1
|
Duan Y, Zheng K, Hu W, Chen JJ, Lu X, Wang M, Yang Y, Guo J, Lu Y, Ma Q. Anti-inflammatory cerium-containing nano-scaled mesoporous bioactive glass for promoting regenerative capability of dental pulp cells. Int Endod J 2024; 57:727-744. [PMID: 38436622 DOI: 10.1111/iej.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
AIMS This study aimed to investigate the anti-inflammatory and odontoblastic effects of cerium-containing mesoporous bioactive glass nanoparticles (Ce-MBGNs) on dental pulp cells as novel pulp-capping agents. METHODOLOGY Ce-MBGNs were synthesized using a post-impregnation strategy based on the antioxidant properties of Ce ions and proposed the first use of Ce-MBGNs for pulp-capping application. The biocompatibility of Ce-MBGNs was analysed using the CCK-8 assay and apoptosis detection. Additionally, the reactive oxygen species (ROS) scavenging ability of Ce-MBGNs was measured using the 2,7-Dichlorofuorescin Diacetate (DCFH-DA) probe. The anti-inflammatory effect of Ce-MBGNs on THP-1 cells was further investigated using flow cytometry and quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, the effect of Ce-MBGNs on the odontoblastic differentiation of the dental pulp cells (DPCs) was assessed by combined scratch assays, RT-qPCR, western blotting, immunocytochemistry, Alizarin Red S staining and tissue-nonspecific alkaline phosphatase staining. Analytically, the secretions of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS Ce-MBGNs were confirmed to effectively scavenge ROS in THP-1-derived macrophages and DPCs. Flow cytometry and RT-qPCR assays revealed that Ce-MBGNs significantly inhibited the M1 polarization of macrophages (Mφ). Furthermore, the protein levels of TNF-α and IL-1β were downregulated in THP-1-derived macrophages after stimulation with Ce-MBGNs. With a step-forward virtue of promoting the odontoblastic differentiation of DPCs, we further confirmed that Ce-MBGNs could regulate the formation of a conductive immune microenvironment with respect to tissue repair in DPCs, which was mediated by macrophages. CONCLUSIONS Ce-MBGNs protected cells from self-produced oxidative damage and exhibited excellent immunomodulatory and odontoblastic differentiation effects on DPCs. As a pulp-capping agent, this novel biomaterial can exert anti-inflammatory effects and promote restorative dentine regeneration in clinical treatment. We believe that this study will stimulate further correlative research on the development of advanced pulp-capping agents.
Collapse
Affiliation(s)
- Yiyuan Duan
- Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu, China
| | - Kai Zheng
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu, China
| | - Wenzhu Hu
- Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu, China
| | - Jake Jinkun Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Xiaolin Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Mingxin Wang
- Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu, China
| | - Yuxin Yang
- Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu, China
| | - Jingyao Guo
- Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu, China
| | - Yanlai Lu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Ma
- Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Jiang C, Zhu G, Liu Q. Current application and future perspectives of antimicrobial degradable bone substitutes for chronic osteomyelitis. Front Bioeng Biotechnol 2024; 12:1375266. [PMID: 38600942 PMCID: PMC11004352 DOI: 10.3389/fbioe.2024.1375266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Chronic osteomyelitis remains a persistent challenge for the surgeons due to its refractory nature. Generally, treatment involves extensive debridement of necrotic bone, filling of dead space, adequate antimicrobial therapy, bone reconstruction, and rehabilitation. However, the optimal choice of bone substitute to manage the bone defect remains debatable. This paper reviewed the clinical evidence for antimicrobial biodegradable bone substitutes in the treatment of osteomyelitis in recent years. Indeed, this combination was proved to eradicate infection and facilitate bone reconstruction, which might reduce the cost and hospital stay. Handling was associated with increased risk of unwanted side effect to affect bone healing. The study provides some valuable insights into the clinical evaluation of treatment outcomes in the aspects of infection eradication, bone reconstruction, and complications caused by materials. However, achieving complete infection eradication and subsequently perfect bone reconstruction remains challenging in compromised conditions, hence advanced innovative bone substitutes are imperative. In this review, we mainly focus on the desired functional effects of advanced bone substitutes on infection eradication and bone reconstruction from the future perspective. Handling property was optimized to simplify surgery process. It is expected that this review will provide an important opportunity to enhance the understanding of the design and application of innovative biomaterials to synergistically eradicate infection and restore integrity and function of bone.
