1
|
Li R, Huang Z, Chen M. Long Non-Coding RNA EPB41L4A-AS1 Serves as a Diagnostic Marker for Chronic Periodontitis and Regulates Periodontal Ligament Injury and Osteogenic Differentiation by Targeting miR-214-3p/YAP1. J Inflamm Res 2025; 18:2483-2497. [PMID: 39991662 PMCID: PMC11847424 DOI: 10.2147/jir.s491724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2024] [Accepted: 11/29/2024] [Indexed: 02/25/2025] Open
Abstract
Background Several long non-coding RNAs (lncRNAs) are dysregulated in chronic periodontitis (CP). Purpose The study aimed to elucidate the molecular mechanisms and clinical significance of lncRNA EPB41L4A antisense RNA 1 (EPB41L4A-AS1) in CP. Patients and Methods This study enrolled 101 patients with CP and 90 subjects with healthy periodontal tissues. Patients with CP were categorized according to severity. The expression of EPB41L4A-AS1 and osteogenic markers in the lipopolysaccharide (LPS)-induced human periodontal ligament cells (hPDLCs) was assessed using real-time quantitative reverse transcription PCR (RT-qPCR). The diagnostic significance of EPB41L4A-AS1 was evaluated using receiver operating characteristic (ROC) analysis. The levels of inflammatory factors were measured using an enzyme-linked immunosorbent assay. Cell proliferation and apoptosis were analyzed using cell counting kit -8 and flow cytometry, respectively. The interaction between EPB41L4A-AS1 and microRNAs was verified using dual luciferase reporter assays, RNA immunoprecipitation, and RNA pull-down assays. Results EPB41L4A-AS1 was downregulated in the gingival sulcus fluid of patients with CP and LPS-induced hPDLCs. Additionally, EPB41L4A-AS1 could distinguish patients with CP from control subjects with sensitivity (88.12%) and specificity (81.11%). The expression of EPB41L4A-AS1 was downregulated in patients with severe CP. EPB41L4A-AS1 downregulation was directly correlated with severe clinical indicators and inversely correlated with inflammatory indicators. The overexpression of EPB41L4A-AS1 promoted the proliferation and osteogenic differentiation of hPDLCs and mitigated LPS-induced inflammation. Mechanistically, EPB41L4A-AS1 directly targets and downregulates miR-214-3p expression, resulting in the upregulation of Yes1-associated transcriptional regulator (YAP1) levels. The overexpression of miR-214-3p partially suppressed the effects of EPB41L4A-AS1 on LPS-induced hPDLC injury and osteogenic differentiation. Conclusion The overexpression of EPB41L4A-AS1 suppressed LPS-induced hPDLC injury and enhanced osteogenic differentiation through the miR-214-3p/YAP1 axis. Thus, EPB41L4A-AS1 is a novel diagnostic marker and a therapeutic target for CP.
Collapse
Affiliation(s)
- Rui Li
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| | - Zhibin Huang
- Medical Room, Nantong College of Science and Technology, Nantong, People’s Republic of China
| | - Mengmeng Chen
- Department of Stomatology, The Fourth Hospital of Harbin, Harbin, People’s Republic of China
| |
Collapse
|
2
|
Du Y, Guan X, Zhu Y, Jin S, Liu J. LncRNA in periodontal tissue-derived cells on osteogenic differentiation in the periodontitis field. Oral Dis 2024; 30:4087-4097. [PMID: 38655682 DOI: 10.1111/odi.14970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2023] [Revised: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Periodontitis can lead to the destruction of periodontal tissues and potentially tooth loss. Numerous periodontal tissue-derived cells display osteogenic differentiation potential. The presence of differentially expressed long non-coding RNAs (lncRNAs) in these cells indicate their ability to regulate the process of osteogenic differentiation. We aim to elucidate the various lncRNA-mediated regulatory mechanisms in the osteogenic differentiation of periodontal tissue-derived cells in the field of periodontitis at epigenetic modification, transcriptional, and post-transcriptional levels. SUBJECTS AND METHODS We systematically searched the PubMed, Web of Science, and ScienceDirect databases to identify relevant literature in the field of periodontitis discussing the role of lncRNAs in regulating osteogenic differentiation of periodontal tissue-derived cells. The identified literature was subsequently summarized for comprehensive review. RESULTS In this review, we have comprehensively summarized the regulatory mechanisms of lncRNAs in the osteogenic differentiation of periodontal tissue-derived cells in the field of periodontitis and discussed how these lncRNAs provide novel perspectives for understanding the pathogenesis and progression of periodontitis. CONCLUSION These results indicate the pivotal role of lncRNAs as regulators in the osteogenic differentiation of periodontal tissue-derived cells, providing a solid basis for future investigations on the role of lncRNAs in the periodontitis field.
