1
|
Wei X, He Y, Yu Y, Tang S, Liu R, Guo J, Jiang Q, Zhi X, Wang X, Meng D. The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412850. [PMID: 39887888 DOI: 10.1002/advs.202412850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/22/2024] [Indexed: 02/01/2025]
Abstract
BTB domain and CNC homolog 1 (BACH1) belongs to the family of basic leucine zipper proteins and is expressed in most mammalian tissues. It can regulate its own expression and play a role in transcriptionally activating or inhibiting downstream target genes. It has a crucial role in various biological processes, such as oxidative stress, cell cycle, heme homeostasis, and immune regulation. Recent research highlights BACH1's significant regulatory roles in a series of conditions, including stem cell pluripotency maintenance and differentiation, growth, senescence, and apoptosis. BACH1 is closely associated with cardiovascular diseases and contributes to angiogenesis, atherosclerosis, restenosis, pathological cardiac hypertrophy, myocardial infarction, and ischemia/reperfusion (I/R) injury. BACH1 promotes tumor cell proliferation and metastasis by altering tumor metabolism and the epithelial-mesenchymal transition phenotype. Moreover, BACH1 appears to show an adverse role in diseases such as neurodegenerative diseases, gastrointestinal disorders, leukemia, pulmonary fibrosis, and skin diseases. Inhibiting BACH1 may be beneficial for treating these diseases. This review summarizes the role of BACH1 and its regulatory mechanism in different cell types and diseases, proposing that precise targeted intervention of BACH1 may provide new strategies for human disease prevention and treatment.
Collapse
Affiliation(s)
- Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Yunquan He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Yueyang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Sichong Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Ruiwen Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Qingjun Jiang
- Department of Vascular & Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Tsai KW, Liao JB, Tseng HW. Metformin regulates the proliferation and motility of melanoma cells by modulating the LINC00094/miR-1270 axis. Cancer Cell Int 2024; 24:384. [PMID: 39563323 PMCID: PMC11575040 DOI: 10.1186/s12935-024-03545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Melanoma is an aggressive tumor with a high mortality rate. Metformin, a commonly prescribed diabetes medication, has shown promise in cancer prevention and treatment. Long noncoding RNAs (lncRNAs) are non-protein-coding RNA molecules that play a key role in tumor development by interacting with cellular chromatins. Despite the benefits of metformin, the anticancer mechanism underlying its effect on the regulation of lncRNAs in melanoma remains unclear. METHODS We investigated the lncRNA profiles of human melanoma cells with and without metformin treatment using a next-generation sequencing approach (NGS). Utilizing public databases, we analyzed the expression levels and clinical impacts of LINC00094 and miR-1270 in melanoma. The expression levels of LINC00094 and miR-1270 were verified in human cell lines and clinical samples by real-time PCR and in situ hybridization. The biological roles of LINC00094 and miR-1270 in cell growth, proliferation, cell cycle, apoptosis, and motility were studied using in vitro assays. RESULTS We identify a novel long noncoding RNA, namely LINC00094, whose expression considerably decreased in melanoma cells after metformin treatment. In situ hybridization analysis revealed substantially higher expression of LINC00094 in cutaneous melanoma tissue compared with adjacent normal epidermis and normal control tissues (P < 0.001). In nondiabetic patients with melanoma, the overall survival of high LINC00094 expression group was shorter than the low LINC00094 expression group with borderline statistical significance (log-rank test, P = 0.057). Coexpression analysis of LINC00094 indicated its involvement in the mitochondrial respiratory pathway, with its knockdown suppressing genes associated with mitochondrial oxidative phosphorylation, glycolysis, antioxidant production, and metabolite levels. Functional analysis revealed that silencing-LINC00094 inhibited the proliferation, colony formation, invasion, and migration of melanoma cells. Cell cycle analysis following LINC00094 knockdown revealed G1 phase arrest with reduced cell cycle protein expression. Combined TargetScan and reporter assays revealed a direct link between miR-1270 and LINC00094. Ectopic miR-1270 expression inhibited melanoma cell growth and motility while inducing apoptosis. Finally, through in silico analysis, we identified two miR-1270 target genes, CD276 and centromere protein M (CENPM), which may be involved in the biological functions of LINC00094. CONCLUSIONS Overall, LINC00094 expression may regulate melanoma cell growth and motility by modulating the expression of miR-1270, and targeting genes of CD276 and CENPM indicating its therapeutic potential in melanoma treatment.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Shu Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Wen Tseng
- Department of Dermatology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan.