Collapse
Affiliation(s)
- Chenxi Jiang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxun Zhu
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
3
|
Murugan SS, Dalavi PA, Surya S, Anil S, Gupta S, Shetty R, Venkatesan J. Fabrication and characterizations of simvastatin-containing mesoporous bioactive glass and molybdenum disulfide scaffold for bone tissue engineering. APL Bioeng 2023; 7:046115. [PMID: 38058994 PMCID: PMC10697724 DOI: 10.1063/5.0172002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
Due to the limitations of the current treatment approaches of allograft and autograft techniques, treating bone disorders is a significant challenge. To address these shortcomings, a novel biomaterial composite is required. This study presents the preparation and fabrication of a novel biomaterial composite scaffold that combines poly (D, L-lactide-co-glycolide) (PLGA), mesoporous bioactive glass (MBG), molybdenum disulfide (MoS2), and simvastatin (Sim) to address the limitations of current bone grafting techniques of autograft and allograft. The fabricated scaffold of PLGA-MBG-MoS2-Sim composites was developed using a low-cost hydraulic press and salt leaching method, and scanning electron microscopy (SEM) analysis confirmed the scaffolds have a pore size between 143 and 240 μm. The protein adsorption for fabricated scaffolds was increased at 24 h. The water adsorption and retention studies showed significant results on the PLGA-MBG-MoS2-Sim composite scaffold. The biodegradation studies of the PLGA-MBG-MoS2-Sim composite scaffold have shown 54% after 28 days. In vitro, bioactivity evaluation utilizing simulated body fluid studies confirmed the development of bone mineral hydroxyapatite on the scaffolds, which was characterized using x-ray diffraction, Fourier transform infrared, and SEM analysis. Furthermore, the PLGA-MBG-MoS2-Sim composite scaffold is biocompatible with C3H10T1/2 cells and expresses more alkaline phosphatase and mineralization activity. Additionally, in vivo research showed that PLGA-MBG-MoS2-Sim stimulates a higher rate of bone regeneration. These findings highlight the fabricated PLGA-MBG-MoS2-Sim composite scaffold presents a promising solution for the limitations of current bone grafting techniques.
Collapse
Affiliation(s)
- Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Suprith Surya
- Advancement Surgical Skill Enhancement Division, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, College of Dental Medicine, Qatar University, Doha, Qatar
| | - Sebanti Gupta
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Mangalore, Karnataka, India
| | - Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
4
|
Ma R, Su Y, Cao R, Wang K, Yang P. Enhanced Osteogenic Activity and Bone Repair Ability of PLGA/MBG Scaffolds Doped with ZIF-8 Nanoparticles Loaded with BMP-2. Int J Nanomedicine 2023; 18:5055-5072. [PMID: 37701821 PMCID: PMC10493152 DOI: 10.2147/ijn.s423985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/20/2023] [Indexed: 09/14/2023] Open
Abstract
Background Tissue engineering scaffolds are porous and can be loaded with growth factors to promote osteogenesis and bone repair, which can solve the problem of clinical bone defects. The direct loading of growth factors on scaffolds is hindered by the disadvantages of low loading capacities, and uncontrollable burst release. Zeolitic imidazolate framework-8 (ZIF-8) has osteoinductive activity and drug-loading potential and can be loaded with growth factors to achieve sustained release. In this study, we aimed to establish a sustained release system of composite scaffolds loaded with growth factors to achieve the goal of slow controlled release and effective bone repair. Methods ZIF‑8 nanoparticles loaded with bone morphogenetic protein-2 (BMP-2) were incorporated into poly-(lactide-co-glycolide)/mesoporous bioactive glass (PLGA/MBG) porous scaffolds by a 3D-printing method. The surface morphology, chemical properties and BMP-2 release of the prepared scaffold were investigated. The osteoblast adhesion, proliferation, spreading, and osteogenic differentiation in vitro and the bone repair ability in vivo of the PLGA/MBG/ZIF-8/BMP-2 (PMZB) scaffold were evaluated, and compared with those of PLGA/MBG (PM) and PLGA/MBG/ZIF-8 (PMZ) scaffolds. Results The results showed that the PMZB scaffold exhibited a slow and continuous BMP-2 release pattern, enhanced osteoblast adhesion, proliferation, spreading and osteogenic differentiation in vitro, and promoted new bone formation and bone repair in vivo. Conclusion The PLGA/MBG/ZIF-8/BMP-2 porous scaffold could continuously and slowly release BMP-2, enhance osteogenic activity, and promote new bone formation and bone repair at bone defects. The PMZB scaffold can be used as a bone graft material to repair bone defect at non-weight-bearing sites.
Collapse
Affiliation(s)
- Rui Ma
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, 710004, People’s Republic of China
| | - Yanwen Su
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Ruomu Cao
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, 710004, People’s Republic of China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, 710004, People’s Republic of China
| | - Pei Yang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, 710004, People’s Republic of China
| |
Collapse
|
5
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
6
|
Liu Y, Li X, Liang A. Current research progress of local drug delivery systems based on biodegradable polymers in treating chronic osteomyelitis. Front Bioeng Biotechnol 2022; 10:1042128. [PMID: 36507256 PMCID: PMC9729283 DOI: 10.3389/fbioe.2022.1042128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic osteomyelitis is one of the most challenging diseases in orthopedic treatment. It is usually treated with intravenous antibiotics and debridement in clinical practice, which also brings systemic drug side effects and bone defects. The local drug delivery system of antibiotics has the characteristics of targeted slow release to the lesion site, replacing systemic antibiotics and reducing the toxic and side effects of drugs. It can also increase the local drug concentration, achieve sound bacteriostatic effects, and promote bone healing and formation. Currently, PMMA beads are used in treating chronic osteomyelitis at home and abroad, but the chain beads need to be removed after a second operation, inconveniences patients. Biodegradable materials have been extensively studied as optimal options for antibiotic encapsulation and delivery, bringing new hope for treating chronic osteomyelitis. This article reviews the research progress of local drug delivery systems based on biodegradable polymers, including natural and synthetic ones, in treating chronic osteomyelitis.
