cadherin. Lastly, co-treatment with cetuximab and andrographolide reduced the growth of KRAS-mutant tumors and pulmonary metastases in vivo. CONCLUSIONS Our findings suggest that andrographolide can overcome the KRAS-mutant CRC cells' resistance to cetuximab through inhibiting the EGFR/PI3K/AKT and PDGFRβ /AKT signaling pathways. This research provided a possible theory that andrographolide sensitizes KRAS-mutant tumor to EGFR TKI.
Collapse
Affiliation(s)
- Yan-Fei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Colorectal Surgery, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China
| | - Zhi-Qiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Colorectal Surgery, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China
| | - Tian-Hao Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Colorectal Surgery, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China
| | - Ben Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Colorectal Surgery, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China
| | - Jun Liu
- Department of Radiology, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300241, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Yi-Jia Wang
- Laboratory of Oncologic molecular medicine, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China.
| | - Chun-Ze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China.
| |
Collapse
|
7
|
Barman SK, Sen MK, Mahns DA, Wu MJ, Malladi CS. Molecular Insights into the Breast and Prostate Cancer Cells in Response to the Change of Extracellular Zinc. JOURNAL OF ONCOLOGY 2024; 2024:9925970. [PMID: 38249992 PMCID: PMC10798840 DOI: 10.1155/2024/9925970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Zinc dyshomeostasis is manifested in breast and prostate cancer cells. This study attempted to uncover the molecular details prodded by the change of extracellular zinc by employing a panel of normal and cancerous breast and prostate cell lines coupled with the top-down proteomics with two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. The protein samples were generated from MCF-7 breast cancer cells, MCF10A normal breast cells, PC3 prostate cancer cells, and RWPE-1 normal prostate cells with or without exogenous zinc exposure in a time course (T0 and T120). By comparing the cancer cells vs respective normal epithelial cells without zinc treatment (T0), differentially expressed proteins (23 upregulated and 18 downregulated in MCF-7 cells; 14 upregulated and 30 downregulated in PC3 cells) were identified, which provides insights into the intrinsic differences of breast and prostate cancer cells. The dynamic protein landscapes in the cancer cells prodded by the extracellular zinc treatment reveal the potential roles of the identified zinc-responsive proteins (e.g., triosephosphate isomerase, S100A13, tumour proteins hD53 and hD54, and tumour suppressor prohibitin) in breast and prostate cancers. This study, for the first time, simultaneously investigated the two kinds of cancer cells related to zinc dyshomeostasis, and the findings shed light on the molecular understanding of the breast and prostate cancer cells in response to extracellular zinc variation.
Collapse
Affiliation(s)
- Shital K. Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Monokesh K. Sen
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, NSW, Australia
| | - David A. Mahns
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ming J. Wu
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Chandra S. Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
8
|
Thapa R, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Saleem S, Khan R, Altwaijry N, Dureja H, Singh SK, Dua K. A review of Glycogen Synthase Kinase-3 (GSK3) inhibitors for cancers therapies. Int J Biol Macromol 2023; 253:127375. [PMID: 37839597 DOI: 10.1016/j.ijbiomac.2023.127375] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The intricate molecular pathways governing cancer development and progression have spurred intensive investigations into novel therapeutic targets. Glycogen Synthase Kinase-3 (GSK3), a complex serine/threonine kinase, has emerged as a key player with intricate roles in various cellular processes, including cell proliferation, differentiation, apoptosis, and metabolism. Harnessing GSK3 inhibitors as potential candidates for cancer therapy has garnered significant interest due to their ability to modulate key signalling pathways that drive oncogenesis. The review encompasses a thorough examination of the molecular mechanisms underlying GSK3's involvement in cancer progression, shedding light on its interaction with critical pathways such as Wnt/β-catenin, PI3K/AKT, and NF-κB. Through these interactions, GSK3 exerts influence over tumour growth, invasion, angiogenesis, and metastasis, rendering it an attractive target for therapeutic intervention. The discussion includes preclinical and clinical studies, showcasing the inhibitors efficacy across a spectrum of cancer types, including pancreatic, ovarian, lung, and other malignancies. Insights from recent studies highlight the potential synergistic effects of combining GSK3 inhibitors with conventional chemotherapeutic agents or targeted therapies, opening avenues for innovative combinatorial approaches. This review provides a comprehensive overview of the current state of research surrounding GSK3 inhibitors as promising agents for cancer treatment.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
