1
|
Zhou X, Gu C, Xiao L, Hu L, Chen G, Zuo F, Shao H, Fei B. LINC01094 promotes gastric cancer through dual targeting of CDKN1A by directly binding RBMS2 and HDAC1. Biol Direct 2024; 19:137. [PMID: 39719596 DOI: 10.1186/s13062-024-00582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Accumulating studies have focused on long noncoding RNAs (lncRNAs) because of their regulatory effects on multiple cancers. However, the biological functions and molecular mechanisms of lncRNAs in gastric cancer (GC) remain to be elucidated in depth. METHODS Long intergenic nonprotein coding RNA 1094 (LINC01094), a differentially expressed lncRNA between GC tissues and adjacent normal tissues, was identified. Moreover, gain- and loss-of-function experiments in vitro and in vivo were carried out. To understand the mechanisms underlying the regulatory effects of LINC01094, we performed RNA pull-down assays, RNA immunoprecipitation assays, chromatin immunoprecipitation assays, luciferase reporter assays, etc. RESULTS: LINC01094 was markedly upregulated in GC tissues and cell lines, and LINC01094 upregulation was positively correlated with GC malignant behaviours in vitro and in vivo. Mechanistically, LINC01094 downregulated the expression of CDKN1A by interacting with RNA binding motif single stranded interacting protein 2 (RBMS2) and histone deacetylase 1 (HDAC1). Additionally, LINC01094 was confirmed to sponge miR-128-3p and participate in the LINC01094-miR-128-3p-RUNX family transcription factor 1 (RUNX1) feedback loop. Finally, Ro 5-3335, a validated RUNX1 inhibitor, was explored for anticancer drug development in GC. CONCLUSIONS The LINC01094-miR-128-3p-RUNX1 feedback loop downregulates CDKN1A and promotes GC cooperatively with RBMS2 and HDAC1. Furthermore, Ro 5-3335 may hold promising therapeutic potential in the treatment of GC. Hence, our study found an oncogenic lncRNA, LINC01094, which could be a promising target for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214062, Jiangsu Province, China.
| | - Cheng Gu
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Linmei Xiao
- Department of Liver Disease, Wuxi No.5 People's Hospital Affiliated to Jiangnan University, Wuxi, 214000, Jiangsu Province, China
| | - Li Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang Province, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Guanhua Chen
- Department of Radiation Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, Jiangsu Province, China
| | - Fei Zuo
- Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu Province, China
| | - Hongan Shao
- Department of Thoracic Surgery, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing Second Hospital, Nanjing, 210003, Jiangsu Province, China.
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214062, Jiangsu Province, China.
| |
Collapse
|
2
|
Al-Noshokaty TM, Abdelhamid R, Reda T, Alaaeldien A, Abdellatif N, Mansour A, Gendi D, Abdelmaksoud NM, Elshaer SS, Doghish AS, Sobhy MH, Mohammed OA, Abulsoud AI. Exploring the clinical potential of circulating LncRNAs in breast cancer: insights into primary signaling pathways and therapeutic interventions. Funct Integr Genomics 2024; 24:209. [PMID: 39508907 DOI: 10.1007/s10142-024-01476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Breast cancer (BC) occupies the top spot among women on a global scale. The tumor has a significant degree of heterogeneity, displaying a notable prevalence of medication resistance, recurrence, and metastasis, rendering it one of the most lethal forms of malignant neoplasms. The timely identification, ongoing evaluation of therapeutic interventions, and accurate prediction of outcomes play crucial roles in determining the overall survival rates of women with BC. Nevertheless, the absence of precise biomarkers remains a significant determinant impacting the overall well-being and both the physical and emotional health of BC patients. Long noncoding RNA (lncRNA) exerts regulatory control over several genes and signaling pathways, hence assuming crucial roles in the development of neoplastic growth. Recently, research has indicated that the atypical expression of circulating lncRNAs in various biological bodily fluids has a noteworthy impact on the early detection, pathological categorization, staging, monitoring of therapy outcomes, and evaluation of prognosis in cases of BC. This article aims to assess the potential clinical utility of circulating lncRNAs in the context of BC focusing on specific primary signaling pathways; Wnt/β-catenin, Notch, TGF-β, and hedgehog (Hh), in addition to some therapeutic interventions.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - David Gendi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Mohamed Hossam Sobhy
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
3
|
Zhang LN, Chen JY, Liu YX, Zhang Y, Hong LL, Li XX, Liu SH, Chen SQ, Peng L, Huang YT. Identification of lncRNA dual targeting PD-L1 and PD-L2 as a novel prognostic predictor for gastric cancer. Front Oncol 2024; 14:1341056. [PMID: 39525623 PMCID: PMC11544118 DOI: 10.3389/fonc.2024.1341056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Background Although breakthroughs have been achieved in gastric cancer (GC) therapy with immune checkpoint inhibitors (ICIs) targeting programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1), the acquisition of high response rate remains a huge challenge for clinicians. It is imperative to identify novel biomarkers for predicting response to immunotherapy and explore alternative therapeutic strategy for GC. Methods The transcriptomic profiles and clinical information of GC patients from The Cancer Genome Atlas (TCGA)-stomach adenocarcinoma (STAD) database was used to screen differentially expressed lncRNAs between the tumor specimens and the paracancerous tissues. The TargetScan, miRDB and miRcode database were then utilized to construct competing endogenous RNA (ceRNA) networks and identify pivotal lncRNAs. An independent dataset from GEO (GSE70880) and 23 pairs of GC specimens