1
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
2
|
Gou Y, Li H, Sun X, Chen D, Tian F. Parathyroid hormone (1-34) retards the lumbar facet joint degeneration and activates Wnt/β-catenin signaling pathway in ovariectomized rats. J Orthop Surg Res 2024; 19:352. [PMID: 38877549 PMCID: PMC11177467 DOI: 10.1186/s13018-024-04817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
PURPOSE Facet joint degeneration (FJD) is a major cause of low back pain. Parathyroid hormone (PTH) (1-34) is commonly used to treat osteoporosis. However, little is known about its effects on FJD induced by estrogen deficiency. This study aims to investigate the effects of PTH (1-34) on FJD induced by estrogen deficiency and the underlying pathogenesis of the disease. METHODS Forty 3-month-old female Sprague-Dawley rats were randomly divided into four groups: 30 received bilateral ovariectomy (OVX) followed by 12 weeks of treatment with normal saline, PTH (1-34) or 17β-estradiol (E2), and 10 received sham surgery followed by administration of normal saline. Status and Wnt/β-catenin signaling activity in the cartilage and subchondral bone of the L4-L5 FJs and serum biomarkers were analyzed. RESULTS Administration of PTH (1-34) and E2 ameliorated cartilage lesions, and significantly decreased MMP-13 and caspase-3 levels and chondrocyte apoptosis. PTH (1-34) but not E2 significantly increased cartilage thickness, number of chondrocytes, and the expression of aggrecan. PTH (1-34) significantly improved microarchitecture parameters of subchondral bone, increased the expression of collagen I and osteocalcin, and decreased RANKL/OPG ratio. E2 treatment significantly increased the OPG level and decreased the RANKL/OPG ratio in the subchondral bone of ovariectomized rats, but it did not significantly improve the microarchitecture parameters of subchondral bone. Wnt3a and β-catenin expression was significantly reduced in the articular cartilage and subchondral bone in OVX rats, but PTH (1-34) could increase the expression of these proteins. E2 significantly increased the activity of Wnt/β-catenin pathway only in cartilage, but not in subchondral bone. The restoration of Wnt/β-catenin signaling had an obvious correlation with the improvement of some parameters associated with the FJs status. CONCLUSION Wnt/β-catenin signaling may be a potential therapeutic target for FJD induced by estrogen deficiency. PTH (1-34) is effective in treating this disease with better efficacy than 17β-estradiol, and the efficacy may be attributed to its restoration of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Hetong Li
- Department of Orthopaedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xun Sun
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Desheng Chen
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
3
|
Hao Y, Zhu G, Yu L, Ren Z, Zhou W, Zhang P, Lian X. FOXO3-Activated HOTTIP Sequesters miR-615-3p away from COL2A1 to Mitigate Intervertebral Disc Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:280-295. [PMID: 37981220 DOI: 10.1016/j.ajpath.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
In this study, knockout of FOXO3 was found to impair intervertebral disc maturation and homeostasis in postnatal mice as well as facilitating extracellular matrix degradation. RNA sequencing can uncover disease-related gene expression and investigate disease pathophysiology. High-throughput transcriptome sequencing and experimental validations were used to identify the essential gene and mechanism involved in intervertebral disc degeneration (IDD). Nucleus pulposus (NP) tissue samples were collected from the mice with conditional knockout of FOXO3 (FOXO3 KO) for high-throughput sequencing, followed by screening of differentially expressed lncRNAs and mRNAs. The mRNAs were subjected to GO and KEGG enrichment analyses. Interactions among FOXO3, HOTTIP, miR-615-3p, and COL2A1 were analyzed. NP cells were subjected to a series of mimics, inhibitors, overexpression plasmids, and shRNAs to validate the mechanisms of FOXO3 in controlling HOTTIP/miR-615-3p/COL2A1 in IDD. Mechanistically, FOXO3 transcriptionally activated HOTTIP, facilitated the competitive HOTTIP binding to miR-615-3p, and increased the expression of the miR-615-3p target gene COL2A1. Thus, NP cell proliferation was induced, cell apoptosis was diminished, resulting in delayed development of IDD. Based on these data, the transcription factor FOXO3 may decrease miR-615-3p binding to COL2A1 and up-regulate COL2A1 expression by activating HOTTIP transcription, which in turn inhibits NP cell apoptosis and promotes its proliferation, to prevent the degradation of intervertebral disc matrix and maintain the normal physiological function of intervertebral disc, thereby preventing the occurrence and development of IDD.