9
|
Zhang H, Lai J, Zhang L, Zhang W, Liu X, Gong Q, Tian H, Yang M, Yang T, Zhao R, Li D, Huang H, Zhao Y, Yan S, Yu M, Xiyang Y, Shi L, Yang L, Wang L, Chen W, Cao X. The co-regulation of the gut microbiome and host genes might play essential roles in metformin gastrointestinal intolerance. Toxicol Appl Pharmacol 2023; 481:116732. [PMID: 37871735 DOI: 10.1016/j.taap.2023.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Metformin is commonly used, but approximately 20% of patients experience gastrointestinal intolerance, leading to medication discontinuation for unclear reasons and a lack of effective management strategies. In this study, the 18 fecal and blood samples were analyzed using 16S rRNA and mRNA transcriptome, respectively. These samples included 3 fecal and 4 blood from metformin-tolerant T2D patients before and after metformin treatment (T and Ta), 3 fecal and 5 blood from metformin-intolerant T2D patients before and after treatment (TS and TSa), and 6 fecal samples from healthy controls. The results showed that certain anti-inflammatory gut bacteria and gene, such as Barnesiella (p = 0.046), Parabacteroides goldsteinii (p = 0.016), and the gene JUND (p = 0.0002), exhibited higher levels in metformin-intolerant patients, and which decreased after metformin treatment (p < 0.05). This potentially invalidates patients' anti-inflammatory effect and intestinal mucus barrier protection, which may lead to alterations in intestinal permeability, decreased gut barrier function, and gastrointestinal symptoms, including diarrhea, bloating, and nausea. After metformin treatment, primary bile acids (PBAs) production species: Weissella confusa, Weissella paramesenteroides, Lactobacillus brevis, and Lactobacillus plantarum increased (p < 0.05). The species converting PBAs to secondary bile acids (SBAs): Parabacteroides distasonis decreased (p < 0.05). This might result in accumulation of PBAs, which also may lead to anti-inflammatory gene JUND and SQSTM1 downregulated. In conclusion, this study suggests that metformin intolerance may be attributed to a decrease in anti-inflammatory-related flora and genes, and also alterations in PBAs accumulation-related flora. These findings open up possibilities for future research targeting gut flora and host genes to prevent metformin intolerance.
Collapse
Affiliation(s)
- Huixiang Zhang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China; Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan, China
| | - Jiao Lai
- Department of Endocrinology, Qujing NO.1 Hospital of Yunnan Province, Qujing, Yunnan, China
| | - Lihuan Zhang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Zhang
- Department of Endocrinology, Qujing NO.1 Hospital of Yunnan Province, Qujing, Yunnan, China
| | - Xun Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Qilin Gong
- Department of Endocrinology, Qujing NO.1 Hospital of Yunnan Province, Qujing, Yunnan, China
| | - Hongxi Tian
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Mingzhi Yang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Tao Yang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Rui Zhao
- Department of Endocrinology, Qujing NO.1 Hospital of Yunnan Province, Qujing, Yunnan, China
| | - Dongqing Li
- Department of Endocrinology, Qujing NO.1 Hospital of Yunnan Province, Qujing, Yunnan, China
| | - Hehua Huang
- Department of Endocrinology, Qujing NO.1 Hospital of Yunnan Province, Qujing, Yunnan, China
| | - Ya Zhao
- Department of Endocrinology, Qujing NO.1 Hospital of Yunnan Province, Qujing, Yunnan, China
| | - Shan Yan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Bioengineering Centre, Kunming Medical University, Kunming, Yunnan, China
| | - Ming Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Bioengineering Centre, Kunming Medical University, Kunming, Yunnan, China
| | - Yanbin Xiyang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Lanlan Shi
- Department of Anatomy, Histology and Embryology, Basic Medical College, Kunming Medical University, Kunming, Yunnan, China
| | - Lirong Yang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China; No.1 School of Clinical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Limei Wang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan, China.
| | - Weiwen Chen
- Qujing Second People's Hospital of Yunnan Province, Qujing, Yunnan, China.