of our cohort were subsequently performed for external validity. The relationship between clinical variables and gene expression were evaluated by Kruskal-wallis test and Wilcoxon signed-rank. The prognostic value of the candidate genes was assessed using Kaplan-Meier analysis and Cox regression models. CIBERSORT and Gene set enrichment analysis (GSEA) were used to determine immune cell infiltration. Gastric adenocarcinoma AGS cells and human embryonic kidney 293T (HEK293T) cells with knockdown of LINC01094 were generated by siRNA transfection, followed by detecting the alteration of the target miRNA and PD-L1/PD-L2 by RT-qPCR. Besides, the interaction between lncRNA and the miRNA-PD-L1/PD-L2 axis were verified by dual luciferase reporter assay. Results Twenty-two intersecting lncRNAs were identified to be PD-L1/PD-L2-related lncRNAs and LINC01094-miR-17-5p-PD-L1/PD-L2 was constructed as a potential ceRNA network. LINC01094 was increased in tumor specimens than adjacent normal samples and was positively associated with advanced tumor stages and EBV and MSI status. Furthermore, LINC01094 expression was an independent risk factor for poor overall survival (OS) in GC patients. CD8+ T cell exhaustion-related genes were enriched in high-LINC01094 tissues and high-PD-L2 group. A strong positive association of LINC01094 expression was established with M2 macrophages, IL-10+ TAM, as well as PD-L1 and PD-L2 levels, therefore a LINC01094-miR-17-5p-IL-10 network was proposed in macrophages. Using the exoRBase database, LINC01094 was assumed in blood exosomes of GC patients The results of knockdown experiments and luciferase reporter assays revealed that LINC01094 interacted with miR-17-5p and served as a miRNA sponge to regulate the expression of PD-L1 and PD-L2. Conclusion LINC01094 dually regulates the expression of PD-L1 and PD-L2 and shapes the immunosuppressive tumor microenvironment via sponging miR-17-5p. LINC01094 may serve as a potential prognostic predictor and therapeutic target in GC.
Collapse
Affiliation(s)
- Li-Na Zhang
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiong-Yu Chen
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yu-Xin Liu
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yue Zhang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Liang-Li Hong
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xin-Xin Li
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shu-Hui Liu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Shu-Qin Chen
- Biological Specimen Repository, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lin Peng
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yi-Teng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
4
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Fan Y, Zhong J. LINC01094: A key long non-coding RNA in the regulation of cancer progression and therapeutic targets. Heliyon 2024; 10:e37527. [PMID: 39309878 PMCID: PMC11415682 DOI: 10.1016/j.heliyon.2024.e37527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
LINC01094 is a long non-coding RNA that plays a crucial role in cancer progression by modulating key signaling pathways, such as PI3K/AKT, Wnt/β-catenin and TGF-β Signaling Pathway Feedback Loop. In this review we summarize the recent research on the functional mechanisms of LINC01094 in various cancers, including its impact on tumor growth, metastasis, and resistance to therapy. We also discuss the therapeutic potential of targeting LINC01094 and highlight the current strategies and challenges in this area. Perspectives on future development of LINC01094-based therapies are also provided.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Yu Fan
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| |
Collapse
|
5
|
Dhiman R, Bazad N, Mukherjee R, Himanshu, Gunjan, Leal E, Ahmad S, Kaur K, Raj VS, Chang CM, Pandey RP. Enhanced drug delivery with nanocarriers: a comprehensive review of recent advances in breast cancer detection and treatment. DISCOVER NANO 2024; 19:143. [PMID: 39243326 PMCID: PMC11380656 DOI: 10.1186/s11671-024-04086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer (BC) remains a leading cause of morbidity and mortality among women worldwide, with triple-negative breast cancer (TNBC) posing significant treatment challenges due to its aggressive phenotype and resistance to conventional therapies. Recent advancements in nanocarrier technology offer promising solutions for enhancing drug delivery, improving bioavailability, and increasing drug accumulation at tumor sites through targeted approaches. This review delves into the latest innovations in BC detection and treatment, highlighting the role of nanocarriers like polymeric micelles, liposomes, and magnetic nanoparticles in overcoming the limitations of traditional therapies. Additionally, the manuscript discusses the integration of cutting-edge diagnostic tools, such as multiplex PCR-Nested Next-Generation Sequencing (mPCR-NGS) and blood-based biomarkers, which are revolutionizing early detection and molecular profiling of BC. The convergence of these technologies not only enhances therapeutic outcomes but also paves the way for personalized medicine in BC management. This comprehensive review underscores the potential of nanocarriers in transforming BC treatment and emphasizes the critical importance of early detection in improving patient prognosis.
Collapse
Affiliation(s)
- Ruby Dhiman
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Nancy Bazad
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Riya Mukherjee
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Himanshu
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Gunjan
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belem, Pará, Brazil
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail City, Kingdom of Saudi Arabia
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Chung-Ming Chang
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC.
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan City, Taiwan, ROC.