Collapse
Affiliation(s)
- Yixiu Liu
- Department of Orthopaedics, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China,Shenyang Clinical Research Center for Hand and Foot, Shenyang, China
| | - Xu Li
- Department of Orthopaedics, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China,Shenyang Clinical Research Center for Hand and Foot, Shenyang, China
| | - A. Liang
- Department of Orthopaedics, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China,Shenyang Clinical Research Center for Hand and Foot, Shenyang, China,*Correspondence: A. Liang,
| |
Collapse
|
7
|
Liu T, Li Z, Zhao L, Chen Z, Lin Z, Li B, Feng Z, Jin P, Zhang J, Wu Z, Wu H, Xu X, Ye X, Zhang Y. Customized Design 3D Printed PLGA/Calcium Sulfate Scaffold Enhances Mechanical and Biological Properties for Bone Regeneration. Front Bioeng Biotechnol 2022; 10:874931. [PMID: 35814012 PMCID: PMC9260230 DOI: 10.3389/fbioe.2022.874931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
Polylactic glycolic acid copolymer (PLGA) has been widely used in tissue engineering due to its good biocompatibility and degradation properties. However, the mismatched mechanical and unsatisfactory biological properties of PLGA limit further application in bone tissue engineering. Calcium sulfate (CaSO4) is one of the most promising bone repair materials due to its non-immunogenicity, well biocompatibility, and excellent bone conductivity. In this study, aiming at the shortcomings of activity-lack and low mechanical of PLGA in bone tissue engineering, customized-designed 3D porous PLGA/CaSO4 scaffolds were prepared by 3D printing. We first studied the physical properties of PLGA/CaSO4 scaffolds and the results showed that CaSO4 improved the mechanical properties of PLGA scaffolds. In vitro experiments showed that PLGA/CaSO4 scaffold exhibited good biocompatibility. Moreover, the addition of CaSO4 could significantly improve the migration and osteogenic differentiation of MC3T3-E1 cells in the PLGA/CaSO4 scaffolds, and the PLGA/CaSO4 scaffolds made with 20 wt.% CaSO4 exhibited the best osteogenesis properties. Therefore, calcium sulfate was added to PLGA could lead to customized 3D printed scaffolds for enhanced mechanical properties and biological properties. The customized 3D-printed PLGA/CaSO4 scaffold shows great potential for precisely repairing irregular load-bearing bone defects.
Collapse
Affiliation(s)
- Tao Liu
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhan Li
- General Hospital of Southern Theatre Command of PLA, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhao
- Department of Trauma Orthopedics, Hospital of Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Zehua Chen
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Binglin Li
- Department of Trauma Orthopedics, Hospital of Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Zhibin Feng
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Panshi Jin
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jinwei Zhang
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zugui Wu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huai Wu
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xuemeng Xu
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
- *Correspondence: Xuemeng Xu, ; Xiangling Ye, ; Ying Zhang,
| | - Xiangling Ye
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xuemeng Xu, ; Xiangling Ye, ; Ying Zhang,
| | - Ying Zhang
- General Hospital of Southern Theatre Command of PLA, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Trauma Orthopedics, Hospital of Orthopedics, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
- *Correspondence: Xuemeng Xu, ; Xiangling Ye, ; Ying Zhang,
| |
Collapse
|
8
|
Shariati A, Chegini Z, Ghaznavi-Rad E, Zare EN, Hosseini SM. PLGA-Based Nanoplatforms in Drug Delivery for Inhibition and Destruction of Microbial Biofilm. Front Cell Infect Microbiol 2022; 12:926363. [PMID: 35800390 PMCID: PMC9253276 DOI: 10.3389/fcimb.2022.926363] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
The biofilm community of microorganisms has been identified as the dominant mode of microbial growth in nature and a common characteristic of different microorganisms such as Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The biofilm structure helps in the protection from environmental threats including host immune system and antimicrobial agents. Thus, the biofilm community has led to a higher prevalence of multidrug-resistant (MDR) strains in recent years. In this regard, the use of a new class of antibiotics, natural compounds, and anti-biofilm enzymes has been considered for the destruction of the microbial biofilm. However, different drawbacks such as low penetration, high susceptibility to degradation, instability, and poor solubility in aqueous solutions limit the use of anti-biofilm agents (ABAs) in a clinical setting. As such, recent studies have been using poly lactic-co-glycolic acid (PLGA)-based nanoplatforms (PLGA NPFs) for delivery of ABAs that have reported promising results. These particles, due to proper drug loading and release kinetics, could suppress microbial attachment, colonization, and biofilm formation for a long time. Additionally, PLGA NPFs, because of the high drug-loading efficiencies, hydrophilic surface, negative charge, and electrostatic interaction, lead to effective penetration of antibiotics to the deeper layer of the biofilm, thereby eliminating the microbial biofilm. Thus, PLGA NPFs could be considered as a potential candidate for coating catheters and other medical material surfaces for inhibition and destruction of the microbial biofilm. However, the exact interaction of PLGA NPFs and the microbial biofilm should be evaluated in animal studies. Additionally, a future goal will be to develop PLGA formulations as systems that can be used for the treatment of the MDR microbial biofilm, since the exact interactions of PLGA NPFs and these biofilm structures are not elucidated. In the present review article, we have discussed various aspects of PLGA usage for inhibition and destruction of the microbial biofilm along with different methods and procedures that have been used for improving PLGA NPF efficacy against the microbial biofilm.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ehsanollah Ghaznavi-Rad