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
10
|
Li S, Li Y, Huang P, Mao X, Jiang K, Chen R, Li Q, Wang L, Jin Z, Wan C, Xiong Y, Yu Y, Sheng W, Hong D, Lin J. Knockout of Rnf213 Ameliorates Cerebral Ischemic-reperfusion Injury by Inhibiting Neuronal Apoptosis Through the Akt/GSK-3β/β-catenin/Bcl-2 Pathway. Neuroscience 2023; 533:10-21. [PMID: 37778692 DOI: 10.1016/j.neuroscience.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Previous studies by us and others have shown that RING finger protein 213 (RNF213) is associated with cerebrovascular disease and systemic vasculopathy. Indeed, Rnf213 mRNA expression is increased in cerebral ischemia reperfusion injury (CIRI). The purpose of the present study was to investigate the role of Rnf213 in CIRI. Using the middle cerebral artery occlusion (MCAO) model, we confirmed that the expression of RNF213 protein was significantly upregulated in neurons in the ischemic penumbra. Rnf213 knockout mice were successfully generated using CRISPR/Cas9 technology. According to TTC staining and Bederson neurological scale, removal of Rnf213 decreased brain infarct volume and improved neurological deficit score, although the restoration of cerebral blood flow after MCAO was similar in WT and Rnf213-/- mice. In addition, the levels of p-Akt, p-GSK-3β, β-catenin and Bcl-2 were significantly increased 24 h after MCAO in the ischemic penumbra of the Rnf213-/- mice compared to WT mice, indicating that Rnf213 removal may ameliorate neuronal apoptosis by regulating the Akt/GSK-3β/β-catenin/Bcl-2 signaling pathway. Taken together, our study reveals that Rnf213 regulates neuronal apoptosis in CIRI, therefore impacting on brain infarct volume in brain ischemia.
Collapse
Affiliation(s)
- Shumeng Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yiheng Li
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaocheng Mao
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kaiyan Jiang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ran Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lulu Wang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zeqing Jin
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenyi Wan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Xiong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yaqing Yu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenli Sheng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Jing Lin
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
11
|
Jayathirtha M, Jayaweera T, Whitham D, Sullivan I, Petre BA, Darie CC, Neagu AN. Two-Dimensional-PAGE Coupled with nLC-MS/MS-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in MCF7 Breast Cancer Cells Transfected for JTB Protein Silencing. Molecules 2023; 28:7501. [PMID: 38005222 PMCID: PMC10673289 DOI: 10.3390/molecules28227501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The identification of new cancer-associated genes/proteins, the characterization of their expression variation, the interactomics-based assessment of differentially expressed genes/proteins (DEGs/DEPs), and understanding the tumorigenic pathways and biological processes involved in BC genesis and progression are necessary and possible by the rapid and recent advances in bioinformatics and molecular profiling strategies. Taking into account the opinion of other authors, as well as based on our own team's in vitro studies, we suggest that the human jumping translocation breakpoint (hJTB) protein might be considered as a tumor biomarker for BC and should be studied as a target for BC therapy. In this study, we identify DEPs, carcinogenic pathways, and biological processes associated with JTB silencing, using 2D-PAGE coupled with nano-liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics applied to a MCF7 breast cancer cell line, for complementing and completing our previous results based on SDS-PAGE, as well as in-solution proteomics of MCF7 cells transfected for JTB downregulation. The functions of significant DEPs are analyzed using GSEA and KEGG analyses. Almost all DEPs exert pro-tumorigenic effects in the JTBlow condition, sustaining the tumor suppressive function of JTB. Thus, the identified DEPs are involved in several signaling and metabolic pathways that play pro-tumorigenic roles: EMT, ERK/MAPK, PI3K/AKT, Wnt/β-catenin, mTOR, C-MYC, NF-κB, IFN-γ and IFN-α responses, UPR, and glycolysis/gluconeogenesis. These pathways sustain cancer cell growth, adhesion, survival, proliferation, invasion, metastasis, resistance to apoptosis, tight junctions and cytoskeleton reorganization, the maintenance of stemness, metabolic reprogramming, survival in a hostile environment, and sustain a poor clinical outcome. In conclusion, JTB silencing might increase the neoplastic phenotype and behavior of the MCF7 BC cell line. The data is available via ProteomeXchange with the identifier PXD046265.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Isabelle Sullivan
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd. No. 22, 700505 Iasi, Romania
| |
Collapse
|
12
|
Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P, Mani SA. Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol 2023; 95:120-139. [PMID: 37572731 PMCID: PMC10530624 DOI: 10.1016/j.semcancer.2023.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-β is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-β-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-β is a multifunctional cytokine; thus, the signaling by TGF-β can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-β can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-β and EMP in carcinoma progression, it is essential to understand how TGF-β enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-β-targeting therapies that eliminate cancer cell plasticity.
