1
|
Tan L, Zhu C, Zhang X, Fu J, Huang T, Zhang W, Zhang W. Mitochondrial RNA methylation in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189213. [PMID: 39521292 DOI: 10.1016/j.bbcan.2024.189213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria have a complete and independent genetic system with necessary biological energy for cancer occurrence and persistence. Mitochondrial RNA (mt-RNA) methylation, as a frontier in epigenetics, has linked to cancer progression with growing evidences. This review has comprehensively summarized detailed mechanisms of mt-RNA methylation in regulating cancer proliferation, metastasis, and immune infiltration from the mt-RNA methylation sites, biological significance, and its methyltransferases. The mt-RNA methylation also plays a very significant role via epigenetic crosstalk between nucleus and mitochondria. Importantly, the unique structures and functional characteristics of mt-RNA methyltransferases and the potential targeting treatment drugs for cancer are also analyzed. Revealing human mt-RNA methylation regulatory system and the relationship with cancer will contribute to identifying potential biomarkers and therapeutic targets for precise prevention, detection, intervention and treatment in the future.
Collapse
Affiliation(s)
- Luyi Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Chenyu Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Xinyu Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jiaqi Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Tingting Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, PR China.
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China.
| |
Collapse
|
2
|
Lei T, Rui Y, Xiaoshuang Z, Jinglan Z, Jihong Z. Mitochondria transcription and cancer. Cell Death Discov 2024; 10:168. [PMID: 38589371 PMCID: PMC11001877 DOI: 10.1038/s41420-024-01926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Mitochondria are major organelles involved in several processes related to energy supply, metabolism, and cell proliferation. The mitochondria function is transcriptionally regulated by mitochondria DNA (mtDNA), which encodes the key proteins in the electron transport chain that is indispensable for oxidative phosphorylation (OXPHOS). Mitochondrial transcriptional abnormalities are closely related to a variety of human diseases, such as cardiovascular diseases, and diabetes. The mitochondria transcription is regulated by the mtDNA, mitochondrial RNA polymerase (POLRMT), two transcription factors (TFAM and TF2BM), one transcription elongation (TEFM), and one known transcription termination factor (mTERFs). Dysregulation of these factors directly leads to altered expression of mtDNA in tumor cells, resulting in cellular metabolic reprogramming and mitochondrial dysfunction. This dysregulation plays a role in modulating tumor progression. Therefore, understanding the role of mitochondrial transcription in cancer can have implications for cancer diagnosis, prognosis, and treatment. Targeting mitochondrial transcription or related pathways may provide potential therapeutic strategies for cancer treatment. Additionally, assessing mitochondrial transcriptional profiles or biomarkers in cancer cells or patient samples may offer diagnostic or prognostic information.
Collapse
Affiliation(s)
- Tang Lei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Rui
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhou Xiaoshuang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jinglan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhang Jihong
- Medical School, Kunming University of Science and Technology, Kunming, China.
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China.
| |
Collapse
|
3
|
Ma L, Qin N, Wan W, Song S, Hua S, Jiang C, Li N, Huang L, Gao X. TLR9 activation induces immunosuppression and tumorigenesis via PARP1/PD-L1 signaling pathway in oral squamous cell carcinoma. Am J Physiol Cell Physiol 2024; 326:C362-C381. [PMID: 38105756 DOI: 10.1152/ajpcell.00061.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, and metastasis and immunosuppression are responsible for the poor prognosis of OSCC. Previous studies have shown that poly(ADP-ribose) polymerase (PARP)1 plays a key role in the pathogenesis of OSCC. Therefore, PARP1 may serve as an important research target for the potential treatment of OSCC. Here, we aimed to investigate the role of PARP1 in the tumorigenesis of OSCC and elucidate the key molecular mechanisms of its upstream and downstream regulation in vivo and in vitro. In human OSCC tissues and cells, Toll-like receptor (TLR)9 and PD-L1 were highly expressed and PARP1 was lowly expressed. Suppression of TLR9 remarkably repressed CAL27 and SCC9 cell proliferation, migration, and invasion. After coculture, we found that low expression of TLR9 inhibited PD-L1 expression and immune escape. In addition, TLR9 regulated PD-L1 expression through the PARP1/STAT3 pathway. PARP1 mediated the effects of TLR9 on OSCC cell proliferation, migration, and invasion and immune escape. Additionally, in vivo experiments further verified that TLR9 promoted tumor growth and immune escape by inhibiting PARP1. Collectively, TLR9 activation induced immunosuppression and tumorigenesis via PARP1/PD-L1 signaling pathway in OSCC, providing important insights for subsequent in-depth exploration of the mechanism of OSCC.NEW & NOTEWORTHY In this research, we took PARP1 as the key target to explore its regulatory effect on oral squamous cell carcinoma (OSCC). The key molecular mechanisms involved in its upstream and downstream regulation were elucidated in OSCC cell lines in vitro and tumor-bearing mice in vivo, combined with clinical OSCC tissues.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Oral Medicine, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Niuyu Qin
