1
|
Pérez-Navarro Y, Salinas-Vera YM, López-Camarillo C, Figueroa-Angulo EE, Alvarez-Sánchez ME. The role of long non-coding RNA NORAD in digestive system tumors. Noncoding RNA Res 2025; 10:55-62. [PMID: 39296642 PMCID: PMC11406672 DOI: 10.1016/j.ncrna.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In recent years, it has been discovered that the expression of long non-coding RNAs is highly deregulated in several types of cancer and contributes to its progression and development. Recently, it has been described that in tumors of the digestive system, such as colorectal cancer, pancreatic cancer, and gastric cancer, DNA damage-activated lncRNA (NORAD) was frequently up-regulated. The purpose of this review is to elucidate the functions of NORAD in tumors of the digestive system, emphasizing its involvement in important cellular processes such as invasion, metastasis, proliferation, and apoptosis. NORAD acts as a ceRNA (competitive endogenous RNA) that sponges microRNAs and regulates the expression of target genes involved in tumorigenesis. Thus, the mechanisms underlying the effects of NORAD are complex and involve multiple signaling pathways. This review consolidates current knowledge on the role of NORAD in digestive cancers and highlights the need for further research to explore its potential as a therapeutic target. Understanding the intricate functions of NORAD could elucidate the way for innovative approaches to cancer treatment.
Collapse
Affiliation(s)
- Yussel Pérez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, CDMX, Mexico
| | - Yarely M Salinas-Vera
- Centro Nacional de Identificación Humana, Comisión Nacional de Búsqueda, Secretaría de Gobernación, Camino a Santa Teresa No 1679, Jardines del Pedregal, Ciudad de México, Mexico
| | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Laboratorio de Oncogenómica y Proteómica del cáncer, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
| | - Elisa Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, CDMX, Mexico
| |
Collapse
|
2
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
He PY, Wu MY, Zheng LY, Duan Y, Fan Q, Zhu XM, Yao YM. Interleukin-33/serum stimulation-2 pathway: Regulatory mechanisms and emerging implications in immune and inflammatory diseases. Cytokine Growth Factor Rev 2024; 76:112-126. [PMID: 38155038 DOI: 10.1016/j.cytogfr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Interleukin (IL)- 33, a nuclear factor and pleiotropic cytokine of the IL-1 family, is gaining attention owing to its important role in chronic inflammatory and autoimmune diseases. This review extends our knowledge of the effects exerted by IL-33 on target cells by binding to its specific receptor serum stimulation-2 (ST2). Depending on the tissue context, IL-33 performs multiple functions encompassing host defence, immune response, initiation and amplification of inflammation, tissue repair, and homeostasis. The levels and activity of IL-33 in the body are controlled by complex IL-33-targeting regulatory pathways. The unique temporal and spatial expression patterns of IL-33 are associated with host homeostasis and the development of immune and inflammatory disorders. Therefore, understanding the origin, function, and processes of IL-33 under various conditions is crucial. This review summarises the regulatory mechanisms underlying the IL-33/ST2 signalling axis and its potential role and clinical significance in immune and inflammatory diseases, and discusses the current complex and conflicting findings related to IL-33 in host responses.