Collapse
Affiliation(s)
- Yingjie Hao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guangduo Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhinan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panke Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Lian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Wang HS, Lin S, Yu HM. Exosome-mediated Repair of Intervertebral Disc Degeneration: The Potential Role of miRNAs. Curr Stem Cell Res Ther 2024; 19:798-808. [PMID: 37150986 DOI: 10.2174/1574888x18666230504094233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 05/09/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a serious condition that manifests as low back pain, intervertebral disc protrusion, and spinal canal stenosis. At present, the main treatment methods for IVDD are surgical interventions such as discectomy, total disc replacement, and spinal fusion. However, these interventions have shown limitations, such as recurrent lumbar disc herniation after discectomy, lesions in adjacent segments, and failure of fixation. To overcome these shortcomings, researchers have been exploring stem cell transplantation therapy, such as mesenchymal stem cell (MSC) transplantation, but the treatment results are still controversial. Therefore, researchers are in search of new methods that are more efficient and have better outcomes. The exosomes from stem cells contain a variety of bioactive molecules that mediate cell interactions, and these components have been investigated for their potential therapeutic role in the repair of various tissue injuries. Recent studies have shown that MSC-derived miRNAs in exosomes and vesicles have therapeutic effects on nucleus pulposus cells, annulus fibrosus, and cartilage endplate. miRNAs play a role in many cell activities, such as cell proliferation, apoptosis, and cytokine release, by acting on mRNA translation, and they may have immense therapeutic potential, especially when combined with stem cell therapy. This article reviews the current status of research on intervertebral disc repair, especially with regard to the latest research findings on the molecular biological mechanisms of miRNAs in MSC-derived exosomes in intervertebral disc repair.
Collapse
Affiliation(s)
- Han-Shi Wang
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Hai-Ming Yu
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
5
|
Zou X, Zhang X, Han S, Wei L, Zheng Z, Wang Y, Xin J, Zhang S. Pathogenesis and therapeutic implications of matrix metalloproteinases in intervertebral disc degeneration: A comprehensive review. Biochimie 2023; 214:27-48. [PMID: 37268183 DOI: 10.1016/j.biochi.2023.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a common disorder that affects the spine and is a major cause of lower back pain (LBP). The extracellular matrix (ECM) is the structural foundation of the biomechanical properties of IVD, and its degradation is the main pathological characteristic of IDD. Matrix metalloproteinases (MMPs) are a group of endopeptidases that play an important role in the degradation and remodeling of the ECM. Several recent studies have shown that the expression and activity of many MMP subgroups are significantly upregulated in degenerated IVD tissue. This upregulation of MMPs results in an imbalance of ECM anabolism and catabolism, leading to the degradation of the ECM and the development of IDD. Therefore, the regulation of MMP expression is a potential therapeutic target for the treatment of IDD. Recent research has focused on identifying the mechanisms by which MMPs cause ECM degradation and promote IDD, as well as on developing therapies that target MMPs. In summary, MMP dysregulation is a crucial factor in the development of IDD, and a deeper understanding of the mechanisms involved is needed to develop effective biological therapies that target MMPs to treat IDD.
