1
|
Beikzadeh B, Khani M, Zarinehzadeh Y, Abedini Bakhshmand E, Sadeghizadeh M, Rabbani S, Soltani BM. Preventive and treatment efficiency of dendrosomal nano-curcumin against ISO-induced cardiac fibrosis in mouse model. PLoS One 2024; 19:e0311817. [PMID: 39388499 PMCID: PMC11469592 DOI: 10.1371/journal.pone.0311817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Cardiac fibrosis (c-fibrosis) is a critical factor in cardiovascular diseases, leading to impaired cardiac function and heart failure. This study aims to optimize the isoproterenol (ISO)-induced c-fibrosis model and evaluate the therapeutic efficacy of dendrosomal nano-curcumin (DNC) in both in-vitro and in-vivo conditions. Also, we were looking for the differentially expressed genes following the c-fibrosis induction. At the in-vitro condition, primary cardiac fibroblasts were exclusively cultured on collagen-coated or polystyrene plates and, were treated with ISO for fibrosis induction and post-treated or co-treated with DNC. RT-qPCR and flow cytometry analysis indicated that DNC treatment attenuated the fibrotic effect of ISO treatment in these cells. At the in-vivo condition, our findings demonstrated that ISO treatment effectively induces cardiac (and pulmonary) fibrosis, characterized by pro-fibrotic and pro-inflammatory gene expression and IHC (α-SMA, COL1A1, and TGFβ). Interestingly, fibrosis symptoms were reduced following the pretreatment, co-treatment, or post-treatment of DNC with ISO. Additionally, the intensive RNAseq analysis suggested the COMP gene is differentially expressed following the c-fibrosis and our RT-qPCR analysis suggested it as a novel potential marker. Overall, our results promise the application of DNC as a potential preventive or therapy agent before and after heart challenges that lead to c-fibrosis.
Collapse
Affiliation(s)
- Behnaz Beikzadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mona Khani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yasamin Zarinehzadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Majid Sadeghizadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram M. Soltani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Zhong Y, Li XY, Liang TJ, Ding BZ, Ma KX, Ren WX, Liang WJ. Effects of NLRP3 Inflammasome Mediated Pyroptosis on Cardiovascular Diseases and Intervention Mechanism of Chinese Medicine. Chin J Integr Med 2024; 30:468-479. [PMID: 38329654 DOI: 10.1007/s11655-024-3655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/09/2024]
Abstract
Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome signaling pathway is an important mechanism underlying myocardial pyroptosis and plays an important role in inflammatory damage to myocardial tissue in patients with cardiovascular diseases (CVDs), such as diabetic cardiomyopathy, ischemia/reperfusion injury, myocardial infarction, heart failure and hypertension. Noncoding RNAs (ncRNAs) are important regulatory factors. Many Chinese medicine (CM) compounds, including their effective components, can regulate pyroptosis and exert myocardium-protecting effects. The mechanisms underlying this protection include inhibition of inflammasome protein expression, Toll-like receptor 4-NF-κB signal pathway activation, oxidative stress, endoplasmic reticulum stress (ERS), and mixed lineage kinase 3 expression and the regulation of silent information regulator 1. The NLRP3 protein is an important regulatory target for CVD prevention and treatment with CM. Exploring the effects of the interventions mediated by CM and the related mechanisms provides new ideas and perspectives for CVD prevention and treatment.
Collapse
Affiliation(s)
- Yi Zhong
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Liver and Kidney Diseases, Institute of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050200, China
- Department of Cardiovascular Internal Medicine, the Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, 332000, China
| | - Xin-Yue Li
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tian-Jun Liang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bao-Zhu Ding
- Rural Physician College, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ke-Xin Ma
- Medical Department, the First Hospital of Hebei Medical University, Shijiazhuang, 050030, China
| | - Wen-Xuan Ren
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wen-Jie Liang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Liver and Kidney Diseases, Institute of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
3
|
Sun Y, Chu S, Wang R, Xia R, Sun M, Gao Z, Xia Z, Zhang Y, Dong S, Wang T. Non-coding RNAs modulate pyroptosis in myocardial ischemia-reperfusion injury: A comprehensive review. Int J Biol Macromol 2024; 257:128558. [PMID: 38048927 DOI: 10.1016/j.ijbiomac.2023.128558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction. However, reperfusion itself can also cause cardiomyocytes damage. Pyroptosis has been shown to be an important mode of myocardial cell death during ischemia-reperfusion. Non-coding RNAs (ncRNAs) play critical roles in regulating pyroptosis. The regulation of pyroptosis by microRNAs, long ncRNAs, and circular RNAs may represent a new mechanism of myocardial ischemia-reperfusion injury. This review summarizes the currently known regulatory roles of ncRNAs in myocardial ischemia-reperfusion injury and interactions between ncRNAs. Potential therapeutic strategies using ncRNA modulation are also discussed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujuan Chu
