1
|
Bednaršek N, Pelletier G, Beck MW, Feely RA, Siegrist Z, Kiefer D, Davis J, Peabody B. Predictable patterns within the kelp forest can indirectly create temporary refugia from ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174065. [PMID: 38897470 DOI: 10.1016/j.scitotenv.2024.174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Kelps are recognized for providing many ecosystem services in coastal areas and considered in ocean acidification (OA) mitigation. However, assessing OA modification requires an understanding of the multiple parameters involved in carbonate chemistry, especially in highly dynamic systems. We studied the effects of sugar kelp (Saccharina latissima) on an experimental farm at the north end of Hood Canal, Washington-a low retentive coastal system. In this field mesocosm study, two oyster species (Magallana gigas, Ostrea lurida) were exposed at locations in the mid, edge, and outside the kelp array. The Hood Head Sugar Kelp Farm Model outputs were used to identify dominating factors in spatial and temporal kelp dynamics, while wavelet spectrum analyses helped in understanding predictability patterns. This was linked to the measured biological responses (dissolution, growth, isotopes) of the exposed organisms. Positioned in an area of high (sub)-diel tidal fluxes with low retention potential, there were no measurable alterations of the seawater pH at the study site, demonstrating that the kelp array could not induce a direct mitigating effect against OA. However, beneficial responses in calcifiers were still observed, which are linked to two causes: increased pH predictability and improved provisioning through kelp-derived particulate organic resource utilization and as such, kelp improved habitat suitability and indirectly created refugia against OA. This study can serve as an analogue for many coastal bay habitats where prevailing physical forcing drives chemical changes. Future macrophyte studies that investigate OA mitigating effects should focus also on the importance of predictability patterns, which can additionally improve the conditions for marine calcifiers and ecosystem services vulnerable to or compromised by OA, including aquaculture sustainability.
Collapse
Affiliation(s)
- Nina Bednaršek
- Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, 2030 SE Marine Science Drive Newport, OR 97365, Oregon State University, USA; Institute Jožef Stefan, 1000 Ljubljana, Slovenia.
| | - Greg Pelletier
- Washington Department of Ecology, Olympia, 300 Desmond Dr SE, WA 98503,(Emeritus), USA
| | - Marcus W Beck
- Tampa Bay Estuary Program, St. Petersburg, FL 33701, USA
| | - Richard A Feely
- NOAA Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA
| | - Zach Siegrist
- System Science Applications, Inc, Renton, Washington, USA
| | - Dale Kiefer
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Davis
- Puget Sound Restoration Fund, Bainbridge Island, WA, 98110, USA
| | | |
Collapse
|
2
|
Bråtelund S, Ruttink T, Goecke F, Broch OJ, Klemetsdal G, Ødegård J, Ergon Å. Characterization of fine geographic scale population genetics in sugar kelp (Saccharina latissima) using genome-wide markers. BMC Genomics 2024; 25:901. [PMID: 39350004 PMCID: PMC11441103 DOI: 10.1186/s12864-024-10793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Kelps are not only ecologically important, being primary producers and habitat forming species, they also hold substantial economic potential. Expansion of the kelp cultivation industry raises the interest for genetic improvement of kelp for cultivation, as well as concerns about genetic introgression from cultivated to wild populations. Thus, increased understanding of population genetics in natural kelp populations is crucial. Genotyping-by-sequencing (GBS) is a powerful tool for studying population genetics. Here, using Saccharina latissima (sugar kelp) as our study species, we characterize the population genetics at a fine geographic scale, while also investigating the influence of marker type (biallelic SNPs versus multi-allelic short read-backed haplotypes) and minor allele count (MAC) thresholds on estimated population genetic metrics. RESULTS We examined 150 sporophytes from 10 locations within a small area in Mid-Norway. Employing GBS, we detected 20,710 bi-allelic SNPs and 42,264 haplotype alleles at 20,297 high quality GBS loci. We used both marker types as well as two MAC filtering thresholds (3 and 15) in the analyses. Overall, higher genetic diversity, more outbreeding and stronger substructure was estimated using haplotypes compared to SNPs, and with MAC 15 compared to MAC 3. The population displayed high genetic diversity (HE ranging from 0.18-0.37) and significant outbreeding (FIS ≤ - 0.076). Construction of a genomic relationship matrix, however, revealed a few close relatives within sampling locations. The connectivity between sampling locations was high (FST ≤ 0.09), but subtle, yet significant, genetic substructure was detected, even between sampling locations separated by less than 2 km. Isolation-by-distance was significant and explained 15% of the genetic variation, while incorporation of predicted currents in an "isolation-by-oceanography" model explained a larger proportion (~ 27%). CONCLUSION The studied population is diverse, significantly outbred and exhibits high connectivity, partly due to local currents. The use of genome-wide markers combined with permutation testing provides high statistical power to detect subtle population substructure and inbreeding or outbreeding. Short haplotypes extracted from GBS data and removal of rare alleles enhances the resolution. Careful consideration of marker type and filtering thresholds is crucial when comparing independent studies, as they profoundly influence numerical estimates of population genetic metrics.