- Laboratory Animal Center, Chang Gung University, Taoyuan City, Taiwan, ROC.
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
6
|
Huang F, Su Z, Yang J, Zhao X, Xu Y. Knocking-down long non-coding RNA LINC01094 prohibits chondrocyte apoptosis via regulating microRNA-577/metal-regulatory transcription factor 1 axis. J Orthop Surg (Hong Kong) 2024; 32:10225536241254588. [PMID: 38758016 DOI: 10.1177/10225536241254588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
PURPOSE The abnormal function and survival of chondrocytes result in articular cartilage failure, which may accelerate the onset and development of osteoarthritis (OA). This study is aimed to investigate the role of LINC01094 in chondrocyte apoptosis. METHODS The viability and apoptosis of lipopolysaccharide (LPS)-induced chondrocytes were evaluated through CCK-8 assay and flow cytometry analysis, respectively. The expression levels of LINC01094, miR-577 and MTF1 were detected by qRT-PCR. Dual luciferase reporter tests were implemented for the verification of targeted relationships among them. Western blotting was employed to measure the levels of pro-apoptotic proteins (Caspase3 and Caspase9). RESULTS The viability of LPS-induced chondrocytes was overtly promoted by loss of LINC01094 or miR-577 upregulation, but could be repressed via MTF1 overexpression. The opposite results were observed in apoptosis rate and the levels of Caspase3 and Caspase9. LINC01094 directly bound to miR-577, while MTF1 was verified to be modulated by miR-577. Both LINC01094 and MTF1 were at high levels, whereas miR-577 was at low level in OA synovial fluid and LPS-induced chondrocytes. Furthermore, the highly expressed miR-577 abolished the influences of MTF1 overexpression on LPS-induced chondrocytes. CONCLUSIONS Silencing of LINC01094 represses the apoptosis of chondrocytes through upregulating miR-577 expression and downregulating MTF1 levels, providing a preliminary insight for the treatment of OA in the future.
Collapse
Affiliation(s)
- Feiri Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University; The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zhongliang Su
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University; The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Jie Yang
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University; The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Xizhen Zhao
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University; The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Saranya I, Dharshini VS, Akshaya RL, Subhashini PS, Selvamurugan N. Regulatory and therapeutic implications of competing endogenous RNA network in breast cancer progression and metastasis: A review. Int J Biol Macromol 2024; 266:131075. [PMID: 38531528 DOI: 10.1016/j.ijbiomac.2024.131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Breast cancer (BC) is a global health concern, and development of diagnostic tools and targeted treatments for BC remains challenging. Therapeutic approaches for BC often involve a combination of surgery, radiation therapy, chemotherapy, targeted therapy, and hormone therapy. In recent years, there has been a growing interest in the role of noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), in BC and their therapeutic implications. Various biological processes such as cell proliferation, migration, and apoptosis rely on the activities of these ncRNAs, and their dysregulation has been implicated in BC progression. The regulatory function of the competitive endogenous RNA (ceRNA) network, which comprises lncRNAs, miRNAs, and mRNAs, has been the subject of extensive pathophysiological research. Most lncRNAs serve as molecular sponges for miRNAs and sequester their activities, thereby regulating the expression of target mRNAs and contributing to the promotion or inhibition of BC progression. This review summarizes recent findings on the role of ceRNA networks in BC progression, metastasis, and therapeutic resistance, and highlights the association of ceRNA networks with transcription factors and signaling pathways. Understanding the ceRNA network can lead to the discovery of biomarkers and targeted treatment methods to prevent the spread and metastasis of BC.
Collapse
Affiliation(s)
- I Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - V Sowfika Dharshini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - P Sakthi Subhashini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
8
|
Zhou YH, Huang JY. Expression and Significance of LINC02418 in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:233-243. [PMID: 38694704 PMCID: PMC11061563 DOI: 10.2147/bctt.s454054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/17/2024] [Indexed: 05/04/2024]
Abstract
Purpose The complicated pathogenesis and poor prognosis of breast cancer have become a major difficulty in medical research. This study aims to explore new lncRNA as prognostic markers for breast cancer and explore their roles and molecular mechanisms to lay a foundation for the treatment of cancer patients. Patients and Methods The expression of LINC02418 and miR-766-5p in breast cancer tissues and cells was first identified using polymerase chain reaction, and Pearson was used to examine the correlation between the two. The cancer cells activities under different transfection conditions were detected using the Transwell assay and CCK8 assay. The correlation between LINC02418 and patient prognosis was analyzed using multifactor Cox regression and Kaplan-Meier. Results It was shown that LINC02418 expression was upregulated in breast cancer tissues and cells. There are significant differences in lymph node metastasis and TNM stage between high and low LINC02418 expression groups. The higher the expression of LINC02418, the higher the mortality rate of breast cancer patients. miR-766-5p expression was downregulated and negatively correlated with LINC02418. There are binding sites between LINC02418 and miR-766-5p; Transfection with miR-766-5p inhibitor boosted LINC02418 luciferase activity, but transfection with miR-766-5p mimic decreased it. Knockdown of LINC02418 promoted miR-766-5p expression and inhibited cancer progression, which was alleviated to some extent by transfection with miR-766-5p inhibitors. Conclusion LINC02418 has the potential to serve as a poor prognostic marker for breast cancer and plays a pro-oncogenic role by targeting miR-766-5p.