Collapse
Affiliation(s)
- Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Emergency Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiao-Mei Zhu
- Tissue Repair and Regeneration Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Wu X, Wang S, Wang C, Wu C, Zhao Z. Bioinformatics analysis identifies coagulation factor II receptor as a potential biomarker in stomach adenocarcinoma. Sci Rep 2024; 14:2468. [PMID: 38291086 PMCID: PMC10827804 DOI: 10.1038/s41598-024-52397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024] Open
Abstract
Coagulation factor 2 thrombin receptor (F2R), a member of the G protein-coupled receptor family, plays an important role in regulating blood clotting through protein hydrolytic cleavage mediated receptor activation. However, the underlying biological mechanisms by which F2R affects the development of gastric adenocarcinoma are not fully understood. This study aimed to systematically analyze the role of F2R in gastric adenocarcinoma. Stomach adenocarcinoma (STAD)-related gene microarray data and corresponding clinicopathological information were downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression genes (DEGs) associated with F2R were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) networks. F2R mRNA expression data were utilized to estimate stromal cell and immune cell scores in gastric cancer tissue samples, including stromal score, immune score, and ESTIMATE score, derived from single-sample enrichment studies. Analysis of TCGA and GEO databases revealed significantly higher F2R expression in STAD tissues compared to normal tissues. Patients with high F2R expression had shorter survival times than those with low F2R expression. F2R expression was significantly correlated with tumor (T) stage, node (N) stage, histological grade and pathological stage. Enrichment analysis of F2R-related genes showed that GO terms were mainly related to circulation-mediated human immune response, immunoglobulin, cell recognition and phagocytosis. KEGG analysis indicated associations to extracellular matrix (ECM) receptor interactions, neuroactive ligand-receptor interactions, the phosphoinositide-3-kinase-protein kinase B/Akt (PI3K-AKT) signaling pathway, the Wnt signaling pathway and the transforming growth factor-beta (TGF-β) signaling pathway. GSEA revealed connections to DNA replication, the Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway and oxidative phosphorylation. Drug sensitivity analysis demonstrated positive correlations between F2R and several drugs, including BEZ235, CGP-60474, Dasatinib, HG-6-64-1, Aazopanib, Rapamycin, Sunitinib and TGX221, while negative correlation with CP724714, FH535, GSK1904529A, JNK-9L, LY317615, pyrimidine, rTRAIL and Vinorelbine. Knocking down F2R in GC cell lines resulted in slowed proliferation, migration, and invasion. All statistical analyses were performed using R software (version 4.2.1) and GraphPad Prism 9.0. p < 0.05 was considered statistically significant. In conclusion, this study underscores the significance of F2R as a potential biomarker in gastric adenocarcinoma, shedding light on its molecular mechanisms in tumorigenesis. F2R holds promise for aiding in the diagnosis, prognosis, and targeted therapy of STAD.
Collapse
Affiliation(s)
- Xingwei Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
- Clinical Laboratory, Traditional Chinese Hospital of Lu'an, Anhui University of Chinese Medicine, Lu'an, 237000, Anhui, China
| | - Shengnan Wang
- Department of Pathology, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Chenci Wang
- Department of Oncology, Funan County People's Hospital, Fuyang, 236000, Anhui, China
| | - Chengwei Wu
- Department of Critical Care Medicine, The Second Hospital Affiliated to Jiaxing College, Jiaxing, 314000, Zhejiang, China
| | - Zhiyong Zhao
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China.
| |
Collapse
|
5
|
Su R, Su M, Lu Y. Ras-related Protein in Brain 4A (Rab4A) is Downregulated by miR-496 to inhibit the Progression of Gastric Cancer. Comb Chem High Throughput Screen 2024; 27:2734-2740. [PMID: 38523522 DOI: 10.2174/0113862073260841231010055245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 03/26/2024]
Abstract
INTRODUCTION Ras-related protein in brain 4A (Rab4A), as a member of the Rab family, is involved in the intracellular circulation of membrane receptors or endocytic substances and regulates the progression of multiple tumors. METHODS From our results, the knockdown of Rab4A inhibited the proliferation, migration and invasion in AGS cells. Importantly, the surface expression of epidermal growth factor receptor (EGFR) declined significantly in Rab4A knockdown cells. The downstream pathway of EGFR was also inhibited after the transfection of Rab4A-specific siRNA, including AKT and β-catenin pathways. RESULT In addition, miR-496 down-regulated the expression of Rab4A in AGS cells. The result of the luciferase reporter assay showed that miR-496 could bind to the 3'UTR of Rab4A. CONCLUSION In conclusion, the expression of Rab4A is inhibited by miR-496, and the knockdown of Rab4A inhibits the proliferation, migration and invasion through down-regulating the surface expression of EGFR. Rab4A is a potential target in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Rui Su
- Department of Gastrointestinal Surgery, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Meng Su
- Department of Pathogenic Biology, Chengde Medical University, Chengde 067000, Hebei, China
| | - Yan Lu
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| |
Collapse
|
6
|
Sahib AS, Fawzi A, Zabibah RS, Koka NA, Khudair SA, Muhammad FA, Hamad DA. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: A focus on gastric and bladder cancers. Cell Signal 2023; 112:110881. [PMID: 37666286 DOI: 10.1016/j.cellsig.2023.110881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-β, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.