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Nursing, College of Nursing, Meiho University, Neipu, Pingtung, Taiwan.
| |
Collapse
|
3
|
Liang Y, Yin W, Cai Z, Luo H, Liu Q, Zhong C, Chen J, Lin Z, Huang Y, Liang Z, Deng J, Zhong W, Cai C, Lu J. N6-methyladenosine modified lncRNAs signature for stratification of biochemical recurrence in prostate cancer. Hum Genet 2024; 143:857-874. [PMID: 37758909 DOI: 10.1007/s00439-023-02603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Nonmutational epigenetic reprogramming is a crucial mechanism contributing to the pronounced heterogeneity of prostate cancer (PCa). Among these mechanisms, N6-methyladenosine (m6A)-modified long non-coding RNAs (lncRNAs) have emerged as key players. However, the precise roles of m6A-modified lncRNAs in PCa remain to be elucidated. In this study, methylated RNA immunoprecipitation sequencing (MeRIP-seq) was conducted on primary and metastatic PCa samples, leading to the identification of 21 lncRNAs exhibiting differential methylation and expression patterns. We further established a PCa prognostic signature, named m6A-modified lncRNA score (mLs), based on 9 differential methylated lncRNAs in 4 multicenter cohorts. The high mLs score cohort exhibited a tendency for earlier biochemical recurrence (BCR) compared to the low mLs score cohort. Remarkably, the predictive performance of the mLs score surpassed that of five previously reported lncRNA-based signatures. Functional enrichment analysis underscored a negative correlation between the mLs score and lipid metabolism. Additionally, through MeRIP-qPCR, we pinpointed a hub gene, MIR210HG, which was validated through in vitro and in vivo experiments. These findings collectively illuminate the landscape of m6A-methylated lncRNAs in PCa tissue via MeRIP-seq and harness this information to prognosticate PCa outcomes using the mLs score. Furthermore, our study validates, both experimentally and mechanistically, the facilitative role of MIR210HG in driving PCa progression.
Collapse
Affiliation(s)
- Yingke Liang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Wenjun Yin
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Hongwei Luo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Qinwei Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, 510230, Guangdong, China
| | - Chuanfan Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, Guangdong, China
| | - Zhuoyuan Lin
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510282, Guangdong, China
| | - Yaqiang Huang
- Department of Urology, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Zhenguo Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Junhong Deng
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, 510230, Guangdong, China.
| | - Jianming Lu
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
4
|
Hu D, Zhang Z, Luo X, Li S, Jiang J, Zhang J, Wu Z, Wang Y, Sun M, Chen X, Zhang B, Xu X, Wang S, Xu S, Wang Y, Huang W, Xia L. Transcription factor BACH1 in cancer: roles, mechanisms, and prospects for targeted therapy. Biomark Res 2024; 12:21. [PMID: 38321558 PMCID: PMC10848553 DOI: 10.1186/s40364-024-00570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Transcription factor BTB domain and CNC homology 1 (BACH1) belongs to the Cap 'n' Collar and basic region Leucine Zipper (CNC-bZIP) family. BACH1 is widely expressed in mammalian tissues, where it regulates epigenetic modifications, heme homeostasis, and oxidative stress. Additionally, it is involved in immune system development. More importantly, BACH1 is highly expressed in and plays a key role in numerous malignant tumors, affecting cellular metabolism, tumor invasion and metastasis, proliferation, different cell death pathways, drug resistance, and the tumor microenvironment. However, few articles systematically summarized the roles of BACH1 in cancer. This review aims to highlight the research status of BACH1 in malignant tumor behaviors, and summarize its role in immune regulation in cancer. Moreover, this review focuses on the potential of BACH1 as a novel therapeutic target and prognostic biomarker. Notably, the mechanisms underlying the roles of BACH1 in ferroptosis, oxidative stress and tumor microenvironment remain to be explored. BACH1 has a dual impact on cancer, which affects the accuracy and efficiency of targeted drug delivery. Finally, the promising directions of future BACH1 research are prospected. A systematical and clear understanding of BACH1 would undoubtedly take us one step closer to facilitating its translation from basic research into the clinic.
Collapse
Affiliation(s)
- Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake university school of medicine, Hangzhou, 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
5
|
Ahuja P, Yadav R, Goyal S, Yadav C, Ranga S, Kadian L. Targeting epigenetic deregulations for the management of esophageal carcinoma: recent advances and emerging approaches. Cell Biol Toxicol 2023; 39:2437-2465. [PMID: 37338772 DOI: 10.1007/s10565-023-09818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Ranking from seventh in incidence to sixth in mortality, esophageal carcinoma is considered a severe malignancy of food pipe. Later-stage diagnosis, drug resistance, and a high mortality rate contribute to its lethality. Esophageal squamous cell carcinoma and esophageal adenocarcinoma are the two main histological subtypes of esophageal carcinoma, with squamous cell carcinoma alone accounting for more than eighty percent of its cases. While genetic anomalies are well known in esophageal cancer, accountability of epigenetic deregulations is also being explored for the recent two decades. DNA methylation, histone modifications, and functional non-coding RNAs are the crucial epigenetic players involved in the modulation of different malignancies, including esophageal carcinoma. Targeting these epigenetic aberrations will provide new insights into the development of biomarker tools for risk stratification, early diagnosis, and effective therapeutic intervention. This review discusses different epigenetic alterations, emphasizing the most significant developments in esophageal cancer epigenetics and their potential implication for the detection, prognosis, and treatment of esophageal carcinoma. Further, the preclinical and clinical status of various epigenetic drugs has also been reviewed.