Collapse
Affiliation(s)
- Nick A Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Thiru Sabapathy
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Breanna R Demestichas
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
13
|
Tao Y, Xiao‐hong L, Guo‐lin K, hua H, Jia‐hui J, Chao C. The value of ACTN1 in the diagnosis of cutaneous squamous cell carcinoma: A continuation study. Skin Res Technol 2023; 29:e13252. [PMID: 37113080 PMCID: PMC10234166 DOI: 10.1111/srt.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 04/29/2023]
Affiliation(s)
- Yuan Tao
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Lu Xiao‐hong
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Ke Guo‐lin
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Hu hua
- Department of DermatologyThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Jiang Jia‐hui
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Ci Chao
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| |
Collapse
|
14
|
Ouyang Y, Lu W, Wang Y, Wang B, Li F, Li X, Bai Y, Wang Y. Integrated analysis of mRNA and extrachromosomal circular DNA profiles to identify the potential mRNA biomarkers in breast cancer. Gene 2023; 857:147174. [PMID: 36627094 DOI: 10.1016/j.gene.2023.147174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Extrachromosomal circular DNAs (eccDNAs) have been proved an inseparable relationship with cancer, based on the biological mechanisms of its biogenesis and impact on tumorigenesis, but still lacked of methods to analyze its function on the pathogenesis and progression of breast cancer (BC). The mRNA and eccDNA from BC cell samples (MDA-MB-453 and MCF-12A) were extracted with the removal of rRNA and linear DNA, respectively. High-throughput sequencing and bioinformatics analysis were performed to explore their expression level and molecular characterization of eccDNA. A total number of 161,062 eccDNA ranging from 33 bp to 54229 bp were detected with a median size of 1143 bp, distributed on all chromosomes and enriched on chromosome 20 the most. EccDNAs located in exons, upstream and downstream 2 kb regions were significantly increased compared with background. Analysis of eccDNA-related differentially expressed genes (eccDEGs) showed that FAT2 properly separated the two cells. CTNNB1, CACNA2D2 and CACNA1D were the hub genes with higher degrees in critical modules. All these four genes were significantly differentially expressed between breast invasive carcinoma (BRCA) tissues and normal ones. FAT2 and CTNNB1 correlated with significantly different overall survival (OS) when differentially expressed. The four genes showed a strong correlation with each other significantly and changed between tumor and normal samples. The results showed the potential of FAT2, CTNNB1, CACNA2D2 and CACNA1D as biomarkers with analysis of both DEGs and eccDEGs, which might assist in clinical medical treatment.