- Department of Microbiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- *Correspondence: Seyed Mostafa Hosseini,
| |
Collapse
|
9
|
Cao M, Liu C, Li M, Zhang X, Peng L, Liu L, Liao J, Yang J. Recent Research on Hybrid Hydrogels for Infection Treatment and Bone Repair. Gels 2022; 8:306. [PMID: 35621604 PMCID: PMC9140391 DOI: 10.3390/gels8050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
The repair of infected bone defects (IBDs) is still a great challenge in clinic. A successful treatment for IBDs should simultaneously resolve both infection control and bone defect repair. Hydrogels are water-swollen hydrophilic materials that maintain a distinct three-dimensional structure, helping load various antibacterial drugs and biomolecules. Hybrid hydrogels may potentially possess antibacterial ability and osteogenic activity. This review summarizes the recent progress of different kinds of antibacterial agents (including inorganic, organic, and natural) encapsulated in hydrogels. Several representative hydrogels of each category and their antibacterial mechanism and effect on bone repair are presented. Moreover, the advantages and disadvantages of antibacterial agent hybrid hydrogels are discussed. The challenge and future research directions are further prospected.
Collapse
Affiliation(s)
- Mengjiao Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (M.C.); (M.L.); (L.L.)
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Mengxin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (M.C.); (M.L.); (L.L.)
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Lijia Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (M.C.); (M.L.); (L.L.)
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (M.C.); (M.L.); (L.L.)
| |
Collapse
|
10
|
Yuan TY, Zhang J, Yu T, Wu JP, Liu QY. 3D Bioprinting for Spinal Cord Injury Repair. Front Bioeng Biotechnol 2022; 10:847344. [PMID: 35519617 PMCID: PMC9065470 DOI: 10.3389/fbioe.2022.847344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is considered to be one of the most challenging central nervous system injuries. The poor regeneration of nerve cells and the formation of scar tissue after injury make it difficult to recover the function of the nervous system. With the development of tissue engineering, three-dimensional (3D) bioprinting has attracted extensive attention because it can accurately print complex structures. At the same time, the technology of blending and printing cells and related cytokines has gradually been matured. Using this technology, complex biological scaffolds with accurate cell localization can be manufactured. Therefore, this technology has a certain potential in the repair of the nervous system, especially the spinal cord. So far, this review focuses on the progress of tissue engineering of the spinal cord, landmark 3D bioprinting methods, and landmark 3D bioprinting applications of the spinal cord in recent years.
Collapse
|
11
|
Liu Y, Liang A, Li X, Ma Z, Zhang D. Efficacy Evaluation of Ciprofloxacin-Loaded Poly (Trimethylene Carbonate) Implants in the Treatment of Chronic Osteomyelitis. Front Bioeng Biotechnol 2022; 10:864041. [PMID: 35464725 PMCID: PMC9024176 DOI: 10.3389/fbioe.2022.864041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, poly (trimethylene carbonate) (PTMC) with excellent biocompatibility was synthesized via ring-opening of TMC to prepare the Ciprofloxacin-loaded PTMC implants, and antibacterial effects in vitro or in vivo of the resulting implants were investigated to evaluate the potential for treating chronic osteomyelitis. The in vitro results showed the Ciprofloxacin-loaded PTMC implants could sustain release ciprofloxacin at a release amount of about 90 μg/d for 28 days and possessed excellent antibacterial effect, as evidenced by the smaller size of the antibacterial ring of 32.6 ± 0.64 mm and the biofilm inhibition of 60% after 28 days of release. The in vivo results showed that after 28 days of treatment, the body weight and the white blood cell counts of chronic-osteomyelitis-model rats in the treatment group reached 381.6 ± 16.8 g and (7.86 ± 0.91) ×109/L, respectively, returning to normal rapidly compared with the control and blank group, indicating the remarkable antibacterial effect of the Ciprofloxacin-loaded PTMC implants. X-ray images and HE staining results also confirmed that most of the proximal and middle parts of the tibia returned to typical structures and new and trabecular bone had been formed for the rats in the treatment group, and no inflammatory cells were found as compared to the control and blank groups, after 28 days of treatment. The significant lower number of colonies of (9.92 ± 1.56) × 10 CFU/g in the treatment group also suggests that the Ciprofloxacin-loaded PTMC implants achieve a practical antibacterial effect through a local application.
