1
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2024:10.1038/s41577-024-01080-y. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
2
|
Zhou Y, Zhang W, He C, Shu C, Xu X, Wang H, Fei X, Li N, Hu Y, Xie C, Lu N, Wang X, Zhu Y. Metal-Organic Framework Based Mucoadhesive Nanodrugs for Multifunction Helicobacter Pylori Targeted Eradication, Inflammation Regulation and Gut Flora Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308286. [PMID: 38431926 DOI: 10.1002/smll.202308286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/24/2023] [Indexed: 03/05/2024]
Abstract
The prevalence of drug-resistant bacteria presents a significant challenge to the antibiotic treatment of Helicobacter pylori (H. pylori), while traditional antimicrobial agents often suffer from shortcomings such as poor gastric retention, inadequate alleviation of inflammation, and significant adverse effects on the gut microbiota. Here, a selenized chitosan (CS-Se) modified bismuth-based metal-organic framework (Bi-MOF@CS-Se) nanodrug is reported that can target mucin through the charge interaction of the outer CS-Se layer to achieve mucosal adhesion and gastric retention. Additionally, the Bi-MOF@CS-Se can respond to gastric acid and pepsin degradation, and the exposed Bi-MOF exhibits excellent antibacterial properties against standard H. pylori as well as clinical antibiotic-resistant strains. Remarkably, the Bi-MOF@CS-Se effectively alleviates inflammation and excessive oxidative stress by regulating the expression of inflammatory factors and the production of reactive oxygen species (ROS), thereby exerting therapeutic effects against H. pylori infection. Importantly, this Bi-MOF@CS-Se nanodrug does not affect the homeostasis of gut microbiota, providing a promising strategy for efficient and safe treatment of H. pylori infection.
Collapse
Affiliation(s)
- Yanan Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Wei Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- College of Chemistry of Nanchang University, Nanchang University, Nanchang, 330031, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, P. R. China
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Chunxi Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Xinbo Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Huan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, P. R. China
| | - Xiao Fei
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Xiaolei Wang
- College of Chemistry of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
3
|
Tsutsumi C, Ohuchida K, Katayama N, Yamada Y, Nakamura S, Okuda S, Otsubo Y, Iwamoto C, Torata N, Horioka K, Shindo K, Mizuuchi Y, Ikenaga N, Nakata K, Nagai E, Morisaki T, Oda Y, Nakamura M. Tumor-infiltrating monocytic myeloid-derived suppressor cells contribute to the development of an immunosuppressive tumor microenvironment in gastric cancer. Gastric Cancer 2024; 27:248-262. [PMID: 38217732 DOI: 10.1007/s10120-023-01456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Gastric cancer (GC) is characterized by an immunosuppressive and treatment-resistant tumor immune microenvironment (TIME). Here, we investigated the roles of different immunosuppressive cell types in the development of the GC TIME. METHODS Single-cell RNA sequencing (scRNA-seq) and multiplex immunostaining of samples from untreated or immune checkpoint inhibitor (ICI)-resistant GC patients were used to examine the correlation between certain immunosuppressive cells and the prognosis of GC patients. RESULTS The results of the scRNA-seq analysis revealed that tumor-infiltrating monocytic myeloid-derived suppressor cells (TI-M-MDSCs) expressed higher levels of genes with immunosuppressive functions than other immunosuppressive cell types. Additionally, M-MDSCs in GC tissues expressed significantly higher levels of these markers than adjacent normal tissues. The M-MDSCs were most enriched in GC tissues relative to adjacent normal tissues. Among the immunosuppressive cell types assessed, the M-MDSCs were most enriched in GC tissues relative to adjacent normal tissues; moreover, their presence was most strongly associated with a poor prognosis. Immediate early response 3 (IER3), which we identified as a differentially expressed gene between M-MDSCs of GC and adjacent normal tissues, was an independent poor prognostic factor in GC patients (P = 0.0003). IER3+ M-MDSCs expressed higher levels of genes with immunosuppressive functions than IER3- M-MDSCs and were abundant in treatment-resistant GC patients. CONCLUSIONS The present study suggests that TI-M-MDSCs, especially IER3+ ones, may play a predominant role in the development of the immunosuppressive and ICI-resistant GC TIME.