Collapse
Affiliation(s)
- Yong-Hong Zhou
- Department of General Surgery (Thyroid Gland/Blood Vessel), The First People’s Hospital of Neijiang, Neijiang, 641099, People’s Republic of China
| | - Jian-Yuan Huang
- Department of General Surgery (Thyroid Gland/Blood Vessel), The First People’s Hospital of Neijiang, Neijiang, 641099, People’s Republic of China
| |
Collapse
|
9
|
DONG Y, ZHU C, LIU X, ZHAO J, LI Q. [Effect of CircCCND1 on the Malignant Biological Behaviors of H446 Lung Cancer Cells by Regulating the MiR-340-5p/TGIF1 Axis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:161-169. [PMID: 38590190 PMCID: PMC11002193 DOI: 10.3779/j.issn.1009-3419.2024.106.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 04/10/2024]
Abstract
BACKGROUND Lung cancer is a common malignant tumor of the lung. To explore the molecular mechanism of the occurrence and development of lung cancer is a hot topic in current research. Cyclic RNA D1 (CircCCND1) is highly expressed in lung cancer and may be a potential target for the treatment of lung cancer. The aim of this study was to investigate the effect of CircCCND1 on the malignant biological behaviors of lung cancer cells by regulating the miR-340-5p/transforming growth factor β-induced factor homeobox 1 (TGIF1) axis. METHODS The expression of CircCCND1, miR-340-5p, and TGIF1 mRNA in human normal lung epithelial cells BEAS-2B and human lung cancer H446 cells were detected. H446 cells cultured in vitro were randomly divided into control group, CircCCND1 siRNA group, miR-340-5p mimics group, negative control group, and CircCCND1 siRNA+miR-340-5p inhibitor group. Cell proliferation, mitochondrial membrane potential, apoptosis, migration, and invasion were detected, and the expressions of CircCCND1, miR-340-5p, TGIF1 mRNA, BCL2-associated X protein (Bax), cleaved Caspase-3, N-cadherin, E-cadherin, and TGIF1 proteins in each group were detected. The targeting relationship of miR-340-5p with CircCCND1 and TGIF1 was verified. RESULTS Compared with BEAS-2B cells, CircCCND1 and TGIF1 mRNA were increased in H446 cells, and miR-340-5p expression was decreased (P<0.05). Knocking down CircCCND1 or up-regulating the expression of miR-340-5p inhibited the proliferation, migration and invasion of H446 cells, decreased the expression of TGIF1 mRNA and TGIF1 protein, and promoted cell apoptosis. Down-regulation of miR-340-5p could antagonize the inhibitory effect of CircCCND1 knockdown on the malignant biological behavior of H446 lung cancer cells. CircCCND1 may target the down-regulation of miR-340-5p, and miR-340-5p may target the down-regulation of TGIF1. CONCLUSIONS Knocking down CircCCND1 can inhibit the malignant behaviors of lung cancer H446 cells, which may be achieved through the regulation of miR-340-5p/TGIF1 axis.
Collapse
|
10
|
Qiao X, Chen Y, Wang Z, Peng N, Niu W, Hou S, Wu J, Ji Y, Niu C, Cheng C. GTF2E2 downregulated by miR-340-5p inhibits the malignant progression of glioblastoma. Cancer Gene Ther 2023; 30:1702-1714. [PMID: 37845349 DOI: 10.1038/s41417-023-00676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
Glioblastoma is the most common malignant tumor in the central nervous system. The general transcription factor IIE subunit beta (GTF2E2) is crucial for physiological and pathological functions, but its roles in the malignant biological function of glioma remain ambiguous. CCK-8, colony formation assays, TUNEL assays, cell migration assays, wound-healing assays, and xenograft model were established to investigate the biological functions of GTF2E2 both in vitro and in vivo. GTF2E2 was overexpressed in glioma and was associated with poor prognosis of glioma patients. Biological functions of GTF2E2 were investigated both in vitro and in vi0vo by multiple experiments. Moreover, we explored the possible mechanisms of GTF2E2. In our results, we demonstrated that GTF2E2 could be regulated by miR-340-5p directly or indirectly. CCND1 was transcriptionally affected by GTF2E2 and glioma progression was then regulated. Our data presented the overexpression of GTF2E2 in glioma and indicated the association between GTF2E2 and glioma prognosis. GTF2E2 was found to be regulated by miR-340-5p and thus affect downstream gene expressions and glioma progression. Our results indicate that GTF2E2 might be a potential target in the diagnosis and treatments of glioblastoma.
Collapse
Affiliation(s)
- Xiaolong Qiao
- Anhui University of Science and Technology, 232001, Huainan, Anhui, China
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Yinan Chen
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Zixuan Wang
- Dalian Medical University, 116000, Dalian, Liaoning, China
| | - Nan Peng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Wanxiang Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Shiqiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, 239000, Chuzhou, Anhui, China
| | - Jiaying Wu
- Bengbu Medical College, 233000, Bengbu, Anhui, China
| | - Ying Ji
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| | - Chuandong Cheng
- Anhui University of Science and Technology, 232001, Huainan, Anhui, China.