Collapse
Affiliation(s)
- Signe Bråtelund
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway.
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Franz Goecke
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway
| | - Ole Jacob Broch
- Sintef Ocean, P.O. Box 4762 Torgarden, Trondheim, 7465, Norway
| | - Gunnar Klemetsdal
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway
| | - Jørgen Ødegård
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway
| | - Åshild Ergon
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway
| |
Collapse
|
3
|
Ye Y, Guo W, Ngo HH, Wei W, Cheng D, Bui XT, Hoang NB, Zhang H. Biofuel production for circular bioeconomy: Present scenario and future scope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:172863. [PMID: 38788387 DOI: 10.1016/j.scitotenv.2024.172863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
In recent years, biofuel production has attracted considerable attention, especially given the increasing worldwide demand for energy and emissions of greenhouse gases that threaten this planet. In this case, one possible solution is to convert biomass into green and sustainable biofuel, which can enhance the bioeconomy and contribute to sustainable economic development goals. Due to being in large quantities and containing high organic content, various biomass sources such as food waste, textile waste, microalgal waste, agricultural waste and sewage sludge have gained significant attention for biofuel production. Also, biofuel production technologies, including thermochemical processing, anaerobic digestion, fermentation and bioelectrochemical systems, have been extensively reported, which can achieve waste valorization through producing biofuels and re-utilizing wastes. Nevertheless, the commercial feasibility of biofuel production is still being determined, and it is unclear whether biofuel can compete equally with other existing fuels in the market. The concept of a circular economy in biofuel production can promote the environmentally friendly and sustainable valorization of biomass waste. This review comprehensively discusses the state-of-the-art production of biofuel from various biomass sources and the bioeconomy perspectives associated with it. Biofuel production is evaluated within the framework of the bioeconomy. Further perspectives on possible integration approaches to maximizing waste utilization for biofuel production are discussed, and what this could mean for the circular economy. More research related to pretreatment and machine learning of biofuel production should be conducted to optimize the biofuel production process, increase the biofuel yield and make the biofuel prices competitive.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia.
| | - Wei Wei
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 70000, Viet Nam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Nabila DS, Chan R, Syamsuri RRP, Nurlilasari P, Wan-Mohtar WAAQI, Ozturk AB, Rossiana N, Doni F. Biobutanol production from underutilized substrates using Clostridium: Unlocking untapped potential for sustainable energy development. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100250. [PMID: 38974669 PMCID: PMC11225672 DOI: 10.1016/j.crmicr.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
The increasing demand for sustainable energy has brought biobutanol as a potential substitute for fossil fuels. The Clostridium genus is deemed essential for biobutanol synthesis due to its capability to utilize various substrates. However, challenges in maintaining fermentation continuity and achieving commercialization persist due to existing barriers, including butanol toxicity to Clostridium, low substrate utilization rates, and high production costs. Proper substrate selection significantly impacts fermentation efficiency, final product quality, and economic feasibility in Clostridium biobutanol production. This review examines underutilized substrates for biobutanol production by Clostridium, which offer opportunities for environmental sustainability and a green economy. Extensive research on Clostridium, focusing on strain development and genetic engineering, is essential to enhance biobutanol production. Additionally, critical suggestions for optimizing substrate selection to enhance Clostridium biobutanol production efficiency are also provided in this review. In the future, cost reduction and advancements in biotechnology may make biobutanol a viable alternative to fossil fuels.