Collapse
Affiliation(s)
- Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoichi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sho Okuda
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiki Otsubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Horioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eishi Nagai
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
4
|
Li B, Zhang Y, Zheng Y, Cai H. The causal effect of Helicobacter pylori infection on coronary heart disease is mediated by the body mass index: a Mendelian randomization study. Sci Rep 2024; 14:1688. [PMID: 38243041 PMCID: PMC10798959 DOI: 10.1038/s41598-024-51701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
The association between Helicobacter pylori (H. pylori) infection and coronary heart disease (CHD) remains controversial, with an unclear causal link. This study employed bidirectional Mendelian randomization (MR) method, using H. pylori infection as the exposure, to investigate its causal relationship with CHD diagnosis, prognosis, and potential pathogenesis. H. pylori infection exhibited a causal association with body mass index (BMI) (β = 0.022; 95% CI 0.008-0.036; p = 0.001). Conversely, there was no discernible connection between H. pylori infection and the diagnosis of CHD (OR = 0.991; 95% CI 0.904-1.078; p = 0.842; IEU database; OR = 1.049; 95% CI 0.980-1.118; p = 0.178; FinnGen database) or CHD prognosis (OR = 0.999; 95% CI 0.997-1.001; p = 0.391; IEU database; OR = 1.022; 95% CI 0.922-1.123; p = 0.663; FinnGen database). Reverse MR analysis showed no causal effect of CHD on H. pylori infection. Our findings further support that H. pylori infection exerts a causal effect on CHD incidence, mediated by BMI. Consequently, eradicating or preventing H. pylori infection may provide an indirect clinical benefit for patients with CHD.
Collapse
Affiliation(s)
- Bing Li
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yaoting Zhang
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yang Zheng
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - He Cai
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
5
|
Chen B, Dong X, Zhang J, Wang W, Song Y, Sun X, Zhao K, Sun Z. Effects of oxidative stress regulation in inflammation-associated gastric cancer progression treated using traditional Chinese medicines: A review. Medicine (Baltimore) 2023; 102:e36157. [PMID: 37986311 PMCID: PMC10659735 DOI: 10.1097/md.0000000000036157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Gastric cancer (GC) is a global public health concern that poses a serious threat to human health owing to its high morbidity and mortality rates. Due to the lack of specificity of symptoms, patients with GC tend to be diagnosed at an advanced stage with poor prognosis. Therefore, the development of new treatment methods is particularly urgent. Chronic atrophic gastritis (CAG), a precancerous GC lesion, plays a key role in its occurrence and development. Oxidative stress has been identified as an important factor driving the development and progression of the pathological processes of CAG and GC. Therefore, regulating oxidative stress pathways can not only intervene in CAG development but also prevent the occurrence and metastasis of GC and improve the prognosis of GC patients. In this study, PubMed, CNKI, and Web of Science were used to search for a large number of relevant studies. The review results suggested that the active ingredients of traditional Chinese medicine (TCM) and TCM prescriptions could target and improve inflammation, pathological status, metastasis, and invasion of tumor cells, providing a potential new supplement for the treatment of CAG and GC.
Collapse
Affiliation(s)
- Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Xinqian Dong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jinlong Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Wei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yujiao Song
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Xitong Sun
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Kangning Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| |
Collapse
|
6
|
Wang D, Cassady K, Zou Z, Zhang X, Feng Y. Progress on the efficacy and potential mechanisms of rapamycin in the treatment of immune thrombocytopenia. Hematology 2022; 27:1282-1289. [DOI: 10.1080/16078454.2022.2151230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dan Wang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | | | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University, Chongqing, People’s Republic of China
| | - Xi Zhang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Yimei Feng
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Zhang Y, Wang M, Zhang K, Zhang J, Yuan X, Zou G, Cao Z, Zhang C. 6'-O-Galloylpaeoniflorin attenuates Helicobacter pylori-associated gastritis via modulating Nrf2 pathway. Int Immunopharmacol 2022; 111:109122. [PMID: 35964411 DOI: 10.1016/j.intimp.2022.109122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
As a common disease of the digestive system, chronic gastritis is inflammation of the gastric mucosa caused by various factors. Helicobacter pylori (H. pylori) is one of the main causes of chronic gastritis, which can lead to gastric mucosal damage and gland atrophy, thereby promoting gastrocarcinogenesis. Oxidative stress and the inflammatory response are important mechanisms of H. pylori-induced gastritis. 6'-O-Galloylpaeoniflorin (GPF) is a substance isolated from peony root with antioxidant and anti-inflammatory activities. However, its role and mechanism in the pathogenesis of H. pylori-induced chronic gastritis remain unclear. This study explored the effects of GPF on H. pylori-induced gastric mucosal oxidative stress and inflammation using flow cytometry, western blotting, real-time quantitative PCR, and immunohistochemistry. We found that H. pylori infection increased oxidative stress and expression of inflammatory cytokines in vitro and in vivo and that these outcomes were inhibited by GPF. Furthermore, GPF activated nuclear factor erythroid-related factor-2 (Nrf2) and its downstream target genes in H. pylori-infected GES-1 cells and mice. The anti-inflammatory and antioxidant effects of GPF on H. pylori-infected cells were attenuated by an Nrf2 inhibitor. Taken together, these data suggest that GPF reduces H. pylori-induced gastric mucosa injury by activating Nrf2 signaling and that GPF is a potential candidate for the treatment of H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Maihuan Wang
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China
| | - Kebin Zhang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Junze Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Xinpu Yuan
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China
| | - Guijun Zou
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China
| | - Zhen Cao
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China.
| | - Chaojun Zhang
- Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|