Collapse
Affiliation(s)
- Yixiu Liu
- Department of Orthopaedics, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
- Shenyang Clinical Research Center for Hand and Foot, Shenyang, China
- *Correspondence: Yixiu Liu, ; Dan Zhang,
| | - A. Liang
- Department of Orthopaedics, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
- Shenyang Clinical Research Center for Hand and Foot, Shenyang, China
| | - Xu Li
- Department of Orthopaedics, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
- Shenyang Clinical Research Center for Hand and Foot, Shenyang, China
| | - Zhihe Ma
- The First People’s Hospital of Shenyang, Shenyang, China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Yixiu Liu, ; Dan Zhang,
| |
Collapse
|
12
|
Hesham M, Elshishtawy H, El Kady S, Wahied D. Antibacterial Effect of Pre-constructed 3D Bone Scaffolds before and after Modification with Propolis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: This study was to determine and compare the antibacterial activity of different scaffold materials before and after their modification with ethanolic extract of Egyptian propolis ethanolic extract of propolis (EEP).
SETTINGS AND DESIGN: Preparation of the dry mass of propolis, preparation of EEP, preparation of the scaffolds, and antibacterial activity testing.
MATERIALS AND METHODS: Four bacterial strains were used to determine the antibacterial activity of two different scaffold materials before and after their modification with EEP (15% and 25% by weight).
RESULTS: Tricalcium phosphate + gelatin binder modified by 25% EEP exhibited the highest antibacterial activity against Escherichia coli. While, tricalcium phosphate + (alginate and cellulose nanowhiskers) binder modified by 25% EEP demonstrated the highest antibacterial activity Staphylococcus aureus, Streptococcus mutans, and Lactobacillus casei.
CONCLUSIONS: It can be concluded that EEP had a significant effect on the antibacterial activity of both scaffold materials; the antibacterial activity was higher against Gram-positive bacteria.
Collapse
|
13
|
Zarepour A, Hooshmand S, Gökmen A, Zarrabi A, Mostafavi E. Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms. Cells 2021; 10:cells10113189. [PMID: 34831412 PMCID: PMC8620694 DOI: 10.3390/cells10113189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) has a major impact on affected patients due to its pathological consequences and absence of capacity for self-repair. Currently available therapies are unable to restore lost neural functions. Thus, there is a pressing need to develop novel treatments that will promote functional repair after SCI. Several experimental approaches have been explored to tackle SCI, including the combination of stem cells and 3D bioprinting. Implanted multipotent stem cells with self-renewing capacity and the ability to differentiate to a diversity of cell types are promising candidates for replacing dead cells in injured sites and restoring disrupted neural circuits. However, implanted stem cells need protection from the inflammatory agents in the injured area and support to guide them to appropriate differentiation. Not only are 3D bioprinted scaffolds able to protect stem cells, but they can also promote their differentiation and functional integration at the site of injury. In this review, we showcase some recent advances in the use of stem cells for the treatment of SCI, different types of 3D bioprinting methods, and the combined application of stem cells and 3D bioprinting technique for effective repair of SCI.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Aylin Gökmen
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul 34353, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (A.Z.); or (E.M.); Tel.: +90-537-731-0182 (A.Z.); +1-617-5130314 (E.M.)
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: (A.Z.); or (E.M.); Tel.: +90-537-731-0182 (A.Z.); +1-617-5130314 (E.M.)
| |
Collapse
|
14
|
Esteban J, Vallet-Regí M, Aguilera-Correa JJ. Antibiotics- and Heavy Metals-Based Titanium Alloy Surface Modifications for Local Prosthetic Joint Infections. Antibiotics (Basel) 2021; 10:1270. [PMID: 34680850 PMCID: PMC8532710 DOI: 10.3390/antibiotics10101270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Prosthetic joint infection (PJI) is the second most common cause of arthroplasty failure. Though infrequent, it is one of the most devastating complications since it is associated with great personal cost for the patient and a high economic burden for health systems. Due to the high number of patients that will eventually receive a prosthesis, PJI incidence is increasing exponentially. As these infections are provoked by microorganisms, mainly bacteria, and as such can develop a biofilm, which is in turn resistant to both antibiotics and the immune system, prevention is the ideal approach. However, conventional preventative strategies seem to have reached their limit. Novel prevention strategies fall within two broad categories: (1) antibiotic- and (2) heavy metal-based surface modifications of titanium alloy prostheses. This review examines research on the most relevant titanium alloy surface modifications that use antibiotics to locally prevent primary PJI.
