1
|
An X, Wu W, Wang P, Mahmut A, Guo J, Dong J, Gong W, Liu B, Yang L, Ma Y, Xu X, Chen J, Cao W, Jiang Q. Long noncoding RNA TUG1 promotes malignant progression of osteosarcoma by enhancing ZBTB7C expression. Biomed J 2024; 47:100651. [PMID: 37562773 PMCID: PMC11225834 DOI: 10.1016/j.bj.2023.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Dysregulation of long non-coding RNAs (lncRNAs) is an important component of tumorigenesis. Aberrant expression of lncRNA taurine upregulated gene 1 (lncTUG1) has been reported in various tumors; however, its precise role and key targets critically involved in osteosarcoma (OS) progression remain unclear. METHODS The expression profiles of lncRNAs and their regulated miRNAs related to OS progression were assessed by bioinformatics analysis and confirmed by qRT-PCR of OS cells. The miRNA targets were identified by transcriptome sequencing and verified by luciferase reporter and RNA pull-down assays. Several in vivo and in vitro approaches, including CCK8 assay, western blot, qRT-PCR, lentiviral transduction and OS cell xenograft mouse model were established to validate the effects of lncTUG1 regulation of miRNA and the downstream target genes on OS cell growth, apoptosis and progression. RESULTS We found that lncTUG1 and miR-26a-5p were inversely up or down-regulated in OS cells, and siRNA-mediated lncTUG1 knockdown reversed the miR-26a-5p down-regulation and suppressed proliferation and enhanced apoptosis of OS cells. Further, we identified that an oncoprotein ZBTB7C was also upregulated in OS cells that were subjected to lncTUG1/miR-26a-5p regulation. More importantly, ZBTB7C knockdown reduced the ZBTB7C upregulation and ZBTB7C overexpression diminished the anti-OS effects of lncTUG1 knockdown in the OS xenograft model. CONCLUSIONS Our data suggest that lncTUG1 acts as a miR-26a-5p sponge and promotes OS progression via up-regulating ZBTB7C, and targeting lncTUG1 might be an effective strategy to treat OS.
Collapse
Affiliation(s)
- Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenshu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Pu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Abdurahman Mahmut
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Junxia Guo
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Wang Gong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Bin Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Lin Yang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yuze Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Jianmei Chen
- Institute of Translational Medicine, Medical College of Yangzhou University, Yangzhou, China.
| | - Wangsen Cao
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine. Nanjing, China; Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China.
| |
Collapse
|
2
|
Njoku CA, Ileola-Gold AV, Adelaja UA, Ikeji CN, Owoeye O, Adedara IA, Farombi EO. Amelioration of neurobehavioral, biochemical, and morphological alterations associated with silver nanoparticles exposure by taurine in rats. J Biochem Mol Toxicol 2023; 37:e23457. [PMID: 37437208 DOI: 10.1002/jbt.23457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/18/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
The adverse effect of silver nanoparticles (AgNPs) on the nervous system is an emerging concern of public interest globally. Taurine, an essential amino acid required for neurogenesis in the nervous system, is well-documented to possess antioxidant, anti-inflammatory, and antiapoptotic activities. Yet, there is no report in the literature on the effect of taurine on neurotoxicity related to AgNPs exposure. Here, we investigated the neurobehavioral and biochemical responses associated with coexposure to AgNPs (200 µg/kg body weight) and taurine (50 and 100 mg/kg body weight) in rats. Locomotor incompetence, motor deficits, and anxiogenic-like behavior induced by AgNPs were significantly alleviated by both doses of taurine. Taurine administration enhanced exploratory behavior typified by increased track plot densities with diminished heat maps intensity in AgNPs-treated rats. Biochemical data indicated that the reduction in cerebral and cerebellar acetylcholinesterase activity, antioxidant enzyme activities, and glutathione level by AgNPs treatment were markedly upturned by both doses of taurine. The significant abatement in cerebral and cerebellar oxidative stress indices namely reactive oxygen and nitrogen species, hydrogen peroxide, and lipid peroxidation was evident in rats cotreated with AgNPs and taurine. Further, taurine administration abated nitric oxide and tumor necrosis factor-alpha levels cum myeloperoxidase and caspase-3 activities in AgNPs-treated rats. Amelioration of AgNPs-induced neurotoxicity by taurine was confirmed by histochemical staining and histomorphometry. In conclusion, taurine via attenuation of oxido-inflammatory stress and caspase-3 activation protected against neurotoxicity induced by AgNPs in rats.
