1
|
Wu X, He Q, Yin Y, Tan S, Zhang B, Li W, Hsu YC, Xue R, Bai R. Relaxation-exchange magnetic resonance imaging (REXI): a non-invasive imaging method for evaluating trans-barrier water exchange in the choroid plexus. Fluids Barriers CNS 2024; 21:94. [PMID: 39593112 PMCID: PMC11590242 DOI: 10.1186/s12987-024-00589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The choroid plexus (CP) plays a crucial role in cerebrospinal fluid (CSF) production and brain homeostasis. However, non-invasive imaging techniques to assess its function remain limited. This study was conducted to develop a novel, contrast-agent-free MRI technique, termed relaxation-exchange magnetic resonance imaging (REXI), for evaluating CP-CSF water transport, a potential biomarker of CP function. METHODS REXI utilizes the inherent and large difference in magnetic resonance transverse relaxation times (T2s) between CP tissue (e.g., blood vessels and epithelial cells) and CSF. It uses a filter block to remove most CP tissue magnetization (shorter T2), a mixing block for CP-CSF water exchange with mixing time tm, and a detection block with multi-echo acquisition to determine the CP/CSF component fraction after exchange. The REXI pulse sequence was implemented on a 9.4 T preclinical MRI scanner. For validation of REXI's ability to measure exchange, we conducted preliminary tests on urea-water proton-exchange phantoms with various pH levels. We measured the steady-state water efflux rate from CP to CSF in rats and tested the sensitivity of REXI in detecting CP dysfunction induced by the carbonic anhydrase inhibitor acetazolamide. RESULTS REXI pulse sequence successfully captured changes in the proton exchange rate (from short-T2 component to long-T2 component [i.e., ksl]) of urea-water phantoms at varying pH, demonstrating its sensitivity to exchange processes. In rat CP, REXI significantly suppressed the CP tissue signal, reducing the short-T2 fraction (fshort) from 0.44 to 0.23 (p < 0.0001), with significant recovery to 0.28 after a mixing time of 400 ms (p = 0.014). The changes in fshort at various mixing times can be accurately described by a two-site exchange model, yielding a steady-state water efflux rate from CP to CSF (i.e., kbc) of 0.49 s-1. A scan-rescan experiment demonstrated that REXI had excellent reproducibility in measuring kbc (intraclass correlation coefficient = 0.90). Notably, acetazolamide-induced CSF reduction resulted in a 66% decrease in kbc within rat CP. CONCLUSIONS This proof-of-concept study demonstrates the feasibility of REXI for measuring trans-barrier water exchange in the CP, offering a promising biomarker for future assessments of CP function.
Collapse
Affiliation(s)
- Xuetao Wu
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingping He
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Yin
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Shuyuan Tan
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Baogui Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiyun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
2
|
Borrelli S, Leclercq S, Pasi M, Maggi P. Cerebral small vessel disease and glymphatic system dysfunction in multiple sclerosis: A narrative review. Mult Scler Relat Disord 2024; 91:105878. [PMID: 39276600 DOI: 10.1016/j.msard.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
As the multiple sclerosis (MS) population ages, the prevalence of vascular comorbidities increases, potentially accelerating disease progression and brain atrophy. Recent studies highlight the prevalence of cerebral small vessel disease (CSVD) in MS, suggesting a potential link between vascular comorbidities and accelerated disability. CSVD affects the brain's small vessels, often leading to identifiable markers on MRI such as enlarged perivascular spaces (EPVS). EPVS are increasingly recognized also in MS and have been associated with vascular comorbidities, lower percentage of MS-specific perivenular lesions, brain atrophy and aging. The exact sequence of event leading to MRI visible EPVS is yet to be determined, but an impaired perivascular brain fluid drainage appears a possible physiopathological explanation for EPVS in both CSVD and MS. In this context, a dysfunction of the brain fluid clearance system - also known as "glymphatic system" - appears associated in MS to aging, neuroinflammation, and vascular dysfunction. Advanced imaging techniques show an impaired glymphatic function in both MS and CSVD. Additionally, lifestyle factors such as physical exercise, diet, and sleep quality appear to influence glymphatic function, potentially revealing novel therapeutic strategies to mitigate microangiopathy and neuroinflammation in MS. This review underscores the potential role of glymphatic dysfunction in the complex and not-yet elucidated interplay between neuroinflammation and CSVD in MS.