Collapse
Affiliation(s)
- Yuanhang Du
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Yinci Zhu
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Suhan Jin
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Diseases Research, Higher Education Institution, Zunyi, China
| |
Collapse
|
3
|
Adamouli D, Marasli C, Bobetsis YA. The Expression Patterns of Non-Coding RNAs in Periodontal Disease. Dent J (Basel) 2024; 12:159. [PMID: 38920860 PMCID: PMC11203025 DOI: 10.3390/dj12060159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
During the last few decades there has been a growing interest in understanding the involvement of epigenetics in the pathogenesis and treatment of periodontal disease. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), may serve as epigenetic modifiers affecting the expression of genes involved in the pathogenesis of inflammatory and autoimmune diseases. There is increasing evidence supporting the idea that the function of all three types of ncRNAs seems to be interdependent. LncRNAs can act as miRNA decoys, while circRNAs can act as miRNA sponges, leading to the re-expression of miRNA target genes. The purpose of this review is to evaluate the expression patterns of ncRNAs in periodontal disease. Studies demonstrate a positive correlation between miRNA expression and periodontitis; however, this cannot be claimed for lncRNAs and circRNAs, which appear to be differentially expressed in periodontitis patients. Several studies have also suggested utilizing ncRNAs as diagnostic and prognostic biomarkers in periodontitis, or even as potential therapeutic targets; Nevetheless, the evidence to support this is premature. Future well-designed research remains necessary to establish the functional role of ncRNAs in the evolution and progression of periodontal disease.
Collapse
Affiliation(s)
| | | | - Yiorgos A. Bobetsis
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Sun X, Pu Y, Dong S, Dong Q. LncRNA urothelial cancer associated 1 promotes the osteogenic differentiation of human periodontal ligament stem cells by regulating the miR-96-5p/Osx axis. Arch Oral Biol 2024; 158:105855. [PMID: 38070324 DOI: 10.1016/j.archoralbio.2023.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVES To investigate the expression of long non-coding RNA (lncRNA) urothelial cancer associated 1 (UCA1) in human periodontal ligament stem cells (hPDLSCs), its effect on osteogenic differentiation of hPDLSCs and its mechanism. DESIGN The expression of osteogenic genes Osx, Runx2, Ocn and Opn was explored by qPCR. Protein expression in hPDLSCs was estimated by Western blot. The osteogenic differentiation of hPDLSCs was detected by Alizarin red staining assays. The interaction between UCA1 and miR-96-5p was explored by RNA pulldown assay and dual luciferase assay. The interaction between miR-96-5p and Osx 3'-UTR was measured by dual luciferase assay. RESULTS The expression of UCA1 and miR-96-5p was negatively correlated in hPDLSCs. During the osteogenic differentiation of hPDLSCs, the expression of UCA1 was increased, while the expression of miR-96-5p was decreased. Knockdown of UCA1 in hPDLSCs inhibited osteogenic differentiation but induced upregulation of miR-96-5p expression, and vice versa. In addition, miR-96-5p partially reversed the positive effect of UCA1 on osteogenic differentiation of hPDLSCs. Notably, UCA1 was identified as a miR-96-5p sponge, and miR-96-5p targeted Osx. CONCLUSIONS Our results demonstrated that the novel UCA1/miR-96-5p/Osx pathway regulates osteogenic differentiation of hPDLSCs and sheds new insights and targets for periodontitis therapeutics.