- Department of Oral Medicine, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Wendong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Saiwen Song
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Siqi Hua
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Long Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xing Gao
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Huldani H, Abdul-Jabbar Ali S, Al-Dolaimy F, Hjazi A, Denis Andreevich N, Oudaha KH, Almulla AF, Alsaalamy A, Kareem Oudah S, Mustafa YF. The potential role of interleukins and interferons in ovarian cancer. Cytokine 2023; 171:156379. [PMID: 37757536 DOI: 10.1016/j.cyto.2023.156379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer poses significant challenges and remains a highly lethal disease with limited treatment options. In the context of ovarian cancer, interleukins (ILs) and interferons (IFNs), important cytokines that play crucial roles in regulating the immune system, have emerged as significant factors influencing its development. This article provides a comprehensive review of the involvement of various ILs, including those from the IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family, and IL-17 family, in ovarian cancer. The focus is on their impact on tumor growth, metastasis, and their role in evading immune responses within the tumor microenvironment. Additionally, the article conducts an in-depth examination of the oncogenic or antitumor roles of each IL in the context of ovarian cancer pathogenesis and progression. Besides, we elucidated the enhancements in the treatment of ovarian cancer through the utilization of type-I IFN and type-II IFN. Recent research has shed light on the intricate mechanisms through which specific ILs and IFNs contribute to the advancement of the disease. By incorporating recent findings, this review also seeks to inspire further investigations into unexplored mechanisms, fostering ongoing research to develop more effective therapeutic strategies for ovarian cancer. Moreover, through an in-depth analysis of IL- and IFN-associated clinical trials, we have highlighted their promising potential of in the treatment of ovarian cancer. These clinical trials serve to reinforce the significant outlook for utilizing ILs and IFNs as therapeutic agents in combating this disease.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
5
|
Hao J, Song Z, Su J, Li L, Zou L, Zou K. The PRX-1/TLR4 axis promotes hypoxia-induced radiotherapy resistance in non-small cell lung cancer by targeting the NF-κB/p65 pathway. Cell Signal 2023; 110:110806. [PMID: 37468052 DOI: 10.1016/j.cellsig.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Hypoxic lung cancer cells are highly resistant to radiation. Peroxiredoxin-1 (PRX-1), a transcriptional coactivator that enhances the DNA-binding activity of serum reactive factor, has been identified as a target for radiotherapy sensitization, but the underlying molecular mechanism remains unclear. This study aimed to investigate the influence of PRX-1 on radiotherapy sensitivity in hypoxic tumors. Hypoxic lung cancer cells exhibited radiotherapy-resistant phenotypes after irradiation, including increased proliferation, DNA damage repair, cell migration, invasion and stemness. Radio-resistant hypoxic lung cancer cells showed high expression levels of PRX-1. Furthermore, we observed that PRX-1 bound to the promoter region of TRL4 (-300 to -600) and promoted its transcription and expression and that PRX-1/TRL4 activated the NF-κB/p65 signaling pathway. Increased radiotherapy resistance of hypoxic lung cancer cells increased their ability to proliferate, migrate, and maintain stemness in vivo and in vitro. These findings suggest that PRX-1/TRL4 could be used as a target for the treatment of radiotherapy-resistant lung cancer cells and further provide a theoretical basis for the clinical treatment of hypoxic lung cancer cells.
Collapse
Affiliation(s)
- Jiaojiao Hao
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhuo Song
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiayi Su
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Longjie Li
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lijian Zou
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Kun Zou
- The First Affiliated Hospital, The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|