Collapse
Affiliation(s)
- Chiwueze A Njoku
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayomitan V Ileola-Gold
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uthman A Adelaja
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Ibrahim BA, Gobran MA, Metwalli AEM, Abd Elhady WA, Tolba AM, Omar WE. Interplay of LncRNA TUG1 and TGF-β/P53 Expression in Colorectal Cancer. Asian Pac J Cancer Prev 2023; 24:3957-3968. [PMID: 38019256 PMCID: PMC10772770 DOI: 10.31557/apjcp.2023.24.11.3957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent and deadly cancers worldwide. It is still necessary to further define the mechanisms and explore the therapeutic targets of CRC. Long non-coding RNA taurine upregulated gene 1 (LncRNA TUG1) was initially discovered as a transcript upregulated by taurine and is observed to be expressed in numerous human cancers. The Study Aim: This article was to explore the correlation between transforming growth factor-beta (TGF-β)/tumor protein 53 (P53) signaling mechanisms as regulators for LncRNA TUG1 in Egyptian patients with CRC. SUBJECTS AND METHODS Immunohistochemical (IHC) staining was achieved to study TGF-β and P53 expression in CRC specimens vs. normal colonic specimens and quantitative real-time PCR (qRT-PCR) was used to analyze LncRNA TUG1, TGF-β, and P53 relative gene expression in 96 tissue specimens (neoplastic specimens and the corresponding adjacent non-neoplastic specimens). RESULTS The expressions of LncRNA TUG1, TGF-β, and P53 were overexpressed significantly in CRC specimens as opposed to the matched neighboring non-neoplastic specimens (P<0.001), also LncRNA TUG1 was significantly positively correlated to the expression of TGF-β and P53 (r=0.89, 0.91 respectively, P<0.001). CONCLUSION These findings reveal that LncRNA TUG1 may be a molecular component in the TGF-β/P53 signaling pathway, and LncRNA TUG1 could function as a CRC possible oncogene. LncRNA TUG1 may serve as a potential oncogene for CRC. The TGF-β/P53/LncRNA TUG1 interactions may be employed as potential targets for CRC diagnosis, prognostic evaluation, and cure.
Collapse
Affiliation(s)
- Basma A. Ibrahim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Egypt.
| | - Mai Ahmed Gobran
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt.
| | | | | | - Asmaa M. Tolba
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Egypt.
| | - Walaa E. Omar
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Egypt.