Collapse
Affiliation(s)
- Yunfei Ouyang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Wenxiang Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Ying Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Bangting Wang
- First Affiliated Hospital of Nanjing Medical University, Nanjing 210096, PR China
| | - Fuyu Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xiaohan Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Yan Wang
- First Affiliated Hospital of Nanjing Medical University, Nanjing 210096, PR China.
| |
Collapse
|
15
|
Li Y, Chen M, Chen Q, Yuan M, Zeng X, Zeng Y, He M, Wang B, Han B. Bioinformatics Identification of Therapeutic Gene Targets for Gastric Cancer. Adv Ther 2023; 40:1456-1473. [PMID: 36694099 DOI: 10.1007/s12325-023-02428-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
INTRODUCTION The global prevalence of gastric cancer (GC) is increasing, and novel chemotherapeutic targets are needed. METHODS We searched for potential biomarkers for GC in three microarray data sets within the Gene Expression Omnibus (GEO) database. FunRich (v3.1.3) was used to perform Gene Ontology (GO) analyses and STRUN and Cytoscape (v3.6.0) were employed to construct a protein-protein interaction (PPI) network. To explore hub gene expression and survival, we used Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan-Meier (KM) plotter. Drugs that were closely related to key genes were screened by the Gene Set Cancer Analysis (GSCA), and relevant correlations were verified experimentally. We validated that the sensitivity of a GC cell line to these drugs was correlated with fibrillin 1 (FBN1) mRNA expression levels. RESULTS We identified 83 upregulated and 133 downregulated differentially expressed genes (DEGs) and these were enriched with regards to their cellular component (extracellular and exosomes), molecular function (extracellular matrix structural constituent and catalytic activity), and biological process (cell growth and/or maintenance and metabolism). The biological pathways most prominently involved were epithelial-to-mesenchymal transition (EMT) and β3 integrin cell surface interactions. For the PPI network, we selected 10 hub genes, and 70% of these were significantly connected to poor overall survival (OS) in patients with GC. We found a significant link between the expression of FBN1 and two small molecule drugs (PAC-1 and PHA-793887). CONCLUSIONS Overall, we suggest that these hub genes can be used as biomarkers and novel targets for GC. FBN1 may be associated with drug resistance in gastric cancer.
Collapse
Affiliation(s)
- Yuanting Li
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Minghao Chen
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Qing Chen
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Min Yuan
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xi Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Yan Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Meibo He
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Baiqiang Wang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
| | - Bin Han
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
| |
Collapse
|
16
|
Nagaya M, Kanada F, Takashima M, Takamura Y, Inatani M, Oki M. Atm inhibition decreases lens opacity in a rat model of galactose-induced cataract. PLoS One 2022; 17:e0274735. [PMID: 36149903 PMCID: PMC9506662 DOI: 10.1371/journal.pone.0274735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cataract causes vision loss and blindness due to formation of opacities of the lens. The regulatory mechanisms of cataract formation and progression remain unclear, and no effective drug treatments are clinically available. In the present study, we tested the effect of ataxia telangiectasia mutated (Atm) inhibitors using an ex vivo model in which rat lenses were cultured in galactose-containing medium to induce opacity formation. After lens opacities were induced by galactose, the lenses were further incubated with the Atm inhibitors AZD0156 or KU55933, which decreased lens opacity. Subsequently, we used microarray analysis to investigate the underlying molecular mechanisms of action, and extracted genes that were upregulated by galactose-induced opacity, but not by inhibitor treatment. Quantitative measurement of mRNA levels and subsequent STRING analysis revealed that a functional network consisting primarily of actin family and actin-binding proteins was upregulated by galactose treatment and downregulated by both Atm inhibitors. In particular, Acta2 is a known marker of epithelial-mesenchymal transition (EMT) in epithelial cells, and other genes connected in this functional network (Actn1, Tagln, Thbs1, and Angptl4) also suggested involvement of EMT. Abnormal differentiation of lens epithelial cells via EMT could contribute to formation of opacities; therefore, suppression of these genes by Atm inhibition is a potential therapeutic target for reducing opacities and alleviating cataract-related visual impairment.