Collapse
Affiliation(s)
- Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Amjid Fawzi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | | | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
7
|
Chatterjee A, Azevedo-Martins JM, Stachler MD. Interleukin-33 as a Potential Therapeutic Target in Gastric Cancer Patients: Current Insights. Onco Targets Ther 2023; 16:675-687. [PMID: 37583706 PMCID: PMC10424681 DOI: 10.2147/ott.s389120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer is a significant global health problem as it is the fifth most prevalent cancer worldwide and the fourth leading cause of cancer-related mortality. While cytotoxic chemotherapy remains the primary treatment for advanced GC, response rates are limited. Recent progresses, focused on molecular signalling within gastric cancer, have ignited new hope for potential therapeutic targets that may improve survival and/or reduce the toxic effects of traditional therapies. Carcinomas are generally initiated when critical regulatory genes get mutated, but the progression to malignancy is usually supported by the non-neoplastic cells that create a conducive environment for transformation and progression to occur. Interleukin 33 (IL-33) functions as a dual activity cytokine as it is also a nuclear factor. IL-33 is usually present in the nuclei of the cells. Upon tissue damage, it is released into the extracellular space and binds to its receptor, suppression of tumorigenicity 2 (ST2) L, which is expressed on the membranes of the target cells. IL-33 signalling activates the T Helper 2 (Th2) immune response among other responses. Although the studies on the role of IL-33 in gastric cancer are still in the early stages, they have revealed potentially important (though sometimes conflicting) functions or roles in cancer development and progression. The pro-tumorigenic roles include induction and the recruitment of tumor-associated immune cells, promoting metaplasia progression, and inducing stem cell like and EMT properties in gastric cancer cells. Therapeutic interventions to disrupt these functions may provide a unique strategy for gastric cancer prevention and treatment. This review aims to provide a summary of the role of IL-33 in GC, state its multiple functions in relation to GC, and show potential avenues for promising therapeutic investigation.
Collapse
Affiliation(s)
- Annesha Chatterjee
- University of California San Francisco, Department of Pathology, San Francisco, CA, USA
| | | | - Matthew D Stachler
- University of California San Francisco, Department of Pathology, San Francisco, CA, USA
| |
Collapse
|
8
|
Hou Y, Li H, Song P, Yang Y, Hao Y, Liu H. Effect of tumor-stromal fibroblasts on the biological behavior of salivary gland pleomorphic adenoma cells in vitro. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2023; 41:149-156. [PMID: 37056180 PMCID: PMC10427247 DOI: 10.7518/hxkq.2023.2022314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/22/2023] [Indexed: 04/15/2023]
Abstract
OBJECTIVES This study aims to investigate the effects of tumor-stromal fibroblasts (TSFs) on the proliferation, invasion, and migration of salivary gland pleomorphic adenoma (SPA) cells in vitro. METHODS Salivary gland pleomorphic adenoma cells (SPACs), TSFs, and peri-tumorous normal fibroblasts (NFs) were obtained by tissue primary culture and identified by immunocytochemical staining. The conditioned medium was obtained from TSF and NF in logarithmic phase. SPACs were cultured by conditioned medium and treated by TSF (group TSF-SPAC) and NF (group NF-SPAC). SPACs were used as the control group. The proliferation, invasion, and migration of the three groups of cells were detected by MTT, transwell, and scratch assays, respectively. The expression of vascular endothelial growth factor (VEGF) in the three groups was tested by enzyme linked immunosorbent assay (ELISA). RESULTS Immunocytochemical staining showed positive vimentin expression in NF and TSF. Results also indicated the weak positive expression of α-smooth muscle actin (SMA) and fibroblast activation protein (FAP) in TSFs and the negative expression of α-SMA and FAP in NFs. MTT assay showed that cell proliferation in the TSF-SPAC group was significantly different from that in the NF-SPAC and SPAC groups (P<0.05). Cell proliferation was not different between the NF-SPAC and SPAC groups (P>0.05). Transwell and scratch assays showed no difference in cell invasion and migration among the groups (P>0.05). ELISA showed that no significant difference in VEGF expression among the three groups (P>0.05). CONCLUSIONS TSFs may be involved in SPA biological behavior by promoting the proliferation of SPACs but has no effect on the invasion and migration of SPACs in vitro. Hence, TSF may be a new therapeutic target in SPA treatment.