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rong Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rui Xia
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Meng Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhixiong Gao
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Siwei Dong
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Tingting Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
4
|
Zhang Y, Wang J, Wang X, Li A, Lei Z, Li D, Xing D, Zhang Y, Su W, Jiao X. TXNIP aggravates cardiac fibrosis and dysfunction after myocardial infarction in mice by enhancing the TGFB1/Smad3 pathway and promoting NLRP3 inflammasome activation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1950-1960. [PMID: 37850269 PMCID: PMC10753373 DOI: 10.3724/abbs.2023150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/11/2023] [Indexed: 10/19/2023] Open
Abstract
Myocardial infarction (MI) results in high mortality. The size of fibrotic scar tissue following MI is an independent predictor of MI outcomes. Thioredoxin-interacting protein (TXNIP) is involved in various fibrotic diseases. Its role in post-MI cardiac fibrosis, however, remains poorly understood. In the present study, we investigate the biological role of TXNIP in post-MI cardiac fibrosis and the underlying mechanism using mouse MI models of the wild-type (WT), Txnip-knockout ( Txnip-KO) type and Txnip-knock-in ( Txnip-KI) type. After MI, the animals present with significantly upregulated TXNIP levels, and their fibrotic areas are remarkably expanded with noticeably impaired cardiac function. These changes are further aggravated under Txnip-KI conditions but are ameliorated in Txnip-KO animals. MI also leads to increased protein levels of the fibrosis indices Collagen I, Collagen III, actin alpha 2 (ACTA2), and connective tissue growth factor (CTGF). The Txnip-KI group exhibits the highest levels of these proteins, while the lowest levels are observed in the Txnip-KO mice. Furthermore, Txnip-KI significantly upregulates the levels of transforming growth factor (TGF)B1, p-Smad3, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), Cleaved Caspase-1, and interleukin (IL)1B after MI, but these effects are markedly offset by Txnip-KO. In addition, after MI, the Smad7 level significantly decreases, particularly in the Txnip-KI mice. TXNIP may aggravate the progression of post-MI fibrosis and cardiac dysfunction by activating the NLRP3 inflammasome, followed by IL1B generation and then the enhancement of the TGFB1/Smad3 pathway. As such, TXNIP might serve as a novel potential therapeutic target for the treatment of post-MI cardiac fibrosis.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
- Department of Foreign LanguagesChangzhi Medical CollegeChangzhi046000China
| | - Jin Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Xuejiao Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Aiyun Li
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Zhandong Lei
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Dongxue Li
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Dehai Xing
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Yichao Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Wanzhen Su
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Xiangying Jiao
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
5
|
Liao X, Han Y, Shen C, Liu J, Wang Y. Targeting the NLRP3 inflammasome for the treatment of hypertensive target organ damage: Role of natural products and formulations. Phytother Res 2023; 37:5622-5638. [PMID: 37690983 DOI: 10.1002/ptr.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIM Hypertension is a major global health problem that causes target organ damage (TOD) in the heart, brain, kidney, and blood vessels. The mechanisms of hypertensive TOD are not fully understood, and its treatment is challenging. This review provides an overview of the current knowledge on the role of Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in hypertensive TOD and the natural products and formulations that inhibit it. METHODS We searched PubMed, Web of Science, Google Scholar, and CNKI for relevant articles using the keywords "hypertension," "target organ damage," "NLRP3 inflammasome," "natural products," and "formulations." We reviewed the effects of the NLRP3 inflammasome on hypertensive TOD in different organs and discussed the natural products and formulations that modulate it. KEY RESULTS In hypertensive TOD, the NLRP3 inflammasome is activated by various stimuli such as oxidative stress and inflammation. Activation of NLRP3 inflammasome leads to the production of pro-inflammatory cytokines that exacerbate tissue damage and dysfunction. Natural products and formulations, including curcumin, resveratrol, triptolide, and allicin, have shown protective effects against hypertensive TOD by inhibiting the NLRP3 inflammasome. CONCLUSIONS AND IMPLICATIONS The NLRP3 inflammasome is a promising therapeutic target in hypertensive TOD. Natural products and formulations that inhibit the NLRP3 inflammasome may provide novel drug candidates or therapies for hypertensive TOD. Further studies are needed to elucidate the molecular mechanisms and optimize the dosages of these natural products and formulations and evaluate their clinical efficacy and safety.