Collapse
Affiliation(s)
- Masaya Nagaya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Fumito Kanada
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Faculty of Medical Sciences, Department of Ophthalmology, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Faculty of Medical Sciences, Department of Ophthalmology, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- * E-mail:
| |
Collapse
|
17
|
Tian H, Yan H, Zhang Y, Fu Q, Li C, He J, Li H, Zhou Y, Huang Y, Li R. Knockdown of mitochondrial threonyl-tRNA synthetase 2 inhibits lung adenocarcinoma cell proliferation and induces apoptosis. Bioengineered 2022; 13:5190-5204. [PMID: 35184682 PMCID: PMC8974053 DOI: 10.1080/21655979.2022.2037368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lung cancer is a significant global burden. Aminoacyl-tRNA synthetases (aaRSs) can be reliably identified by the occurrence and improvement of tumors. Threonyl-tRNA synthetase (TARS) and mitochondrial threonyl-tRNA synthetase 2 (TARS2) are both aaRSs. Many studies have shown that TARS are involved in tumor angiogenesis and metastasis. However, TARS2 has not yet been reported in tumors. This study explored the role of TARS2 in the proliferation and apoptosis of lung adenocarcinoma (LUAD). TARS2 expression in lung adenocarcinoma and non-cancerous lung tissues was detected via immunohistochemistry. Cell proliferation was detected using MTS, clone formation, and EdU staining assays. Flow cytometry was used to detect cell cycle, mitochondria reactive oxygen species (mROS) production, and apoptosis. Mitochondrial membrane potential (MMP ΔΨm) was detected using JC-1 fluorescent probes. Cell cycle, apoptosis-related pathway, and mitochondrial DNA (mtDNA) -encoded protein expression was detected via Western blotting. Finally, the effect of TARS2 on tumor growth was examined using a xenotransplanted tumor model in nude mice. We found that TARS2 was highly expressed in lung adenocarcinoma tissues and associated with poor overall survival (OS). Mechanistic analysis showed that knockdown of TARS2 inhibited proliferation through the retinoblastoma protein (RB) pathway and promoted mROS-induced apoptosis. Knockdown of TARS2 inhibits tumor growth in a xenotransplanted tumor model. TARS2 plays an important role in LUAD cell proliferation and apoptosis and may be a new therapeutic target.
Collapse
Affiliation(s)
- Hui Tian
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hao Yan
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qiaofen Fu
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Li
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Juan He
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hui Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong Zhou
- Division Department of Thoracic Surgery Organization, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Youguang Huang
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Rongqing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
18
|
Wang P, Huang Y, Xia X, Han J, Zhang L, Zhao W. Pleckstrin homology-like domain family A, member 3, a miR-19a-3p-regulated gene, suppresses tumor growth in osteosarcoma by downregulating the Akt pathway. Bioengineered 2022; 13:3993-4009. [PMID: 35112982 PMCID: PMC8974154 DOI: 10.1080/21655979.2022.2031404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Pleckstrin homology-like domain family A, member 3 (PHLDA3), is emerging as a critical regulator for multiple cancers. Nevertheless, the expression and role of PHLDA3 in osteosarcoma remain unknown. Herein, we purposed to elucidate the role of PHLDA3 in the progression and chemoresistance of osteosarcoma. According to the bioinformatics analysis, PHLDA3 expression was low in osteosarcoma patients, and low content was linked to poor prognosis. Additionally, activation of PHLDA3 suppressed osteosarcoma cell proliferation, migration, and chemoresistance, whereas PHLDA3 inhibition caused the opposite effects. Mechanistically, our data revealed that PHLDA3 negatively regulates the Akt/GSK3β signaling cascade in osteosarcoma. Furthermore, we found that miR-19a-3p might exert its oncogenic function by inhibiting PHLDA3 expression in osteosarcoma. These results demonstrated miR-19a-3p/ PHLDA3/ Akt/GSK3β axis has a pivotal role in osteosarcoma, and PHLDA3 is a prospective therapeutic target for treating osteosarcoma.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yu Huang
- Department of Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xin Xia
- Department of Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jian Han
- Department of Orthopedic Surgery, The Third People's Hospital of Dalian, Non-directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lu Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenzhi Zhao
- Department of Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|