Collapse
Affiliation(s)
- Devina Syifa Nabila
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Rosamond Chan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | | | - Puspita Nurlilasari
- Department of Agro-industrial Technology, Faculty of Agro-industrial Technology, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Abdullah Bilal Ozturk
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul 34220, Türkiye
| | - Nia Rossiana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| |
Collapse
|
5
|
Adouane E, Mercier C, Mamelle J, Willocquet E, Intertaglia L, Burgunter-Delamare B, Leblanc C, Rousvoal S, Lami R, Prado S. Importance of quorum sensing crosstalk in the brown alga Saccharina latissima epimicrobiome. iScience 2024; 27:109176. [PMID: 38433891 PMCID: PMC10906538 DOI: 10.1016/j.isci.2024.109176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Brown macroalgae are colonized by diverse microorganisms influencing the physiology of their host. However, cell-cell interactions within the surface microbiome (epimicrobiome) are largely unexplored, despite the significance of specific chemical mediators in maintaining host-microbiome homeostasis. In this study, by combining liquid chromatography coupled to mass spectrometry (LC-MS) analysis and bioassays, we demonstrated that the widely diverse fungal epimicrobiota of the brown alga Saccharina latissima can affect quorum sensing (QS), a type of cell-cell interaction, as well as bacterial biofilm formation. We also showed the ability of the bacterial epimicrobiota to form and inhibit biofilm growth, as well as to activate or inhibit QS pathways. Overall, we demonstrate that QS and anti-QS compounds produced by the epimicrobiota are key metabolites in these brown algal epimicrobiota communities and highlight the importance of exploring this epimicrobiome for the discovery of new bioactive compounds, including potentially anti-QS molecules with antifouling properties.
Collapse
Affiliation(s)
- Emilie Adouane
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-Organismes MCAM, UMR 7245, CNRS, Sorbonne Université, 75005 Paris, France
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Camille Mercier
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Jeanne Mamelle
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Emma Willocquet
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Laurent Intertaglia
- Sorbonne Université, CNRS, Bio2Mar, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Bertille Burgunter-Delamare
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Catherine Leblanc
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sylvie Rousvoal
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Soizic Prado
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-Organismes MCAM, UMR 7245, CNRS, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
6
|
Ren CG, Zhong ZH, Liu ZY, Lin S, Luo YK, Qin S. The ever-lasting green tides: What can we do?. Heliyon 2024; 10:e25220. [PMID: 38333800 PMCID: PMC10850537 DOI: 10.1016/j.heliyon.2024.e25220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Macroalgal blooms (Green tides) are occurring more frequently in many regions of the world because of the combined effects of increasingly intense human activity and climate change. In the last decade, the world's largest Ulva prolifera green tide has become a recurrent phenomenon, appearing every summer in the southern Yellow Sea, China. Green tides can hurt coastal tourism and eradicate aquaculture and artisanal fishing. Eutrophication in nearshore waters is the ultimate explanation for the explosive growth of the macroalgal biomass, but the specific course of each nearshore green tide is often complex and requires in-depth and extensive research to develop effective mitigation strategies. Researchers have undertaken extensive studies on the prevention, control and mitigation of large-scale green algal blooms, and felicitated the utilization of green tide harmful biomass through bio-refining, bioconversion and other measures. However, due to the large-scale and trans-regional nature of the green tide, the government's administrative coordination measures are also essential for effective control. Nevertheless, it is becoming increasingly urgent to prevent and control the bloom at the early stage, and efficiently salvage and use these valuable raw materials.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chun-hui Road, Lai-shan District, Yantai, China
| | - Zhi-Hai Zhong
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chun-hui Road, Lai-shan District, Yantai, China
| | - Zhi-Yi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chun-hui Road, Lai-shan District, Yantai, China
| | - Shuang Lin
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| | - Yong-Kai Luo
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chun-hui Road, Lai-shan District, Yantai, China
| |
Collapse
|
7
|
Synergistic Effect of Surfactant on Disperser Energy and Liquefaction Potential of Macroalgae (Ulva intestinalis) for Biofuel Production. FERMENTATION 2023. [DOI: 10.3390/fermentation9010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The objective of this study was to evaluate the effect of surfactant on disperser homogenization pretreatment for macroalgae (Ulva intestinalis) to enhance biogas production. The macroalgae are subjected to surfactant coupled disperser pretreatment, which enhanced the liquefaction and improved the biomethane production. The outcome of this study revealed that 10,000 rpm at 20 min with a specific energy input of 1748.352 kJ/ kg total solids (TS) are the optimum conditions for surfactant disperser pretreatment (SDP), which resulted in the liquefaction rate of 20.08% with soluble organics release of 1215 mg/L and showed a better result than disperser pretreatment (DP) with a liquefaction rate of 14%. Biomethane production through the SDP method was found to be 0.2 g chemical oxygen demand (COD)/g COD, which was higher than DP (0.11 g COD/g COD). SDP was identified to be a synergetic pretreatment method with an energy ratio and net profit of about 0.91 and 104.04 United States dollars (USD)/ton, respectively.