Collapse
Affiliation(s)
- Yali Hou
- Dept. of Pathology, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hexiang Li
- Dept. of Pathology, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, China
| | - Peng Song
- Dept. of Pathology, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yanxiao Yang
- Dept. of Pathology, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yali Hao
- Key Laboratory of Stomatology, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, China
| | - Huijuan Liu
- Key Laboratory of Stomatology, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
9
|
Jacksi M, Schad E, Buday L, Tantos A. Absence of Scaffold Protein Tks4 Disrupts Several Signaling Pathways in Colon Cancer Cells. Int J Mol Sci 2023; 24:ijms24021310. [PMID: 36674824 PMCID: PMC9861885 DOI: 10.3390/ijms24021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Tks4 is a large scaffold protein in the EGFR signal transduction pathway that is involved in several cellular processes, such as cellular motility, reactive oxygen species-dependent processes, and embryonic development. It is also implicated in a rare developmental disorder, Frank-ter Haar syndrome. Loss of Tks4 resulted in the induction of an EMT-like process, with increased motility and overexpression of EMT markers in colorectal carcinoma cells. In this work, we explored the broader effects of deletion of Tks4 on the gene expression pattern of HCT116 colorectal carcinoma cells by transcriptome sequencing of wild-type and Tks4 knockout (KO) cells. We identified several protein coding genes with altered mRNA levels in the Tks4 KO cell line, as well as a set of long non-coding RNAs, and confirmed these changes with quantitative PCR on a selected set of genes. Our results show a significant perturbation of gene expression upon the deletion of Tks4, suggesting the involvement of different signal transduction pathways over the well-known EGFR signaling.
Collapse
Affiliation(s)
- Mevan Jacksi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
10
|
Siri G, Yazdani O, Esbati R, Akhavanfar R, Asadi F, Adili A, Ebrahimzadeh F, Hosseini SME. A comprehensive review of the role of lncRNAs in gastric cancer (GC) pathogenesis, immune regulation, and their clinical applications. Pathol Res Pract 2023; 241:154221. [PMID: 36563559 DOI: 10.1016/j.prp.2022.154221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Gastric cancer (GC) is the fifth most common malignant tumor and the third leading cause of cancer-related deaths worldwide. Although numerous studies have been conducted on advanced GC, the molecular mechanisms behind it remain obscure. Long non-coding RNAs (lncRNAs) are a family of RNA transcripts capable of regulating target genes at transcriptional, post-transcriptional, and translational stages. They do this by modifying mRNAs, miRNAs, and proteins. These RNAs are critical regulators of many biological processes, including gene epigenetics, transcription, and post-transcriptional levels. This article highlights recent results on lncRNAs involved in drug resistance, proliferation, migration, angiogenesis, apoptosis, autophagy, and immune response in GC. The potential clinical implications of lncRNAs as biomarkers and therapeutic targets in GC are also discussed.
Collapse
Affiliation(s)
- Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Romina Esbati
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Asadi
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
11
|
Chen L, Deng J. Role of non-coding RNA in immune microenvironment and anticancer therapy of gastric cancer. J Mol Med (Berl) 2022; 100:1703-1719. [PMID: 36329206 DOI: 10.1007/s00109-022-02264-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Gastric cancer remains one of the cancers with the highest mortality in the world; therefore, it is very important to investigate its pathogenesis to improve the prognosis of gastric cancer patients. Recently, noncoding RNAs have become a research hotspot in the field of oncology. These RNA molecules play complex roles in the regulation of tumor cells, immune cells, and the tumor microenvironment. Therefore, studying their ability to regulate the gastric cancer immune microenvironment will provide us with a better perspective to understand their potential role in anticancer therapy. In this review, we discuss the regulatory effects of several common noncoding RNAs on the immune microenvironment of gastric cancer and their prospects in anticancer therapy to provide some novel insight into the identification of valuable diagnostic markers and improving the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Liqiao Chen
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
12
|
Sun H, Wang X, Wang X, Xu M, Sheng W. The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Cell Death Dis 2022; 13:874. [PMID: 36244987 PMCID: PMC9573863 DOI: 10.1038/s41419-022-05320-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022]
Abstract
Despite advances in anticancer therapy, the prognosis of gastric cancer (GC) remains unsatisfactory. Research in recent years has shown that the malignant behavior of cancer is not only attributable to tumor cells but is partly mediated by the activity of the cancer stroma and controlled by various molecular networks in the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are one of the most abundant mesenchymal cell components of the stroma and extensively participate in the malignant development of GC malignancy. CAFs modulate the biological properties of tumor cells in multiple ways, including the secretion of various bioactive molecules that have effects through paracrine and autocrine signaling, the release of exosomes, and direct interactions, thereby affecting GC initiation and development. However, there is marked heterogeneity in the cellular origins, phenotypes, and functions of CAFs in the TME of GC. Furthermore, variations in factors, such as proteins, microRNAs, and lncRNAs, affect interactions between CAFs and GC cells, although, the potential molecular mechanisms are still poorly understood. In this review, we aim to describe the current knowledge of the cellular features and heterogeneity of CAFs and discuss how these factors are regulated in CAFs, with a focus on how they affect GC biology. This review provides mechanistic insight that could inform therapeutic strategies and improve the prognosis of GC patients.