Collapse
Affiliation(s)
- Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India.
| | - Sandeep Goyal
- Department of Internal Medicine, Pt. B.D, Sharma University of Health Sciences, (Haryana), Rohtak, 124001, India
| | - Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Lokesh Kadian
- Department of Dermatology, School of Medicine, Indiana University, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
6
|
Song Q, Mao X, Jing M, Fu Y, Yan W. Pathophysiological role of BACH transcription factors in digestive system diseases. Front Physiol 2023; 14:1121353. [PMID: 37228820 PMCID: PMC10203417 DOI: 10.3389/fphys.2023.1121353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
BTB and CNC homologous (BACH) proteins, including BACH1 and BACH2, are transcription factors that are widely expressed in human tissues. BACH proteins form heterodimers with small musculoaponeurotic fibrosarcoma (MAF) proteins to suppress the transcription of target genes. Furthermore, BACH1 promotes the transcription of target genes. BACH proteins regulate physiological processes, such as the differentiation of B cells and T cells, mitochondrial function, and heme homeostasis as well as pathogenesis related to inflammation, oxidative-stress damage caused by drugs, toxicants, or infections; autoimmunity disorders; and cancer angiogenesis, epithelial-mesenchymal transition, chemotherapy resistance, progression, and metabolism. In this review, we discuss the function of BACH proteins in the digestive system, including the liver, gallbladder, esophagus, stomach, small and large intestines, and pancreas. BACH proteins directly target genes or indirectly regulate downstream molecules to promote or inhibit biological phenomena such as inflammation, tumor angiogenesis, and epithelial-mesenchymal transition. BACH proteins are also regulated by proteins, miRNAs, LncRNAs, labile iron, and positive and negative feedback. Additionally, we summarize a list of regulators targeting these proteins. Our review provides a reference for future studies on targeted drugs in digestive diseases.
Collapse
Affiliation(s)
- Qianben Song
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Mao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Ghafouri-Fard S, Harsij A, Hussen BM, Taheri M, Ayatollahi SA. A review on the role of SNHG8 in human disorders. Pathol Res Pract 2023; 245:154458. [PMID: 37043963 DOI: 10.1016/j.prp.2023.154458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Small nucleolar RNA host gene 8 (SNHG8) is a long non-coding RNA that has physiological roles in epithelial and muscle satellite cells. This lncRNA has been reported to be over-expressed in a variety of cancer cell lines. Its silencing has attenuated tumor growth in animal models of cancers. SNHG8 can be served as a molecular sponge for some miRNAs to regulate their target genes. miR-634/ZBTB20, miR-335-5p/PYGO2, miR588/ATG7, miR-152/c-MET, miR-1270/BACH1, miR-491/PDGFRA, miR-512-5p/TRIM28, miR-149-5p/PPM1F, miR-542-3p/CCND1/CDK6, miR-656-3p/SERBP1, miR-656-3p/SATB1, miR-1270/S100A11 and miR-384/HOXB7 are examples of molecular axes being regulated by SNHG8 in the context of cancer. Moreover, it can affect pathogenesis of atherosclerosis, chronic cerebral ischemia, acute gouty arthritis, ischemic stroke and myocardial infarction through modulation of a number of molecular axes such as SNHG8/miR-384/Hoxa13/FAM3A and miR-335/RASA1 as well as NF-κB signaling pathway. The current review aims at summarization of the role of SNHG8 in diverse human disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
8
|
Xu J, Zhu K, Wang Y, Chen J. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection. J Cancer Res Clin Oncol 2023; 149:483-501. [PMID: 36310300 DOI: 10.1007/s00432-022-04447-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION In physiological concentrations, heme is nontoxic to the cell and is essential for cell survival and proliferation. Increasing intracellular heme concentrations beyond normal levels, however, will lead to carcinogenesis and facilitate the survival of tumor cells. Simultaneously, heme in an abnormally high quantity is also a potent inducer of tumor cell death, contributing to its ability to generate oxidative stress on the cells by boosting oxidative phosphorylation and suppressing tumors through ferroptosis. During tumorigenesis and progression, therefore, heme works as a double-edged sword. Heme oxygenase 1 (HO-1) is the rate-limiting enzyme in heme catabolism, which converts heme into physiologically active catabolites of carbon monoxide (CO), biliverdin, and ferrous iron (Fe2+). HO-1 maintains redox equilibrium in healthy cells and functions as a carcinogenesis inhibitor. It is widely recognized that HO-1 is involved in the adaptive response to cellular stress and the anti-inflammation effect. Notably, its expression level in cancer cells corresponds with tumor growth, aggressiveness, metastasis, and angiogenesis. Besides, heme-binding transcription factor BTB and CNC homology 1 (Bach1) play a critical regulatory role in heme homeostasis, oxidative stress and senescence, cell cycle, angiogenesis, immune cell differentiation, and autoimmune disorders. Moreover, it was found that Bach1 influences cancer cells' metabolism and metastatic capacity. Bach1 controls heme level by adjusting HO-1 expression, establishing a negative feedback loop. MATERIALS AND METHODS Herein, the authors review recent studies on heme, HO-1, and Bach1 in cancer. Specifically, they cover the following areas: (1) the carcinogenic and anticarcinogenic aspects of heme; (2) the carcinogenic and anticarcinogenic aspects of HO-1; (3) the carcinogenic and anticarcinogenic aspects of Bach1; (4) the interactions of the heme/HO-1/Bach1 axis involved in tumor progression. CONCLUSION This review summarized the literature about the dual role of the heme/HO-1/Bach1 axis and their mutual dependence in the carcinogenesis and anti-carcinogenesis intersection.