Collapse
Affiliation(s)
- Xiaosong Zou
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Lin Wei
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| |
Collapse
|
6
|
Wang Y, Cheng H, Wang T, Zhang K, Zhang Y, Kang X. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif 2023; 56:e13448. [PMID: 36915968 PMCID: PMC10472537 DOI: 10.1111/cpr.13448] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Low back pain (LBP) is a leading cause of labour loss and disability worldwide, and it also imposes a severe economic burden on patients and society. Among symptomatic LBP, approximately 40% is caused by intervertebral disc degeneration (IDD). IDD is the pathological basis of many spinal degenerative diseases such as disc herniation and spinal stenosis. Currently, the therapeutic approaches for IDD mainly include conservative treatment and surgical treatment, neither of which can solve the problem from the root by terminating the degenerative process of the intervertebral disc (IVD). Therefore, further exploring the pathogenic mechanisms of IDD and adopting targeted therapeutic strategies is one of the current research hotspots. Among the complex pathophysiological processes and pathogenic mechanisms of IDD, oxidative stress is considered as the main pathogenic factor. The delicate balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining the normal function and survival of IVD cells. Excessive ROS levels can cause damage to macromolecules such as nucleic acids, lipids, and proteins of cells, affect normal cellular activities and functions, and ultimately lead to cell senescence or death. This review discusses the potential role of oxidative stress in IDD to further understand the pathophysiological processes and pathogenic mechanisms of IDD and provides potential therapeutic strategies for the treatment of IDD.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Huiguang Cheng
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Tao Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Kun Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yumin Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xin Kang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
7
|
Vernengo A, Bumann H, Kluser N, Soubrier A, Šećerović A, Gewiess J, Jansen JU, Neidlinger-Wilke C, Wilke HJ, Grad S. Chemonucleolysis combined with dynamic loading for inducing degeneration in bovine caudal intervertebral discs. Front Bioeng Biotechnol 2023; 11:1178938. [PMID: 37711456 PMCID: PMC10499327 DOI: 10.3389/fbioe.2023.1178938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
Chemonucleolysis has become an established method of producing whole organ culture models of intervertebral disc (IVD) degeneration. However, the field needs more side-by-side comparisons of the degenerative effects of the major enzymes used in chemonucleolysis towards gaining a greater understanding of how these organ culture models mimic the wide spectrum of characteristics observed in human degeneration. In the current work we induced chemonucleolysis in bovine coccygeal IVDs with 100 µL of papain (65 U/mL), chondroitinase ABC (chABC, 5 U/mL), or collagenase II (col'ase, 0.5 U/mL). Each enzyme was applied in a concentration projected to produce moderate levels of degeneration. After 7 days of culture with daily dynamic physiological loading (0.02-0.2 MPa, 0.2 Hz, 2 h), the cellular, biochemical and histological properties of the IVDs were evaluated in comparison to a PBS-injected control. Papain and collagenase, but not chABC, produced macroscopic voids in the tissues. Compared to day 0 intact IVDs, papain induced the greatest magnitude glycosaminoglycan (GAG) loss compared to chABC and col'ase. Papain also induced the greatest height loss (3%), compared to 0.7%, 1.2% and 0.4% for chABC, col'ase, and PBS, respectively. Cell viability in the region adjacent to papain and PBS-injection remained at nearly 100% over the 7-day culture period, whereas it was reduced to 60%-70% by chABC and col'ase. Generally, enzyme treatment tended to downregulate gene expression for major ECM markers, type I collagen (COL1), type II collagen (COL2), and aggrecan (ACAN) in the tissue adjacent to injection. However, chABC treatment induced an increase in COL2 gene expression, which was significant compared to the papain treated group. In general, papain and col'ase treatment tended to recapitulate aspects of advanced IVD degeneration, whereas chABC treatment captured aspects of early-stage degeneration. Chemonucleolysis of whole bovine IVDs is a useful tool providing researchers with a robust spectrum of degenerative changes and can be utilized for examination of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jan Gewiess
- AO Research Institute Davos, Davos, Switzerland
| | - Jan Ulrich Jansen
- Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany
| | | | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany
| | - Sibylle Grad
- AO Research Institute Davos, Davos, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
8
|
Pang H, Chen S, Klyne DM, Harrich D, Ding W, Yang S, Han FY. Low back pain and osteoarthritis pain: a perspective of estrogen. Bone Res 2023; 11:42. [PMID: 37542028 PMCID: PMC10403578 DOI: 10.1038/s41413-023-00280-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
Low back pain (LBP) is the world's leading cause of disability and is increasing in prevalence more rapidly than any other pain condition. Intervertebral disc (IVD) degeneration and facet joint osteoarthritis (FJOA) are two common causes of LBP, and both occur more frequently in elderly women than in other populations. Moreover, osteoarthritis (OA) and OA pain, regardless of the joint, are experienced by up to twice as many women as men, and this difference is amplified during menopause. Changes in estrogen may be an important contributor to these pain states. Receptors for estrogen have been found within IVD tissue and nearby joints, highlighting the potential roles of estrogen within and surrounding the IVDs and joints. In addition, estrogen supplementation has been shown to be effective at ameliorating IVD degeneration and OA progression, indicating its potential use as a therapeutic agent for people with LBP and OA pain. This review comprehensively examines the relationship between estrogen and these pain conditions by summarizing recent preclinical and clinical findings. The potential molecular mechanisms by which estrogen may relieve LBP associated with IVD degeneration and FJOA and OA pain are discussed.