Collapse
Affiliation(s)
- Hui Sun
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Xu Wang
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Xin Wang
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Midie Xu
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Weiqi Sheng
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| |
Collapse
|
13
|
Xin Y, Shang X, Sun X, Xu G, Liu Y, Liu Y. SLC8A1 antisense RNA 1 suppresses papillary thyroid cancer malignant progression via the FUS RNA binding protein (FUS)/NUMB like endocytic adaptor protein (Numbl) axis. Bioengineered 2022; 13:12572-12582. [PMID: 35599603 PMCID: PMC9275960 DOI: 10.1080/21655979.2022.2073125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Papillary thyroid cancer (PTC) is one of the most prevalent endocrine malignancies and is associated with severe morbidity and high mortality. This study aimed to explore the role of long non-coding RNA (lncRNA) SLC8A1 antisense RNA 1 (SLC8A1-AS1) in the pathogenesis of PTC. In this study, we explored the function of SLC8A1-AS1 in PTC progression. We observed that the expression of SLC8A1-AS1 was downregulated in clinical PTC samples and PTC cell lines compared to that in normal controls. Cell counting kit (CCK)-8 assays demonstrated that the overexpression of SLC8A1-AS1 significantly reduced the proliferation of PTC cells. Consistently, apoptosis of PTC cells was enhanced by SLC8A1-AS1 overexpression. SLC8A1-AS1 overexpression attenuated the invasion and migration of PTC cells. Mechanistically, SLC8A1-AS1 maintained NUMB like endocytic adaptor protein (Numbl) mRNA stability by interacting with FUS RNA Binding Protein (FUS) in PTC cells. Depletion of Numbl reversed the inhibitory effect of SLC8A1-AS1 overexpression on PTC. Thus, we concluded that SLC8A1-AS1 suppresses PTC progression via the FUS/Numbl axis. Our findings provide novel insights into the mechanism underlying SLC8A1-AS1 attenuation of the malignant development of PTC, improving our understanding of the association between lncRNAs and PTC. SLC8A1-AS1 and FUS may be potential targets for PTC treatment.
Collapse
Affiliation(s)
- Yunchao Xin
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaoling Shang
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaoran Sun
- Department of Gastroenterology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Guogang Xu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yachao Liu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yanbin Liu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
14
|
Hu Y, Zhao Z, Jin G, Guo J, Nan F, Hu X, Hu Y, Han Q. Long noncoding RNA regulatory factor X3- antisense RNA 1 promotes non-small cell lung cancer via the microRNA-577/signal transducer and activator of transcription 3 axis. Bioengineered 2022; 13:10749-10764. [PMID: 35475457 PMCID: PMC9208461 DOI: 10.1080/21655979.2022.2054910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most frequent malignancy, and non-small cell lung cancer (NSCLC) is its most common pathological type. Molecular targeted therapy has been testified to be effective in intervening in the occurrence and development of malignancies. This study investigates the effect of lncRNA Regulatory Factor X3- antisense RNA 1 (RFX3-AS1) in NSCLC progression. The RFX3-AS1 profile in NSCLC tissues and cells was measured by quantitative reverse transcription PCR (qRT-PCR). The RFX3-AS1 overexpression model was constructed. The cell counting kit-8 (CCK-8) experiment and cell colony formation assay were adopted to test cell viability. The cell apoptosis was determined by flow cytometry (FCM). Cell migration and invasion were monitored by the Transwell assay, and Western blot was implemented to verify the protein profiles of signal transducer and activator of transcription 3 (STAT3), E-cadherin, Vimentin and N-cadherin. In vivo, we validated the impact of RFX3-AS1 overexpression on the NSCLC xenograft mouse model. The targeting relationships between RFX3-AS1 and miR-577, miR-577 and STAT3 were confirmed by the dual-luciferase reporter assay. The results manifested that overexpressing RFX3-AS1 markedly facilitated NSCLC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), and suppressed cell apoptosis. In contrast, miR-577, which was a downstream target of RFX3-AS1, dramatically impeded the malignant biological behaviors of NSCLC cells. STAT3 was a direct target of miR-577, and it was negatively regulated by the latter. STAT3 activation reversed miR-577-mediated anti-tumor roles. In brief, RFX3-AS1 aggravated NSCLC progression by regulating the miR-577/STAT3 axis.