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| |
Collapse
|
11
|
Xu H, Lu M, Liu Y, Ren F, Zhu L. Identification of a pyroptosis-related long non-coding RNA Signature for prognosis and its related ceRNA regulatory network of ovarian cancer. J Cancer 2023; 14:3151-3168. [PMID: 37859811 PMCID: PMC10583579 DOI: 10.7150/jca.88485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
Aim: To identify the pyroptosis-related long non-coding RNAs (lncRNAs) in ovarian cancer and construct a prognostic signature based on them. Methods: Expression data from TCGA was used to explore differentially expressed pyroptosis-related lncRNAs in ovarian cancer. A risk signature was established by LASSO and cox regression analysis and then validated. Databases such as ESTIMATE, CIBERSORT, TIMER, XCELL were used to identify the relation between this signature and the immune microenvironment of ovarian cancer. Gene Set Enrichment Analysis was introduced to identify the pathways and functions that the signature may participate in. Based on miRcode and starBase databases, microRNAs related to the lncRNAs in our signature and the positively co-expressed pyroptosis- related genes were screened and a competing endogenous RNA (ceRNA) network was then constructed. Quantitative reverse transcription PCR was conducted to validate the expression levels of two lncRNAs in this ceRNA network. Results: A 13 pyroptosis-related lncRNA prognostic signature (MYCNOS, AL161772.1, USP30-AS1, ZNF32-AS2, AC068733.3, AC012236.1, AC015802.5, KIAA1671-AS1, AC013403.2, MIR223HG, KRT7-AS, PTPRD-AS1 and LINC01094) was constructed. Patients in high-risk group had a significantly worse prognosis than that of low-risk (P<0.0001). Immune infiltration analysis found that patients identified as high-risk had a higher infiltration of macrophages and tumor-associated fibroblasts. Further pathway analysis revealed that the signature may be involved in epithelial mesenchymal transition, extracellular matrix receptor interaction, and focal adhesion. Finally, a competitive endogenous inhibition relationship was discovered between LINC01094, KRT7-AS, MYCNOS, ZNF32-AS2, AC012236.1 and pyroptosis- related genes such as IRF1, NOD1, GSDMC, NLRP1, PLCG1, GSDME and GZMB, in which LINC01094 and KRT7-AS were found to be overexpressed in three ovarian cancer cell lines. Conclusion: We constructed a pyroptosis-related lncRNA signature and correlate it to the immune microenvironment. A ceRNA regulatory network related to pyroptosis was also constructed, which provides novel insights useful for the study of pyroptosis in ovarian cancer.
Collapse
Affiliation(s)
- Haoya Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Miao Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yuna Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Fang Ren
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
12
|
Gupta J, Suliman M, Ali R, Margiana R, Hjazi A, Alsaab HO, Qasim MT, Hussien BM, Ahmed M. Double-edged sword role of miRNA-633 and miRNA-181 in human cancers. Pathol Res Pract 2023; 248:154701. [PMID: 37542859 DOI: 10.1016/j.prp.2023.154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Understanding the function and mode of operation of microRNAs (miRNAs) in cancer is of growing interest. The short non-coding RNAs known as miRNAs, which target mRNA in multicellular organisms, are described as controlling essential cellular processes. The miR-181 family and miR-633 are well-known miRNAs that play a key role in the development and metastasis of tumor cells. They may facilitate either tumor-suppressive or oncogenic function in malignant cells, according to mounting evidence. Metastatic cells that are closely linked to cancer cell migration, invasion, and angiogenesis can be identified by abnormal levels of miR-181 and miR-633. Numerous studies have demonstrated their capacity to control drug resistance, cell growth, apoptosis, and the epithelial-mesenchymal transition (EMT) and metastasis process. Interestingly, the levels of miR-181 and miR-633 and their potential target genes in the basic cellular process can vary depending on the type of cancer cells and their gene expression profile. Such miRNAs' interactions with other non-coding RNAs such as long non-coding RNAs and circular RNAs can influence tumor behaviors. Herein, we concentrated on the multifaceted roles of miR-181 and miR-633 and potential targets in human tumorigenesis, ranging from cell growth and metastasis to drug resistance.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India.
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Rida Ali
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
13
|
Zhao B, Fang F, Liao Y, Chen Y, Wang F, Ma Y, Wei C, Zhao J, Ji H, Wang D, Tang D. Novel m7G-related lncRNA signature for predicting overall survival in patients with gastric cancer. BMC Bioinformatics 2023; 24:100. [PMID: 36935487 PMCID: PMC10024859 DOI: 10.1186/s12859-023-05228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/21/2023] Open
Abstract
Presenting with a poor prognosis, gastric cancer (GC) remains one of the leading causes of disease and death worldwide. Long non-coding RNAs (lncRNAs) regulate tumor formation and have been long used to predict tumor prognosis. N7-methylguanosine (m7G) is the most prevalent RNA modification. m7G-lncRNAs regulate GC onset and progression, but their precise mechanism in GC is unclear. The objective of this research was the development of a new m7G-related lncRNA signature as a biomarker for predicting GC survival rate and guiding treatment. The Cancer Genome Atlas database helped extract gene expression data and clinical information for GC. Pearson correlation analysis helped point out m7G-related lncRNAs. Univariate Cox analysis helped in identifying m7G-related lncRNA with predictive capability. The Lasso-Cox method helped point out seven lncRNAs for the purpose of establishing an m7G-related lncRNA prognostic signature (m7G-LPS), followed by the construction of a nomogram. Kaplan-Meier analysis, univariate and multivariate Cox regression analysis, calibration plot of the nomogram model, receiver operating characteristic curve and principal component analysis were utilized for the verification of the risk model's reliability. Furthermore, q-PCR helped verify the lncRNAs expression of m7G-LPS in-vitro. The study subjects were classified into high and low-risk groups based on the median value of the risk score. Gene enrichment analysis confirmed the constructed m7G-LPS' correlation with RNA transcription and translation and multiple immune-related pathways. Analysis of the clinicopathological features revealed more progressive features in the high-risk group. CIBERSORT analysis showed the involvement of m7G-LPS in immune cell infiltration. The risk score was correlated with immune checkpoint gene expression, immune cell and immune function score, immune cell infiltration, and chemotherapy drug sensitivity. Therefore, our study shows that m7G-LPS constructed using seven m7G-related lncRNAs can predict the survival time of GC patients and guide chemotherapy and immunotherapy regimens as biomarker.