Collapse
Affiliation(s)
- Jaime Esteban
- Clinical Microbiology Department, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, Av. Reyes Católicos 2, 28040 Madrid, Spain
- Networking Research Centre on Infectious Diseases (CIBER-ID), 28029 Madrid, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Research Institute Hospital 12 de Octubre (i+12), School of Pharmacy, Complutense University of Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - John J Aguilera-Correa
- Networking Research Centre on Infectious Diseases (CIBER-ID), 28029 Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, Research Institute Hospital 12 de Octubre (i+12), School of Pharmacy, Complutense University of Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
15
|
Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, Tomala A, Tyliszczak B. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2096. [PMID: 33919199 PMCID: PMC8122483 DOI: 10.3390/ma14092096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Regenerative medicine is becoming a rapidly evolving technique in today's biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. This review article provides extensive knowledge on HAp and collagen-containing compositions modified with drugs, bioactive components, metals, and selected nanoparticles. Such compositions consisting of HAp and collagen modified with various additives are used in a variety of biomedical applications such as bone tissue engineering, vascular transplantation, cartilage, and other implantable biomedical devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.S.-K.); (A.D.); (W.F.); (M.G.); (S.K.-K.); (D.S.); (A.T.)
| |
Collapse
|
16
|
Weng W, Li X, Nie W, Liu H, Liu S, Huang J, Zhou Q, He J, Su J, Dong Z, Wang D. One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment. Int J Nanomedicine 2020; 15:5027-5042. [PMID: 32764934 PMCID: PMC7371608 DOI: 10.2147/ijn.s241859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Background Bactericidal capacity, durable inhibition of biofilm formation, and a three-dimensional (3D) porous structure are the emphases of infected bone defect (IBD) treatment via local scaffold implantation strategy. Purpose In this study, silver nanoparticle (AgNP)-loaded nano-hydroxyapatite (nHA)@ reduced graphene oxide (RGO) 3D scaffolds (AHRG scaffolds) were designed to alleviate bone infection, inhibit biofilm formation, and promote bone repair through the synergistic effects of AgNPs, RGO, and nHA. Materials and Methods AHRGs were prepared using a one-step preparation method, to create a 3D porous scaffold to facilitate a uniform distribution of AgNPs and nHA. Methicillin-resistant Staphylococcus aureus (MRSA) was used as a model-resistant bacterium, and the effects of different silver loadings on the antimicrobial activity and cytocompatibility of materials were evaluated. Finally, a rabbit IBD model was used to evaluate the therapeutic effect of the AHRG scaffold in vivo. Results The results showed successful synthesis of the AHRG scaffold. The ideal 3D porous structure was verified using scanning electron microscopy and transmission electron microscopy, and X-ray photoelectron spectroscopy and selected area electron diffraction measurements revealed uniform distributions of AgNP and nHA. In vitro antibacterial and cytocompatibility indicated that the 4% AHRG scaffolds possessed the most favorable balance of bactericidal properties and cytocompatibility. In vivo evaluation of the IBD model showed promising treatment efficacy of AHRG scaffolds. Conclusion The as-fabricated AHRG scaffolds effectively eliminated infection and inhibited biofilm formation. IBD repair was facilitated by the bactericidal properties and 3D porous structure of the AHRG scaffold, suggesting its potential in the treatment of IBDs.
Collapse
Affiliation(s)
- Weizong Weng
- Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China.,Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China
| | - Xiaoqun Li
- Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Wei Nie
- College of Chemistry, Chemical Engineering and Biotechnology, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
| | - Haoyuan Liu
- Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China
| | - Shanshan Liu
- Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China
| | - Jianming Huang
- Orthopaedics Department, Chenggong Hospital Affilaited to Xiamen University, Xiamen 361000, People's Republic of China
| | - Qirong Zhou
- Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jia He
- Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jiacan Su
- Department of Orthopeadics, Changhai Hospital affiliated to the Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Zhifeng Dong
- Department of Cardiology, Shanghai Sixth Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200233, People's Republic of China
| | - Dongliang Wang
- Orthopeadics Department, Xinhua Hospital Affiliated to the Shanghai Jiaotong University, Shanghai 200433, People's Republic of China
| |
Collapse
|
17
|
Vallet-Regí M, Lozano D, González B, Izquierdo-Barba I. Biomaterials against Bone Infection. Adv Healthc Mater 2020; 9:e2000310. [PMID: 32449317 PMCID: PMC7116285 DOI: 10.1002/adhm.202000310] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic bone infection is considered as one of the most problematic biofilm-related infections. Its recurrent and resistant nature, high morbidity, prolonged hospitalization, and costly medical care expenses have driven the efforts of the scientific community to develop new therapies to improve the standards used today. There is great debate on the management of this kind of infection in order to establish consistent and agreed guidelines in national health systems. The scientific research is oriented toward the design of anti-infective biomaterials both for prevention and cure. The properties of these materials must be adapted to achieve better anti-infective performance and good compatibility, which allow a good integration of the implant with the surrounding tissue. The objective of this review is to study in-depth the antibacterial biomaterials and the strategies underlying them. In this sense, this manuscript focuses on antimicrobial coatings, including the new technological advances on surface modification; scaffolding design including multifunctional scaffolds with both antimicrobial and bone regeneration properties; and nanocarriers based on mesoporous silica nanoparticles with advanced properties (targeting and stimuli-response capabilities).