Collapse
Affiliation(s)
- Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Shihui Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Wenyuan Ding
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
- Hebei Joint International Research Center for Spinal Diseases, 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Sidong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China.
- Hebei Joint International Research Center for Spinal Diseases, 139 Ziqiang Road, Shijiazhuang, 050051, China.
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
9
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
10
|
Li Z, Gao X, Ding W, Li R, Yang S. Asymmetric distribution of Modic changes in patients with lumbar disc herniation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1741-1750. [PMID: 36977942 DOI: 10.1007/s00586-023-07664-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE This study aims to report a new distribution pattern of Modic changes (MCs) in patients with lumbar disc herniation (LDH) and investigate the prevalence, correlative factors and clinical outcomes of asymmetric Modic changes (AMCs). METHODS The study population consisted of 289 Chinese Han patients who were diagnosed with LDH and single-segment MCs from January 2017 to December 2019. Demographic, clinical and imagological information was collected. Lumbar MRI was performed to assess MCs and intervertebral discs. The visual analogue score (VAS) and Oswestry disability index (ODI) were evaluated in patients undergoing surgery preoperatively and at the final follow-up. Correlative factors contributing to AMCs were analysed by multivariate logistic regression. RESULTS The study population included 197 patients with AMCs and 92 patients with symmetric Modic changes (SMCs). The incidence of leg pain (P < 0.001) and surgical treatment (P = 0.027) in the AMC group was higher than that in the SMC group. The VAS of low back pain was lower (P = 0.048), and the VAS of leg pain was higher (P = 0.036) in the AMC group than in the SMC group preoperatively. Multivariate logistic regression analysis revealed that leg pain (OR = 2.169, 95% CI = 1.218 ~ 3.864) and asymmetric LDH (OR = 7.342, 95% CI = 4.170 ~ 12.926) were independently associated with AMCs. The receiver operating characteristic curve showed an AUC of 0.765 (P < 0.001). CONCLUSION AMCs were a more common phenomenon than SMCs in this study. The asymmetric and symmetric distribution of MCs was closely related to LDH position. AMCs were related to leg pain and higher pain levels. Surgery can achieve satisfactory clinical improvement for asymmetric and symmetric MCs.
Collapse
Affiliation(s)
- Zhaohui Li
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Xianda Gao
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Wenyuan Ding
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China.
| | - Ruoyu Li
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Sidong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China.
| |
Collapse
|
11
|
Widmayer F, Neidlinger-Wilke C, Witz F, Jansen JU, Ignatius A, Haffner-Luntzer M, Teixeira GQ. Oestrogen and Vibration Improve Intervertebral Disc Cell Viability and Decrease Catabolism in Bovine Organ Cultures. Int J Mol Sci 2023; 24:ijms24076143. [PMID: 37047116 PMCID: PMC10094023 DOI: 10.3390/ijms24076143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Postmenopausal women are at an increased risk for intervertebral disc degeneration, possibly due to the decrease in oestrogen levels. Low-magnitude, high-frequency vibration (LMHFV) is applied as a therapeutic approach for postmenopausal osteoporosis; however, less is known regarding possible effects on the intervertebral disc (IVD) and whether these may be oestrogen-dependent. The present study investigated the effect of 17β-oestradiol (E2) and LMHFV in an IVD organ culture model. Bovine IVDs (n = 6 IVDs/group) were treated with either (i) E2, (ii) LMHFV or (iii) the combination of E2 + LMHFV for 2 or 14 days. Minor changes in gene expression, cellularity and matrix metabolism were observed after E2 treatment, except for a significant increase in matrix metalloproteinase (MMP)-3 and interleukin (IL)-6 production. Interestingly, LMHFV alone induced cell loss and increased IL-6 production compared to the control. The combination of E2 + LMHFV induced a protective effect against cell loss and decreased IL-6 production compared to the LMHFV group. This indicates possible benefits of oestrogen therapy for the IVDs of postmenopausal women undergoing LMHFV exercises.