Collapse
Affiliation(s)
- Xuefei Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Yu Pu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Qianqian Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Zhang L, Sheng M, Cao H, Zhang L, Shao W. Decoding the role of long non-coding RNAs in periodontitis: A comprehensive review. Biomed Pharmacother 2023; 166:115357. [PMID: 37619483 DOI: 10.1016/j.biopha.2023.115357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Periodontitis is an inflammatory disease characterized by the pathological loss of alveolar bone and the adjacent periodontal ligament. It is considered a disease that imposes a substantial health burden, with an incidence rate of 20-50%. The etiology of periodontitis is multifactorial, with genetic factors accounting for approximately half of severe cases. Studies have revealed that long non-coding RNAs (lncRNAs) play a pivotal role in periodontitis pathogenesis. Accumulating evidence suggests that lncRNAs have distinct regulatory mechanisms, enabling them to control numerous vital processes in periodontal cells, including osteogenic differentiation, inflammation, proliferation, apoptosis, and autophagy. In this review, we summarize the diverse roles of lncRNAs in the pathogenesis of periodontitis, shedding light on the underlying mechanisms of disease development. By highlighting the potential of lncRNAs as biomarkers and therapeutic targets, this review offers a new perspective on the diagnosis and treatment of periodontitis, paving the way for further investigation into the field of lncRNA-based therapeutics.
Collapse
Affiliation(s)
- Lizhi Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China; First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Huake Cao
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| | - Wei Shao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China; Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
6
|
Zhang C, Pan L, Zhang H, Ke T, Yang Y, Zhang L, Chen L, Tan J. Osteoblasts-Derived Exosomal lncRNA-MALAT1 Promotes Osteoclastogenesis by Targeting the miR-124/NFATc1 Signaling Axis in Bone Marrow-Derived Macrophages. Int J Nanomedicine 2023; 18:781-795. [PMID: 36814857 PMCID: PMC9939803 DOI: 10.2147/ijn.s395607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Objective Emerging studies have explained the crucial role of non-coding RNA (lncRNA) in various pathological progressions. The study was designed to examine the role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miRNA-124 in the differentiation of osteoclasts, to provide new clues or evidences for the pathogenesis of periodontitis. Methods We constructed an osteoblast-osteoclast Transwell co-culture system and osteoblast-derived exosomes (OB-exo) intervention model. We assessed the osteoclastogenesis as well as the level of lncRNA-MALAT1 and miRNA-124. The mechanism for lncRNA MALAT1 targeting miR-124 modulating the differentiation of osteoclasts was investigated by cell transfection, quantitative real-time reverse transcription PCR (RT-qPCR), Western blot, and Dual-Luciferase reporter assays. Results Osteoblast-derived exosomes were isolated and identified. Co-culture and OB-exo intervention can promote osteoclastogenesis, also significantly up-regulate the expression of MALAT1, while the level of miR-124 is the opposite. Transfection of cells with small interfering RNA (si-MALAT1) and miR-124 mimic decreased the formation of TRAP+ osteoclasts and inhibited the expression of NFATc1. However, the effect was reversed when transfected with miR-124 inhibitor and si-MALAT1. The Dual-Luciferase reporter assay confirmed the binding sites between MALAT1 and miR-124, and miR-124 and NFATc1. Conclusion LncRNA MALAT1 functioned as an endogenous sponge by competing for miR-124 binding to regulate NFATc1 expression, accelerating the progression of osteoclastogenesis.
Collapse
Affiliation(s)
- Chenyi Zhang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| | - Lai Pan
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| | - Haizheng Zhang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| | - Ting Ke
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| | - Yuxuan Yang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| | - Lan Zhang
- Stomatology Department, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Lili Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China,Correspondence: Lili Chen; Jingyi Tan, Email ;
| | - Jingyi Tan
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|