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| |
Collapse
|
18
|
Developments in Antibiotic-Eluting Scaffolds for the Treatment of Osteomyelitis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteomyelitis is a devastating disease caused by the infection of bone tissue and is associated with significant morbidity and mortality. It is treated with antibiotic therapy and surgical debridement. A high dose of systemic antibiotics is often required due to poor bone penetration and this is often associated with unacceptable side-effects. To overcome this, local, implantable antibiotic carriers such as polymethyl methacrylate have been developed. However, this is a non-biodegradable material that requires a second surgery to be removed. Attention has therefore shifted to new antibiotic-eluting scaffolds which can be created with a range of unique properties. The purpose of this review is to assess the level of evidence that exists for these novel local treatments. Although this field is still developing, these strategies seem promising and provide hope for the future treatment of chronic osteomyelitis.
Collapse
|
19
|
Gisbert-Garzarán M, Manzano M, Vallet-Regí M. Mesoporous Silica Nanoparticles for the Treatment of Complex Bone Diseases: Bone Cancer, Bone Infection and Osteoporosis. Pharmaceutics 2020; 12:E83. [PMID: 31968690 PMCID: PMC7022913 DOI: 10.3390/pharmaceutics12010083] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Bone diseases, such as bone cancer, bone infection and osteoporosis, constitute a major issue for modern societies as a consequence of their progressive ageing. Even though these pathologies can be currently treated in the clinic, some of those treatments present drawbacks that may lead to severe complications. For instance, chemotherapy lacks great tumor tissue selectivity, affecting healthy and diseased tissues. In addition, the inappropriate use of antimicrobials is leading to the appearance of drug-resistant bacteria and persistent biofilms, rendering current antibiotics useless. Furthermore, current antiosteoporotic treatments present many side effects as a consequence of their poor bioavailability and the need to use higher doses. In view of the existing evidence, the encapsulation and selective delivery to the diseased tissues of the different therapeutic compounds seem highly convenient. In this sense, silica-based mesoporous nanoparticles offer great loading capacity within their pores, the possibility of modifying the surface to target the particles to the malignant areas and great biocompatibility. This manuscript is intended to be a comprehensive review of the available literature on complex bone diseases treated with silica-based mesoporous nanoparticles-the further development of which and eventual translation into the clinic could bring significant benefits for our future society.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Miguel Manzano
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
20
|
Kargozar S, Montazerian M, Hamzehlou S, Kim HW, Baino F. Mesoporous bioactive glasses: Promising platforms for antibacterial strategies. Acta Biomater 2018; 81:1-19. [PMID: 30273742 DOI: 10.1016/j.actbio.2018.09.052] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022]
Abstract
The control of bacterial infections is of particular importance in the field of tissue engineering. Recently, much attention has been addressed toward the use of mesoporous bioactive glasses (MBGs) for antibacterial strategies, primarily because of their capability of acting as carriers for the local release of antimicrobial agents. The incorporation of antibacterial metallic ions including silver (Ag+), zinc (Zn2+), copper (Cu+ and Cu2+), cerium (Ce3+ and Ce4+), and gallium (Ga3+) cations into the MBG structure and their controlled release is proposed as one of the most attractive strategies for inhibiting bacterial growth and reproduction. Moreover, the possibility of loading and delivering various antibacterial biomolecules (e.g., antibiotics) through the porous structure of MBGs makes them as ideal candidates for antibacterial applications. In this review, we aim to present a comprehensive evaluation of MBG potential regarding antibacterial activities. For this purpose, different types of antibacterial ion-doped and drug-loaded MBGs are introduced and discussed in the light of existing knowledge, along with the significant challenges ahead. STATEMENT OF SIGNIFICANCE: Prevention and treatment of infections is one of the today's greatest challenges in medical sciences, also considering the well-known issues related to increased bacterial resistance to antibiotics. The advent of mesoporous glasses led to the birth of a new class of multifunctional biomaterials acting as bioactive platforms for the local release of organic or inorganic agents eliciting an antimicrobial effect. This reviews summarizes the state of the art of MBGs in this field, highlighting the latest evolutions and the specific role played by metallic antimicrobial ions that can be incorporated in the glass composition and then properly released. Perspective for tissue engineering applications are also discussed to provide an up-to-date contribution that is useful to both experienced scientists and early-stage researchers.