Collapse
Affiliation(s)
- Yanjing Hu
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Zhi Zhao
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Gang Jin
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Junhao Guo
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Fangyuan Nan
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Xin Hu
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Yunsheng Hu
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Qun Han
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| |
Collapse
|
15
|
Xiao X, Cheng W, Zhang G, Wang C, Sun B, Zha C, Kong F, Jia Y. Long Noncoding RNA: Shining Stars in the Immune Microenvironment of Gastric Cancer. Front Oncol 2022; 12:862337. [PMID: 35402261 PMCID: PMC8989925 DOI: 10.3389/fonc.2022.862337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is a kind of malignant tumor disease that poses a serious threat to human health. The GC immune microenvironment (TIME) is a very complex tumor microenvironment, mainly composed of infiltrating immune cells, extracellular matrix, tumor-associated fibroblasts, cytokines and chemokines, all of which play a key role in inhibiting or promoting tumor development and affecting tumor prognosis. Long non-coding RNA (lncRNA) is a non-coding RNA with a transcript length is more than 200 nucleotides. LncRNAs are expressed in various infiltrating immune cells in TIME and are involved in innate and adaptive immune regulation, which is closely related to immune escape, migration and invasion of tumor cells. LncRNA-targeted therapeutic effect prediction for GC immunotherapy provides a new approach for clinical research on the disease.
Collapse
Affiliation(s)
- Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chunyuan Zha
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
16
|
Mao B, Wang F, Zhang J, Li Q, Ying K. Long non-coding RNA human leucocyte antigen complex group-18 HCG18 (HCG18) promoted cell proliferation and migration in head and neck squamous cell carcinoma through cyclin D1-WNT pathway. Bioengineered 2022; 13:9425-9434. [PMID: 35389764 PMCID: PMC9161984 DOI: 10.1080/21655979.2022.2060452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence has demonstrated that long noncoding RNA (lncRNAs) play a vital role in the development of head and neck squamous cell carcinoma (HNSCC); however, the biological effects and underlying mechanisms of human leukocyte antigen complex group-18 HCG18 (HCG18) have not yet been reported in HNSCC. In this study, we detected the expression of the HCG18 in HNSCC cell lines and patient tissues. We observed that HCG18 was upregulated in HNSCC patient tissues and cell lines. Furthermore, silencing of HCG18 significantly inhibited proliferation, migration, and invasion of HNSCC cells, whereas the opposite effects were detected in the HCG18-overexpressed group. We also found that HCG18 directly binds to the functional protein cyclin D1. Upregulated cyclin D1 reversed the inhibitory effects of HCG18 in HNSCC cell lines and activated the WNT pathway-related proteins (AXIN2, survivin, c-Myc, and β-catenin) simultaneously. Knockdown of cyclin D1 could accelerate the inhibitory effects of HCG18 and decrease the expression of AXIN2, survivin, c-Myc, and β-catenin. This indicated that lncRNA HCG18 might be involved in the tumorigenesis of HNSCC via the cyclin D1-WNT pathway. These results suggest that lncRNA HCG18 could act as a promising prognostic biomarker and potential therapeutic target in HNSCC patients.
Collapse
Affiliation(s)
- Bin Mao
- Department of Stomatology, The First People’s Hospital of Yongkang, Yongkang, Zhejiang, China
| | - Fan Wang
- Department of Stomatology, The First People’s Hospital of Yongkang, Yongkang, Zhejiang, China
| | - Jingxia Zhang
- Department of Stomatology, The First People’s Hospital of Yongkang, Yongkang, Zhejiang, China
| | - Qianqian Li
- Department of Stomatology, The First People’s Hospital of Yongkang, Yongkang, Zhejiang, China
| | - Kai Ying
- Department of Stomatology, The First People’s Hospital of Yongkang, Yongkang, Zhejiang, China
| |
Collapse
|