Collapse
Grants
- No. 202011117056Y the Academic Science and Technology Innovation Fund for College Students
- No. 202011117056Y the Academic Science and Technology Innovation Fund for College Students
- No. 202011117056Y the Academic Science and Technology Innovation Fund for College Students
- No. 202011117056Y the Academic Science and Technology Innovation Fund for College Students
- No. 202011117056Y the Academic Science and Technology Innovation Fund for College Students
- No. 202011117056Y the Academic Science and Technology Innovation Fund for College Students
- No. 202011117056Y the Academic Science and Technology Innovation Fund for College Students
- No. 202011117056Y the Academic Science and Technology Innovation Fund for College Students
- No. 202011117056Y the Academic Science and Technology Innovation Fund for College Students
- No. 202011117056Y the Academic Science and Technology Innovation Fund for College Students
- No. 202011117056Y the Academic Science and Technology Innovation Fund for College Students
- No. YZ2021075 the Social Development-Health Care Project of Yangzhou, Jiangsu Province
- No. YZ2021075 the Social Development-Health Care Project of Yangzhou, Jiangsu Province
- No. YZ2021075 the Social Development-Health Care Project of Yangzhou, Jiangsu Province
- No. YZ2021075 the Social Development-Health Care Project of Yangzhou, Jiangsu Province
- No. YZ2021075 the Social Development-Health Care Project of Yangzhou, Jiangsu Province
- No. YZ2021075 the Social Development-Health Care Project of Yangzhou, Jiangsu Province
- No. YZ2021075 the Social Development-Health Care Project of Yangzhou, Jiangsu Province
- No. YZ2021075 the Social Development-Health Care Project of Yangzhou, Jiangsu Province
- No. YZ2021075 the Social Development-Health Care Project of Yangzhou, Jiangsu Province
- No. YZ2021075 the Social Development-Health Care Project of Yangzhou, Jiangsu Province
- No. YZ2021075 the Social Development-Health Care Project of Yangzhou, Jiangsu Province
- No. LGY2019034 High-level talent "six one projects" top talent scientific research project of Jiangsu Province
- No. LGY2019034 High-level talent "six one projects" top talent scientific research project of Jiangsu Province
- No. LGY2019034 High-level talent "six one projects" top talent scientific research project of Jiangsu Province
- No. LGY2019034 High-level talent "six one projects" top talent scientific research project of Jiangsu Province
- No. LGY2019034 High-level talent "six one projects" top talent scientific research project of Jiangsu Province
- No. LGY2019034 High-level talent "six one projects" top talent scientific research project of Jiangsu Province
- No. LGY2019034 High-level talent "six one projects" top talent scientific research project of Jiangsu Province
- No. LGY2019034 High-level talent "six one projects" top talent scientific research project of Jiangsu Province
- No. LGY2019034 High-level talent "six one projects" top talent scientific research project of Jiangsu Province
- No. LGY2019034 High-level talent "six one projects" top talent scientific research project of Jiangsu Province
- No. LGY2019034 High-level talent "six one projects" top talent scientific research project of Jiangsu Province
- SJCX22_1816 the Graduate Research- Innovation Project in Jiangsu province
- SJCX22_1816 the Graduate Research- Innovation Project in Jiangsu province
- SJCX22_1816 the Graduate Research- Innovation Project in Jiangsu province
- SJCX22_1816 the Graduate Research- Innovation Project in Jiangsu province
- SJCX22_1816 the Graduate Research- Innovation Project in Jiangsu province
- SJCX22_1816 the Graduate Research- Innovation Project in Jiangsu province
- SJCX22_1816 the Graduate Research- Innovation Project in Jiangsu province
- SJCX22_1816 the Graduate Research- Innovation Project in Jiangsu province
- SJCX22_1816 the Graduate Research- Innovation Project in Jiangsu province
- SJCX22_1816 the Graduate Research- Innovation Project in Jiangsu province
- SJCX22_1816 the Graduate Research- Innovation Project in Jiangsu province
- BE2022773 Social development project of key R & D plan of Jiangsu Provincial Department of science and technology
- BE2022773 Social development project of key R & D plan of Jiangsu Provincial Department of science and technology
- BE2022773 Social development project of key R & D plan of Jiangsu Provincial Department of science and technology
- BE2022773 Social development project of key R & D plan of Jiangsu Provincial Department of science and technology
- BE2022773 Social development project of key R & D plan of Jiangsu Provincial Department of science and technology
- BE2022773 Social development project of key R & D plan of Jiangsu Provincial Department of science and technology
- BE2022773 Social development project of key R & D plan of Jiangsu Provincial Department of science and technology
- BE2022773 Social development project of key R & D plan of Jiangsu Provincial Department of science and technology
- BE2022773 Social development project of key R & D plan of Jiangsu Provincial Department of science and technology
- BE2022773 Social development project of key R & D plan of Jiangsu Provincial Department of science and technology
- BE2022773 Social development project of key R & D plan of Jiangsu Provincial Department of science and technology
Collapse
Affiliation(s)
- Bin Zhao
- Department of Clinical Medical College, The Yangzhou School of Clinical Medicine, Dalian Medical University, Yangzhou, 225001, China