Collapse
|
21
|
Zhou Z, Yao Q, Li L, Zhang X, Wei B, Yuan L, Wang L. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres. Med Sci Monit 2018; 24:6934-6945. [PMID: 30269152 PMCID: PMC6178870 DOI: 10.12659/msm.911770] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The aim of this study was to design and test a novel composite scaffold with antibacterial efficacy for treating bone infections using a three-dimensional (3D) printed poly(ε-caprolactone) (PCL) scaffold coated with polydopamine (PDA) for the adsorption of polylactic acid-glycolic acid (PLGA) microspheres loaded with vancomycin. MATERIAL AND METHODS Vancomycin-loaded PLGA microspheres were produced by the double-emulsion method, and microsphere morphology, drug-loading dosage, encapsulation efficiency, average diameter, and release characteristics were examined. Composite scaffolds were prepared by adsorption of the microspheres on PDA-coated, 3D-printed PCL scaffolds, and scaffold morphology, biocompatibility, vancomycin release, and antibacterial efficacy were evaluated. RESULTS The vancomycin-loaded microspheres were smooth, round, uniform in size, and had no adhesion phenomenon, and exhibited sustained release of vancomycin from the microspheres for more than 4 weeks. Upon modification with PDA, the PCL scaffold changed from white to black, and after microsphere adsorption, dot-like white particles were seen. On scanning electron microscopy, PDA particles were observed on the PCL/PDA composite scaffolds, and PLGA microspheres were evenly dispersed over the PDA coating on the PCL/PDA/PLGA composite scaffolds. Cell viability assays showed that the adhesion and proliferation of rabbit bone mesenchymal stem cells were greater on the PCL/PDA scaffolds than on unmodified PCL scaffolds. Microsphere adsorption had no significant effect on cell proliferation. In vitro release of vancomycin from the composite scaffolds was observed for more than 4 weeks, and observation of the inhibition zone on agar plates of Staphylococcus aureus showed that the scaffolds maintained their antibacterial effect for more than 4 weeks. CONCLUSIONS The 3D-printed, PDA-coated PCL scaffold carrying vancomycin-loaded PLGA microspheres exhibited good biocompatibility and a sustained antibacterial effect in vitro.
Collapse
Affiliation(s)
- Zhi Zhou
- Department of Orthopedics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China (mainland)
| | - Qingqiang Yao
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Lan Li
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,College of Biological and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, Jiangsu, China (mainland)
| | - Xin Zhang
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,College of Biological and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, Jiangsu, China (mainland)
| | - Bo Wei
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Li Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Liming Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
22
|
Xia Y, Chen H, Zhang F, Wang L, Chen B, Reynolds MA, Ma J, Schneider A, Gu N, Xu HHK. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:423-433. [PMID: 29355052 DOI: 10.1080/21691401.2018.1428813] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Literature search revealed no systematic report on iron oxide nanoparticle-incorporating calcium phosphate cement scaffolds (IONP-CPC). The objectives of this study were to: (1) use γFe2O3 nanoparticles (γIONPs) and αFe2O3 nanoparticles (αIONPs) to develop novel IONP-CPC scaffolds, and (2) investigate human dental pulp stem cells (hDPSCs) seeding on IONP-CPC for bone tissue engineering for the first time. IONP-CPC scaffolds were fabricated. Physiochemical properties of IONP-CPC scaffolds were characterized. hDPSC seeding on scaffolds, cell proliferation, osteogenic differentiation and bone matrix mineral synthesis by cells were measured. Our data demonstrated that the osteogenic differentiation of hDPSCs was markedly enhanced via IONP incorporation into CPC. Substantial increases (about three folds) in ALP activity and osteogenic gene expressions were achieved over those without IONPs. Bone matrix mineral synthesis by the cells was increased by two- to three folds over that without IONPs. The enhanced cellular osteogenesis was attributed to: (1) the surface nanotopography of IONP-CPC scaffold, and (2) the cell internalization of IONPs released from IONP-CPC scaffold. Our results demonstrate that the novel CPC functionalized with IONPs is promising to promote osteoinduction and bone regeneration. In conclusion, it is highly promising to incorporate γIONPs and αIONPs into CPC scaffold for bone tissue engineering, yielding substantially better stem cell attachment, spreading and osteogenic differentiation, and much greater bone mineral synthesis by the seeded cells. Therefore, novel CPC scaffolds containing γIONPs and αIONPs are promising for dental, craniofacial and orthopaedic applications to substantially enhance bone regeneration.
Collapse
Affiliation(s)
- Yang Xia
- a Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , China.,b Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , China.,c Department of Advanced Oral Sciences and Therapeutics , University of Maryland School of Dentistry , Baltimore , MD , USA
| | - Huimin Chen
- a Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , China
| | - Feimin Zhang
- a Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , China.,d Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China
| | - Lin Wang
- c Department of Advanced Oral Sciences and Therapeutics , University of Maryland School of Dentistry , Baltimore , MD , USA.,e VIP Integrated Department, School and Hospital of Stomatology , Jilin University , Changchun , China
| | - Bo Chen
- b Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , China
| | - Mark A Reynolds
- c Department of Advanced Oral Sciences and Therapeutics , University of Maryland School of Dentistry , Baltimore , MD , USA
| | - Junqing Ma
- a Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , China
| | - Abraham Schneider
- f Department of Oncology and Diagnostic Sciences , University of Maryland School of Dentistry , Baltimore , MD , USA
| | - Ning Gu
- b Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , China.,d Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , China
| | - Hockin H K Xu
- c Department of Advanced Oral Sciences and Therapeutics , University of Maryland School of Dentistry , Baltimore , MD , USA.,g Center for Stem Cell Biology and Regenerative Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,h University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore , MD , USA
| |
Collapse
|
23
|
Tissue Scaffolds As a Local Drug Delivery System for Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:475-493. [DOI: 10.1007/978-981-13-0950-2_25] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|