Collapse
|
8
|
Alvarado-Ramírez L, Santiesteban-Romero B, Poss G, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R, Bonaccorso AD, Melchor-Martínez EM. Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1072761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The annual global fish production reached a record 178 million tonnes in 2020, which continues to increase. Today, 49% of the total fish is harvested from aquaculture, which is forecasted to reach 60% of the total fish produced by 2030. Considering that the wastes of fishing industries represent up to 75% of the whole organisms, the fish industry is generating a large amount of waste which is being neglected in most parts of the world. This negligence can be traced to the ridicule of the value of this resource as well as the many difficulties related to its valorisation. In addition, the massive expansion of the aquaculture industry is generating significant environmental consequences, including chemical and biological pollution, disease outbreaks that increase the fish mortality rate, unsustainable feeds, competition for coastal space, and an increase in the macroalgal blooms due to anthropogenic stressors, leading to a negative socio-economic and environmental impact. The establishment of integrated multi-trophic aquaculture (IMTA) has received increasing attention due to the environmental benefits of using waste products and transforming them into valuable products. There is a need to integrate and implement new technologies able to valorise the waste generated from the fish and aquaculture industry making the aquaculture sector and the fish industry more sustainable through the development of a circular economy scheme. This review wants to provide an overview of several approaches to valorise marine waste (e.g., dead fish, algae waste from marine and aquaculture, fish waste), by their transformation into biofuels (biomethane, biohydrogen, biodiesel, green diesel, bioethanol, or biomethanol) and recovering biomolecules such as proteins (collagen, fish hydrolysate protein), polysaccharides (chitosan, chitin, carrageenan, ulvan, alginate, fucoidan, and laminarin) and biosurfactants.
Collapse
|
9
|
Sharmila VG, Rajesh Banu J, Dinesh Kumar M, Adish Kumar S, Kumar G. Algal biorefinery towards decarbonization: Economic and environmental consideration. BIORESOURCE TECHNOLOGY 2022; 364:128103. [PMID: 36243260 DOI: 10.1016/j.biortech.2022.128103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Algae biomass contains various biological elements, including lipids, proteins, and carbohydrates, making it a viable feedstock for manufacturing biofuels. However, the biggest obstacle to commercializing algal biofuels is their high production costs, primarily related to an algae culture. The extraction of additional high value added bioproducts from algal biomass is thus required to increase the economic viability of producing algae biofuel. This study aims to discuss the economic benefits of a zero-carbon economy and an environmentally sustainable algae resource in decarbonizing the environment through the manufacture of algal-based biofuels from algae biomass for a range of potential uses. In addition, research on the algae biorefineries, with an emphasis on case studies for various cultivation methods, as well as the commercialization of biofuel and bioenergy. Overall, the algal biorefinery offers fresh potential for synthesizing various products.
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - M Dinesh Kumar
- Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - S Adish Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Thermogravimetric Analysis of Marine Macroalgae Waste Biomass as Bio-Renewable Fuel. J CHEM-NY 2022. [DOI: 10.1155/2022/6417326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Macroalgae are considered as the 3rd generation of biofuels and a future feedstock for biorefinery. This research aims to provide simple and dependable analytical techniques for measuring the thermal characteristics of dried seaweed. The main objective was to investigate the thermal characteristics of four seaweed species utilizing a thermogravimetric analyzer. The seaweeds Gracilaria fisheri, Caulerpa lentillifera, Ceramium rubrum, and Eucheuma cottonii were collected from the Pahang state of Peninsular Malaysia. The calorific value of the samples was revealed by using a calorimeter. Ceramium rubrum showed the highest calorific value, while Gracilaria fisheri had the most negligible calorific value among the selected samples. The thermogravimetric analysis (TGA) data revealed that the most significant weight loss for this biomass occurred between 160 and 300° for the selected species. Gracilaria fisheri has shown the highest decomposition with the minor residue at 30.26%, whereas Caulerpa lentillifera has a slow weight loss rate in the mentioned range. SEM analysis has been used to perform the morphology of samples, which shows differences in the concentration of epiphytic diatoms with different structural shapes. Based on the results, macroalgae is a promising sustainable biomass feedstock for biofuel application.
Collapse
|
11
|
Anisha GS, Padmakumari S, Patel AK, Pandey A, Singhania RR. Fucoidan from Marine Macroalgae: Biological Actions and Applications in Regenerative Medicine, Drug Delivery Systems and Food Industry. Bioengineering (Basel) 2022; 9:bioengineering9090472. [PMID: 36135017 PMCID: PMC9495336 DOI: 10.3390/bioengineering9090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The marine macroalgae produce a collection of bioactive polysaccharides, of which the sulfated heteropolysaccharide fucoidan produced by brown algae of the class Phaeophyceae has received worldwide attention because of its particular biological actions that confer nutritional and health benefits to humans and animals. The biological actions of fucoidan are determined by their structure and chemical composition, which are largely influenced by the geographical location, harvest season, extraction process, etc. This review discusses the structure, chemical composition and physicochemical properties of fucoidan. The biological action of fucoidan and its applications for human health, tissue engineering, regenerative medicine and drug delivery are also addressed. The industrial scenario and prospects of research depicted would give an insight into developing fucoidan as a commercially viable and sustainable bioactive material in the nutritional and pharmacological sectors.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, India
- Correspondence: or (G.S.A.); (R.R.S.)