| | - Fang Fang
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yiqun Liao
- Department of Clinical Medical College, The Yangzhou School of Clinical Medicine, Dalian Medical University, Yangzhou, 225001, China
| | - Yuji Chen
- Department of Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Fei Wang
- Department of Clinical Medical College, The Yangzhou School of Clinical Medicine, Dalian Medical University, Yangzhou, 225001, China
| | - Yichao Ma
- Department of Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Chen Wei
- Department of Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Jiahao Zhao
- Department of Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Hao Ji
- Department of Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Dong Tang
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
14
|
Regulatory Role of Fatty Acid Metabolism-Related Long Noncoding RNA in Prostate Cancer: A Computational Biology Study Analysis. JOURNAL OF ONCOLOGY 2023; 2023:9736073. [PMID: 36824662 PMCID: PMC9943624 DOI: 10.1155/2023/9736073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
In elderly men, prostate cancer is a leading cause of death. Tumor cells require more energy to progress than normal cells, and this energy is mainly dependent on the large amount of ATP support generated by lipid metabolism. Therefore, in this study, we focused on long noncoding RNAs related to lipid metabolism in prostate cancer to discover the biological mechanisms of lipid metabolism regulation. The TCGA-PRAD cohort was used in this study for computational biology analysis. In lipid metabolism biological pathways, 1959 long noncoding RNAs were identified by Pearson correlation coefficient analysis of protein-coding genes, then univariate regression with P values fewer than 0.05. We further identified 784 lncRNAs that were lipid metabolism-related lncRNAs considered to have prognostic value for disease-free survival. Subsequently, we constructed two lncRNA expression patterns of lipid metabolism based on these lncRNAs by nonnegative matrix dimensionality reduction. These two expression patterns showed significant differences in disease-free survival curves for those diagnosed with prostate cancer. We found significant differences in mRNA surveillance pathway and mRNA processing between C1 and C2 groups based on the WGCNA method to explore the biological characteristics of these two expression patterns. Finally, we constructed a disease-free survival (PFS) model based on these lncRNAs. The results identified lncRNAs involved in lipid metabolism and revealed differences in their expression patterns. Additionally, the results offer candidate ideas and approaches concerning the precision treatment of prostate cancer by studying lipid metabolism by candidate long noncoding RNAs.
Collapse
|
15
|
Li G, Xu S, Yang S, Wu C, Zhang L, Wang H. An immune infiltration-related long non-coding RNAs signature predicts prognosis for hepatocellular carcinoma. Front Genet 2022; 13:1029576. [PMID: 36568382 PMCID: PMC9773198 DOI: 10.3389/fgene.2022.1029576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background: With a high incidence and dismal survival rate, hepatocellular carcinoma (HCC) tops the list of the world's most frequent malignant tumors. Immunotherapy is a new approach to cancer treatment, and its effect on prolonging overall survival (OS) varies from patient to patient. For a more effective prognosis and treatment of HCC, we are committed to identifying immune infiltration-related long non-coding RNAs (IIRLs) with prognostic value in hepatocellular carcinoma. Methods: In our study, we calculated immune scores of 369 hepatocellular carcinoma samples from the Cancer Genome Atlas (TCGA) database by using an estimation algorithm, and obtained long non-coding RNAs (lncRNAs) associated with immune infiltration by using Weighted Gene Co-expression Network analysis (WGCNA). For training cohort, univariate Cox, least absolute shrinkage and selection operator (Lasso) and multivariate Cox regression analysis were used to determine prognostic IIRLs, we established a prognostic IIRLs signature. By testing cohort and entire cohort, we confirmed that the signature is practical. The prognosis of people with different clinicopathological stages and risk scores were predicted by the nomogram we constructed. In addition, Immune cell infiltration analysis and prediction of therapeutic drugs were performed. Results: 93 IIRLs were obtained by WGCNA. Furthermore, the prognostic value of these IIRLs were evaluated by using univariate Cox, Lasso and multivariate Cox analysis. Four IIRLs were used to create a signature with a prognosis. Time-related receiver operating characteristic (ROC) curve revealed that this model had an acceptable prognostic value for HCC patients. By using univariate and multivariate Cox regression analysis, this risk score has been shown to be an independent prognostic factor for HCC. The nomogram we made showed good predictions. Except for that, the treatment with immune checkpoint inhibitors (ICI) was likely to be more effective for low-risk patients. Conclusion: Based on four IIRLs, a prognostic signature was created in this research showed good accuracy in predicting OS. This study also provided valuable references for Immunotherapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Gen Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shaodian Xu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuai Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cong Wu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Liangliang Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongbing Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,*Correspondence: Hongbing Wang,