Collapse
Affiliation(s)
- Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshan Han
- Scientific Research Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chuanpu Shen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University Hefei, Hefei, China
| | - Jianjun Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Jafari N, Shahabi Rabori V, Zolfi Gol A, Saberiyan M. Crosstalk of NLRP3 inflammasome and noncoding RNAs in cardiomyopathies. Cell Biochem Funct 2023; 41:1060-1075. [PMID: 37916887 DOI: 10.1002/cbf.3882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Cardiovascular diseases (CVDs) identified as a serious public health problem. Although there is a lot of evidence that inflammatory processes play a significant role in the progression of CVDs, however, the precise mechanism is not fully understood. Nevertheless, recent studies have focused on inflammation and its related agents. Nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) is a type of pattern recognition receptor (PRR) that can recognize pathogen-associated molecular patterns and trigger innate immune response. NLRP3 is a component of the NOD-like receptor (NLR) family and have a pivotal role in detecting damage to cardiovascular tissue. It is suggested that activation of NLRP3 inflammasome leads to initiating and propagating the inflammatory response in cardiomyopathy. So, late investigations have highlighted the NLRP3 inflammasome activation in various forms of cardiomyopathy. On the other side, it was shown that noncoding RNAs (ncRNAs), particularly, microRNAs, lncRNAs, and circRNAs possess a regulatory function in the immune system's inflammatory response, implicating their involvement in various inflammatory disorders. In addition, their role in different cardiomyopathies was indicated in recent studies. This review article provides a summary of recent advancements focusing on the function of the NLRP3 inflammasome in common CVDs, especially cardiomyopathy, while also discussing the therapeutic potential of inhibiting the NLRP3 inflammasome regulated by ncRNAs.
Collapse
Affiliation(s)
- Negar Jafari
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ali Zolfi Gol
- Department of Pediatrics Cardiology, Shahid Motahari Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
Epigenetic Mechanisms Involved in Inflammaging-Associated Hypertension. Curr Hypertens Rep 2022; 24:547-562. [PMID: 35796869 DOI: 10.1007/s11906-022-01214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the involvement of inflammaging in vascular damage with focus on the epigenetic mechanisms by which inflammaging-induced hypertension is triggered. RECENT FINDINGS Inflammaging in hypertension is a complex condition associated with the production of inflammatory mediators by the immune cells, enhancement of oxidative stress, and tissue remodeling in vascular smooth muscle cells and endothelial cells. Cellular processes are numerous, including inflammasome assembly and cell senescence which may involve mitochondrial dysfunction, autophagy, DNA damage response, dysbiosis, and many others. More recently, a series of noncoding RNAs, mainly microRNAs, have been described as possessing epigenetic actions on the regulation of inflammasome-related hypertension, emerging as a promising therapeutic strategy. Although there are a variety of pharmacological agents that effectively regulate inflammaging-related hypertension, a deeper understanding of the epigenetic events behind the control of vessel deterioration is needed for the treatment or even to prevent the disease onset.
Collapse
|
8
|
Hu J, Jiang Y, Wu X, Wu Z, Qin J, Zhao Z, Li B, Xu Z, Lu X, Wang X, Liu X. Exosomal miR-17-5p from adipose-derived mesenchymal stem cells inhibits abdominal aortic aneurysm by suppressing TXNIP-NLRP3 inflammasome. Stem Cell Res Ther 2022; 13:349. [PMID: 35883151 PMCID: PMC9327292 DOI: 10.1186/s13287-022-03037-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Background Preclinical studies have suggested that adipose-derived mesenchymal stem cells (ADSCs) transplantation can suppress abdominal aortic inflammation and aneurysm expansion through paracrine factors. Yet, the mechanism of action is not fully understood. In the present study, we further examined the function and mechanism of ADSC-derived exosomes (ADSC-exos) and their microRNA-17-5p (miR-17-5p) on the abdominal aortic aneurysm (AAA) progression. Methods ADSC-exos were isolated and identified. DiR and PKH67 staining were used to trace ADSC-exo in vivo and in vitro. Raw264.7 cells were applied to perform in vitro experiments, while a murine AAA model induced using angiotensin II (Ang II) was used for in vivo testing. The expression level of miR-17-5p in macrophages and Ang II-treated macrophages after ADSC-exos treatment was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The target relation between miR-17-5p and thioredoxin-interacting protein (TXNIP) was identified by a dual-luciferase reporter gene assay. Artificial activation and block of experiments of miR-17-5p and TXNIP were conducted to clarify their functions in inflammation during AAA progression. The severity of AAA between groups was assessed by maximal aorta diameter, AAA incidence, survival rate, and histological stainings. Besides, inflammasome-related proteins and macrophage pyroptosis were further evaluated using western blot, RT-qPCR, and enzyme-linked immunosorbent assay (ELISA). Results The ADSC-exos were isolated and identified. In vivo testing showed that ADSC-exos were mainly distributed in the liver. Meanwhile, in vitro experiments suggested that ADSC-derived exosomes were taken up by macrophages, while inside, ADSC-exos miR-17-5p decreased a TXNIP induced by Ang II by directly binding to its 3′-untranslated region (3’UTR). Furthermore, overexpression of miR-17-5p enhanced the therapeutic function of ADSC-exos on inflammation during AAA expansion in vivo, while its inhibition reversed this process. Finally, overexpressed TXNIP triggered macrophage pyroptosis and was alleviated by ADSC-derived exosomes in vitro. Conclusion ADSC-exos miR-17-5p regulated AAA progression and inflammation via the TXNIP-NLRP3 signaling pathway, thus providing a novel insight in AAA treatment.
Collapse
Affiliation(s)
- Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| | - Xin Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|