| | - Savitha Padmakumari
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Center for Energy and Environmental Sustainability, Lucknow 226029, India
| | - Ashok Pandey
- Center for Energy and Environmental Sustainability, Lucknow 226029, India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Center for Energy and Environmental Sustainability, Lucknow 226029, India
- Correspondence: or (G.S.A.); (R.R.S.)
| |
Collapse
|
12
|
Bioconversion of the Brown Tunisian Seaweed Halopteris scoparia: Application to Energy. ENERGIES 2022. [DOI: 10.3390/en15124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The brown Tunisian seaweed Halopteris scoparia was used as a feedstock for producing renewable bioethanol, biogas, and biodiesel to demonstrate the proof of concept for the North African energy sector. A quantitative and qualitative quantification of H. scoparia composition using different colorimetric methods was completed to highlight its bioconversion potential. These substrate inputs were subjected to anaerobic fermentation by Saccharomyces cerevisiae to produce bioethanol. The materials were also used to generate bio-hydrogen and volatile fatty acids during dark fermentation by a bacterial consortium and using the oleaginous yeast Yarrowia lipolytica. The lipids were extracted and trans-esterified to Fatty Acid Methyl Esters (FAMEs), and their profiles were then analyzed with gas chromatography (GC). A significant ratio of the bioethanol, e.g., 0.35 g ethanol/g DW substrate, was produced without pretreatment, consistent with the theoretical Gay-Lussac yield. The production of the biohydrogen and lipids were up to 1.3 mL H2/g DW substrate and 0.04 g/g DW substrate, respectively, from the raw biomass. These results were higher than those reported for other well-studied seaweeds such as L. japonica. Overall, this work contributes to the current investigations in Tunisia for producing alternative energies from algae and finding new solutions to the current energy situation and environmental challenges in Maghreb.
Collapse
|
13
|
Vimali E, Gunaseelan S, Chitra Devi V, Mothil S, Arumugam M, Ashokkumar B, Ganesh Moorthy IM, Pugazhendhi A, Varalakshmi P. Comparative study of different catalysts mediated FAME conversion from macroalga Padina tetrastromatica biomass and hydrothermal liquefaction facilitated bio-oil production. CHEMOSPHERE 2022; 292:133485. [PMID: 34979211 DOI: 10.1016/j.chemosphere.2021.133485] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Marine macroalgae offer an endurable source of renewable biomass, which do not require cultivable area, fertilizers for cultivation for bioproducts production. In this study, marine brown macroalga Padina tetrastromatica as an alternate sustainable feedstock for the production of liquid fuels. Padina tetrastromatica biomass was collected from Mandapam; the coastal region of Rameswaram, Tamil Nadu, India. and the algal oil was extracted using sequential extractions using various solvents. Petroleum ether (PE) and dichloromethane (DCM) solvent fractions were found to have high lipids and further utilized for biodiesel production, wherein four different heterogeneous nanocatalysts (TiO2, Bio-Fe, GO, and MgO) and commercial homogeneous catalysts (HCl and NaOH) were employed for the transesterification. High fatty acid methyl ester (FAME) recovery (92.3%) was achieved from TiO2 mediated transesterification than the other conventional catalysts. Further, the conversion of algal biomass into bio-oil and by-products was carried out using hydrothermal liquefaction (HTL). Subsequently, the compounds were characterized by FT-IR and GC-MS analysis. The quality parameters of liquid biofuels were examined and they are in accordance with the international fuel standards. Thus, brown macroalga Padina tetrastromatica may be considered as an alternate feedstock for biofuel and other bioproducts production and TiO2 would be a suitable catalyst for the conversion of FAME.
Collapse
Affiliation(s)
- Elamathi Vimali
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| | - Sathaiah Gunaseelan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| | - Venkatachalam Chitra Devi
- Department of Food Technology, Kongu Engineering College, Perundurai, Erode, 638060, Tamil Nadu, India
| | - Sengottian Mothil
- Department of Chemical Engineering, Kongu Engineering College, Perundurai, Erode, 638060, Tamil Nadu, India
| | - Muthu Arumugam
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, Kerala, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Innasi Muthu Ganesh Moorthy
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Vellakulam, 625701, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|