| |
Collapse
|
16
|
Agrawal D, Kumari R, Ratre P, Rehman A, Srivastava RK, Reszka E, Goryacheva IY, Mishra PK. Cell-free circulating miRNAs-lncRNAs-mRNAs as predictive markers for breast cancer risk assessment in women exposed to indoor air pollution. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100267. [DOI: 10.1016/j.cscee.2022.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
|
17
|
Liang H, Zhao Y, Liu K, Xiao Y, Chen K, Li D, Zhong S, Zhao Z, Wu D, Peng Y. The mechanism of lncRNAs in the crosstalk between epithelial-mesenchymal transition and tumor microenvironment for early colon adenocarcinoma based on molecular subtyping. Front Genet 2022; 13:997739. [PMID: 36467998 PMCID: PMC9708740 DOI: 10.3389/fgene.2022.997739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 09/10/2024] Open
Abstract
A large number of colon adenocarcinoma (COAD) patients are already advanced when diagnosed. In this study, we aimed to further understand the mechanism of tumor development in early COAD by focusing on epithelial-mesenchymal transition (EMT) and long non-coding RNAs (lncRNAs). Expression profiles of early COAD patients were obtained from public databases. EMT-related lncRNAs were used as a basis for constructing molecular subtypes through unsupervised consensus clustering. Genomic features, pathways and tumor microenvironment (TME) were compared between two subtypes. LncATLAS database was applied to analyze the relation between lncRNAs and transcription factors (TFs). First order partial correlation analysis was conducted to identify key EMT-related lncRNAs.C1 and C2 subtypes with distinct prognosis were constructed. Oncogenic pathways such as EMT, KRAS signaling, JAK-STAT signaling, and TGF-β signaling were significantly enriched in C2 subtype. Higher immune infiltration and expression of immune checkpoints were also observed in C2 subtype, suggesting the key EMT-related lncRNAs may play a critical role in the modulation of TME. In addition, JAK-STAT signaling pathway was obviously enriched in upregulated TFs in C2 subtype, which indicated a link between key lncRNAs and JAK-STAT signaling that may regulate TME. The study further expanded the research on the role of EMT-related lncRNAs in the early COAD. The six identified EMT-related lncRNAs could serve as biomarkers for early screening COAD.
Collapse
Affiliation(s)
- Hanlin Liang
- Chemotherapy Department, Zhongshan City People’s Hospital, Zhongshan, China
| | - Yi Zhao
- GI Medicine, The Third Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Kai Liu
- Department of Colorectal Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yajie Xiao
- Department of Medicine, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Kexu Chen
- Chemotherapy Department, Zhongshan City People’s Hospital, Zhongshan, China
| | - Delan Li
- Chemotherapy Department, Zhongshan City People’s Hospital, Zhongshan, China
| | - Shupeng Zhong
- Chemotherapy Department, Zhongshan City People’s Hospital, Zhongshan, China
| | - Zhikun Zhao
- Department of Medicine, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Dongfang Wu
- Department of Medicine, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Yu Peng
- Oncology Department, Jiangmen Central Hospital, Jiangmen, China
| |
Collapse
|
18
|
Zhang G, Gao Y, Yu Z, Su H. Upregulated long intergenic non-protein coding RNA 1094 (LINC01094) is linked to poor prognosis and alteration of cell function in colorectal cancer. Bioengineered 2022; 13:8526-8537. [PMID: 35287563 PMCID: PMC9161846 DOI: 10.1080/21655979.2022.2051839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) showed high cancer-related mortality in recent years partly due to the absence of an effective prognostic predictor. This research intended to evaluate the prognostic value and potential role of long intergenic non-protein coding RNA 1094 (LINC01094) in CRC. In this work, we evaluated the LINC01094 level in 122 CRC patients’ tissues and in human CRC cell lines. We explored the ability of LINC01094 in overall survival and progression-free survival estimate. The effect of LINC01094 dysregulation on the CRC cells was investigated. LINC01094 is highly expressed in CRC tissues and cells than normal ones. This high expression was correlated with absent vascular invasion, positive lymph node metastasis, and advanced TNM stage. With the result of Kaplan-Meier analysis and multivariate Cox’s proportional hazard analysis, LINC01094 was an effective biomarker for CRC overall survival. Downregulation of LINC01094 impeded the malignant biological behavior (proliferation, invasion, and migration) of CRC cells, while overexpression of LINC01094 boosted that maybe by sponging miR-1266-5p. LINC01094 might function as an oncogene in CRC and allowed the discovery of a new biomarker for prognosis and therapy of CRC.
Collapse
Affiliation(s)
- Guangliang Zhang
- Oncology Department, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Yingjie Gao
- Oncology Department, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Zhen Yu
- Intervention Therapy Department, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Hui Su
- Oncology Department, Liaocheng People's Hospital, Liaocheng, 252000, China
| |
Collapse
|