Collapse
Affiliation(s)
- Jinjing Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China
| | | | - Yali Wang
- Jiangsu Huai'an Maternity and Children Hospital, Huai'an, 223001, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China. .,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Xu S, Liu D, Chang T, Wen X, Ma S, Sun G, Wang L, Chen S, Xu Y, Zhang H. Cuproptosis-Associated lncRNA Establishes New Prognostic Profile and Predicts Immunotherapy Response in Clear Cell Renal Cell Carcinoma. Front Genet 2022; 13:938259. [PMID: 35910212 PMCID: PMC9334800 DOI: 10.3389/fgene.2022.938259] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) accounts for 80% of all kidney cancers and has a poor prognosis. Recent studies have shown that copper-dependent, regulated cell death differs from previously known death mechanisms (apoptosis, ferroptosis, and necroptosis) and is dependent on mitochondrial respiration (Tsvetkov et al., Science, 2022, 375 (6586), 1254–1261). Studies also suggested that targeting cuproptosis may be a novel therapeutic strategy for cancer therapy. In ccRCC, both cuproptosis and lncRNA were critical, but the mechanisms were not fully understood. The aim of our study was to construct a prognostic profile based on cuproptosis-associated lncRNAs to predict the prognosis of ccRCC and to study the immune profile of clear cell renal cell carcinoma (ccRCC). Methods: We downloaded the transcriptional profile and clinical information of ccRCC from The Cancer Genome Atlas (TCGA). Co-expression network analysis, Cox regression method, and least absolute shrinkage and selection operator (LASSO) method were used to identify cuproptosis-associated lncRNAs and to construct a risk prognostic model. In addition, the predictive performance of the model was validated and recognized by an integrated approach. We then also constructed a nomogram to predict the prognosis of ccRCC patients. Differences in biological function were investigated by GO, KEGG, and immunoassay. Immunotherapy response was measured using tumor mutational burden (TMB) and tumor immune dysfunction and rejection (TIDE) scores. Results: We constructed a panel of 10 cuproptosis-associated lncRNAs (HHLA3, H1-10-AS1, PICSAR, LINC02027, SNHG15, SNHG8, LINC00471, EIF1B-AS1, LINC02154, and MINCR) to construct a prognostic prediction model. The Kaplan–Meier and ROC curves showed that the feature had acceptable predictive validity in the TCGA training, test, and complete groups. The cuproptosis-associated lncRNA model had higher diagnostic efficiency compared to other clinical features. The analysis of Immune cell infiltration and ssGSEA further confirmed that predictive features were significantly associated with the immune status of ccRCC patients. Notably, the superimposed effect of patients in the high-risk group and high TMB resulted in shorter survival. In addition, the higher TIDE scores in the high-risk group suggested a poorer outcome for immune checkpoint blockade response in these patients. Conclusion: The ten cuproptosis-related risk profiles for lncRNA may help assess the prognosis and molecular profile of ccRCC patients and improve treatment options, which can be further applied in the clinic.
Collapse
Affiliation(s)
- Shengxian Xu
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Dongze Liu
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Taihao Chang
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Xiaodong Wen
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Shenfei Ma
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Guangyu Sun
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Longbin Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shuaiqi Chen
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
| | - Hongtuan Zhang
- Department of Urology, National Key Specialty of Urology Second Hospital of Tianjin Medical University Tianjin Key Institute of Urology Tianjin Medical University, Tianjin, China
- *Correspondence: Hongtuan Zhang,
| |
Collapse
|