| |
Collapse
|
4
|
Al-Zahrani MH, Balgoon MJ, El-Sawi NM, Alshubaily FA, Jambi EJ, Khojah SM, Baljoon RS, Alkhattabi NA, Baz LA, Alharbi AA, Ahmed AM, Abo elkhair AM, Ismael M, Gebril SM. A biochemical, theoretical and immunohistochemical study comparing the therapeutic efficacy of curcumin and taurine on T-2 toxin induced hepatotoxicity in rats. Front Mol Biosci 2023; 10:1172403. [PMID: 37214337 PMCID: PMC10192634 DOI: 10.3389/fmolb.2023.1172403] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Foodborne trichothecene T-2 Toxin, is a highly toxic metabolite produced by Fusarium species contaminating animal and human food, causing multiple organ failure and health hazards. T-2 toxins induce hepatotoxicity via oxidative stress causing hepatocytes cytotoxicity and genotoxicity. In this study, curcumin and taurine were investigated and compared as antioxidants against T-2-provoked hepatotoxicity. Methods: Wistar rats were administrated T-2 toxin sublethal oral dose (0.1 mg/kg) for 2 months, followed by curcumin (80 mg/kg) and taurine (50 mg/kg) for 3 weeks. Biochemical assessment of liver enzymes, lipid profiles, thiobarbituric acid reactive substances (TBARs), AFU, TNF-α, total glutathione, molecular docking, histological and immunohistochemical markers for anti-transforming growth factor-β1 (TGFβ1), double-strand DNA damage (H2AX), regeneration (KI67) and apoptosis (Active caspase3) were done. Results and Discussion: Compared to T-2 toxin, curcumin and taurine treatment significantly ameliorated hepatoxicity as; hemoglobin, hematocrit and glutathione, hepatic glycogen, and KI-67 immune-reactive hepatocytes were significantly increased. Although, liver enzymes, inflammation, fibrosis, TGFβ1 immunoexpressing and H2AX and active caspase 3 positive hepatocytes were significantly decreased. Noteworthy, curcumin's therapeutic effect was superior to taurine by histomorphometry parameters. Furthermore, molecular docking of the structural influence of curcumin and taurine on the DNA sequence showed curcumin's higher binding affinity than taurine. Conclusion: Both curcumin and taurine ameliorated T-2 induced hepatotoxicity as strong antioxidative agents with more effectiveness for curcumin.
Collapse
Affiliation(s)
- Maryam H. Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha J. Balgoon
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagwa M. El-Sawi
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebtihaj J. Jambi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sohair M. Khojah
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Nuha A. Alkhattabi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lina A. Baz
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asmaa A. Alharbi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amira M. Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Ayat M. Abo elkhair
- Biochemistry Department, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| | - Mohamed Ismael
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Sahar M. Gebril
- Histology and Cell biology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
5
|
Azizidoost S, Nasrolahi A, Ghaedrahmati F, Kempisty B, Mozdziak P, Radoszkiewicz K, Farzaneh M. The pathogenic roles of lncRNA-Taurine upregulated 1 (TUG1) in colorectal cancer. Cancer Cell Int 2022; 22:335. [PMID: 36333703 PMCID: PMC9636703 DOI: 10.1186/s12935-022-02745-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is a gastrointestinal tumor that develops from the colon, rectum, or appendix. The prognosis of CRC patients especially those with metastatic lesions remains unsatisfactory. Although various conventional methods have been used for the treatment of patients with CRC, the early detection and identification of molecular mechanisms associated with CRC is necessary. The scientific literature reports that altered expression of long non-coding RNAs (lncRNAs) contributed to the pathogenesis of CRC cells. LncRNA TUG1 was reported to target various miRNAs and signaling pathways to mediate CRC cell proliferation, migration, and metastasis. Therefore, TUG1 might be a potent predictive/prognostic biomarker for diagnosis of CRC.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bartosz Kempisty
- Graduate Physiology Program, North Carolina State University, 27695, Raleigh, NC, USA
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, 27695, Raleigh, NC, USA
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|
7
|
Farzaneh M, Ghasemian M, Ghaedrahmati F, Poodineh J, Najafi S, Masoodi T, Kurniawan D, Uddin S, Azizidoost S. Functional roles of lncRNA-TUG1 in hepatocellular carcinoma. Life Sci 2022; 308:120974. [PMID: 36126725 DOI: 10.1016/j.lfs.2022.120974] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) or hepatoma is malignant cancer that starts from the main liver cells. Although various classical methods have been used for patients with HCC, various molecular mechanisms involved in HCC progression should be invested. Previous studies demonstrated that abnormal expression of long non-coding RNAs (lncRNAs) presented important roles in the pathogenesis of HCC cells. LncRNA TUG1 was found to mediate HCC cell growth, EMT, and metastasis. Therefore, targeting TUG1 and its downstream genes may be a suitable approach for patients with HCC. In this review, we summarized the potential roles of TUG1 in HCC.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Poodineh
- Department of Clinical Biochemistry, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tariq Masoodi
- Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Dedy Kurniawan
- Laboratory Animal and Stem Cells, PT Bio Farma (Persero), Bandung 40161, West Java, Indonesia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|