Collapse
Affiliation(s)
- Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium.
| | - Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Marco Pasi
- Stroke Unit, Department of Neurology, CIC-IT 1415, CHRU de Tours, INSERM 1253 iBrain, Tours, France
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Av. Hippocrate 10, Brussels 1200, Belgium.
| |
Collapse
|
3
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Ricigliano VAG, Stankoff B. Choroid plexuses at the interface of peripheral immunity and tissue repair in multiple sclerosis. Curr Opin Neurol 2023; 36:214-221. [PMID: 37078651 DOI: 10.1097/wco.0000000000001160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Choroid plexuses (ChPs) are key actors of the blood-to-cerebrospinal-fluid barrier and serve as brain immune checkpoint. The past years have seen a regain of interest about their potential involvement in the physiopathology of neuroinflammatory disorders like multiple sclerosis (MS). This article offers an overview of the recent findings on ChP alterations in MS, with a focus on the imaging tools able to detect these abnormalities and on their involvement in inflammation, tissue damage and repair. RECENT FINDINGS On MRI, ChPs are enlarged in people with MS (PwMS) versus healthy individuals. This size increase is an early event, already detected in presymptomatic and pediatric MS. Enlargement of ChPs is linked to local inflammatory infiltrates, and their dysfunction selectively impacts periventricular damage, larger ChPs predicting the expansion of chronic active lesions, smoldering inflammation and remyelination failure in tissues surrounding the ventricles. ChP volumetry may add value for the prediction of disease activity and disability worsening. SUMMARY ChP imaging metrics are emerging as possible biomarkers of neuroinflammation and repair failure in MS. Future works combining multimodal imaging techniques should provide a more refined characterization of ChP functional changes, their link with tissue damage, blood to cerebrospinal-fluid barrier dysfunction and fluid trafficking in MS.
Collapse
Affiliation(s)
- Vito A G Ricigliano
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm
- Neurology Department, Pitié-Salpêtrière Hospital
| | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm
- Neurology Department, St Antoine Hospital, APHP-Sorbonne, Paris, France
| |
Collapse
|
5
|
Keep RF, Jones HC, Hamilton MG, Drewes LR. A year in review: brain barriers and brain fluids research in 2022. Fluids Barriers CNS 2023; 20:30. [PMID: 37085841 PMCID: PMC10120509 DOI: 10.1186/s12987-023-00429-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
This aim of this editorial is to highlight progress made in brain barrier and brain fluid research in 2022. It covers studies on the blood-brain, blood-retina and blood-CSF barriers (choroid plexus and meninges), signaling within the neurovascular unit and elements of the brain fluid systems. It further discusses how brain barriers and brain fluid systems are impacted in CNS diseases, their role in disease progression and progress being made in treating such diseases.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Mark G Hamilton
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Alberta, Canada
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
6
|
Springer CS, Baker EM, Li X, Moloney B, Pike MM, Wilson GJ, Anderson VC, Sammi MK, Garzotto MG, Kopp RP, Coakley FV, Rooney WD, Maki JH. Metabolic activity diffusion imaging (MADI): II. Noninvasive, high-resolution human brain mapping of sodium pump flux and cell metrics. NMR IN BIOMEDICINE 2023; 36:e4782. [PMID: 35654761 DOI: 10.1002/nbm.4782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
We introduce a new 1 H2 O magnetic resonance approach: metabolic activity diffusion imaging (MADI). Numerical diffusion-weighted imaging decay simulations characterized by the mean cellular water efflux (unidirectional) rate constant (kio ), mean cell volume (V), and cell number density (ρ) are produced from Monte Carlo random walks in virtual stochastically sized/shaped cell ensembles. Because of active steady-state trans-membrane water cycling (AWC), kio reflects the cytolemmal Na+ , K+ ATPase (NKA) homeostatic cellular metabolic rate (c MRNKA ). A digital 3D "library" contains thousands of simulated single diffusion-encoded (SDE) decays. Library entries match well with disparate, animal, and human experimental SDE decays. The V and ρ values are consistent with estimates from pertinent in vitro cytometric and ex vivo histopathological literature: in vivo V and ρ values were previously unavailable. The library allows noniterative pixel-by-pixel experimental SDE decay library matchings that can be used to advantage. They yield proof-of-concept MADI parametric mappings of the awake, resting human brain. These reflect the tissue morphology seen in conventional MRI. While V is larger in gray matter (GM) than in white matter (WM), the reverse is true for ρ. Many brain structures have kio values too large for current, invasive methods. For example, the median WM kio is 22s-1 ; likely reflecting mostly exchange within myelin. The kio •V product map displays brain tissue c MRNKA variation. The GM activity correlates, quantitatively and qualitatively, with the analogous resting-state brain 18 FDG-PET tissue glucose consumption rate (t MRglucose ) map; but noninvasively, with higher spatial resolution, and no pharmacokinetic requirement. The cortex, thalamus, putamen, and caudate exhibit elevated metabolic activity. MADI accuracy and precision are assessed. The results are contextualized with literature overall homeostatic brain glucose consumption and ATP production/consumption measures. The MADI/PET results suggest different GM and WM metabolic pathways. Preliminary human prostate results are also presented.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric M Baker
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Brendan Moloney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Gregory J Wilson
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Valerie C Anderson
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Manoj K Sammi
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark G Garzotto
- Department of Urology, Portland VA Center, Portland, Oregon, USA
- Department of Urology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ryan P Kopp
- Department of Urology, Portland VA Center, Portland, Oregon, USA
- Department of Urology, Oregon Health & Science University, Portland, Oregon, USA
| | - Fergus V Coakley
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey H Maki
- Department of Radiology, Anschutz Medical Center, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
7
|
Maïer B, Tsai AS, Einhaus JF, Desilles JP, Ho-Tin-Noé B, Gory B, Sirota M, Leigh R, Lemmens R, Albers G, Olivot JM, Mazighi M, Gaudillière B. Neuroimaging is the new "spatial omic": multi-omic approaches to neuro-inflammation and immuno-thrombosis in acute ischemic stroke. Semin Immunopathol 2023; 45:125-143. [PMID: 36786929 PMCID: PMC10026385 DOI: 10.1007/s00281-023-00984-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Ischemic stroke (IS) is the leading cause of acquired disability and the second leading cause of dementia and mortality. Current treatments for IS are primarily focused on revascularization of the occluded artery. However, only 10% of patients are eligible for revascularization and 50% of revascularized patients remain disabled at 3 months. Accumulating evidence highlight the prognostic significance of the neuro- and thrombo-inflammatory response after IS. However, several randomized trials of promising immunosuppressive or immunomodulatory drugs failed to show positive results. Insufficient understanding of inter-patient variability in the cellular, functional, and spatial organization of the inflammatory response to IS likely contributed to the failure to translate preclinical findings into successful clinical trials. The inflammatory response to IS involves complex interactions between neuronal, glial, and immune cell subsets across multiple immunological compartments, including the blood-brain barrier, the meningeal lymphatic vessels, the choroid plexus, and the skull bone marrow. Here, we review the neuro- and thrombo-inflammatory responses to IS. We discuss how clinical imaging and single-cell omic technologies have refined our understanding of the spatial organization of pathobiological processes driving clinical outcomes in patients with an IS. We also introduce recent developments in machine learning statistical methods for the integration of multi-omic data (biological and radiological) to identify patient-specific inflammatory states predictive of IS clinical outcomes.
Collapse
Affiliation(s)
- Benjamin Maïer
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France
- Neurology Department, Hôpital Saint-Joseph, Paris, France
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
- FHU NeuroVasc, Paris, France
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA
| | - Jakob F Einhaus
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA
| | - Jean-Philippe Desilles
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
- FHU NeuroVasc, Paris, France
| | - Benoît Ho-Tin-Noé
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
| | - Benjamin Gory
- CHRU-Nancy, Department of Diagnostic and Therapeutic Neuroradiology, Université de Lorraine, F-54000, Nancy, France
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Richard Leigh
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences Division of Experimental Neurology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Centre for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Gregory Albers
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean-Marc Olivot
- Vascular Neurology Department, University Hospital of Toulouse, Toulouse, France
| | - Mikael Mazighi
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France.
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France.
- FHU NeuroVasc, Paris, France.
- Neurology Department, Lariboisière Hospital, Université Paris-Cité, Paris, France.
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA.
| |
Collapse
|