Collapse
Affiliation(s)
- Franziska Widmayer
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | | | - Fiona Witz
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Jan U Jansen
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | | | - Graciosa Q Teixeira
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| |
Collapse
|
12
|
Alini M, Diwan AD, Erwin WM, Little CB, Melrose J. An update on animal models of intervertebral disc degeneration and low back pain: Exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine 2023; 6:e1230. [PMID: 36994457 PMCID: PMC10041392 DOI: 10.1002/jsp2.1230] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 02/03/2023] Open
Abstract
Animal models have been invaluable in the identification of molecular events occurring in and contributing to intervertebral disc (IVD) degeneration and important therapeutic targets have been identified. Some outstanding animal models (murine, ovine, chondrodystrophoid canine) have been identified with their own strengths and weaknesses. The llama/alpaca, horse and kangaroo have emerged as new large species for IVD studies, and only time will tell if they will surpass the utility of existing models. The complexity of IVD degeneration poses difficulties in the selection of the most appropriate molecular target of many potential candidates, to focus on in the formulation of strategies to effect disc repair and regeneration. It may well be that many therapeutic objectives should be targeted simultaneously to effect a favorable outcome in human IVD degeneration. Use of animal models in isolation will not allow resolution of this complex issue and a paradigm shift and adoption of new methodologies is required to provide the next step forward in the determination of an effective repairative strategy for the IVD. AI has improved the accuracy and assessment of spinal imaging supporting clinical diagnostics and research efforts to better understand IVD degeneration and its treatment. Implementation of AI in the evaluation of histology data has improved the usefulness of a popular murine IVD model and could also be used in an ovine histopathological grading scheme that has been used to quantify degenerative IVD changes and stem cell mediated regeneration. These models are also attractive candidates for the evaluation of novel anti-oxidant compounds that counter inflammatory conditions in degenerate IVDs and promote IVD regeneration. Some of these compounds also have pain-relieving properties. AI has facilitated development of facial recognition pain assessment in animal IVD models offering the possibility of correlating the potential pain alleviating properties of some of these compounds with IVD regeneration.
Collapse
Affiliation(s)
| | - Ashish D. Diwan
- Spine Service, Department of Orthopedic Surgery, St. George & Sutherland Campus, Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - W. Mark Erwin
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Chirstopher B. Little
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
13
|
Diwan AD, Melrose J. Intervertebral disc degeneration and how it leads to low back pain. JOR Spine 2023; 6:e1231. [PMID: 36994466 PMCID: PMC10041390 DOI: 10.1002/jsp2.1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review was to evaluate data generated by animal models of intervertebral disc (IVD) degeneration published in the last decade and show how this has made invaluable contributions to the identification of molecular events occurring in and contributing to pain generation. IVD degeneration and associated spinal pain is a complex multifactorial process, its complexity poses difficulties in the selection of the most appropriate therapeutic target to focus on of many potential candidates in the formulation of strategies to alleviate pain perception and to effect disc repair and regeneration and the prevention of associated neuropathic and nociceptive pain. Nerve ingrowth and increased numbers of nociceptors and mechanoreceptors in the degenerate IVD are mechanically stimulated in the biomechanically incompetent abnormally loaded degenerate IVD leading to increased generation of low back pain. Maintenance of a healthy IVD is, thus, an important preventative measure that warrants further investigation to preclude the generation of low back pain. Recent studies with growth and differentiation factor 6 in IVD puncture and multi-level IVD degeneration models and a rat xenograft radiculopathy pain model have shown it has considerable potential in the prevention of further deterioration in degenerate IVDs, has regenerative properties that promote recovery of normal IVD architectural functional organization and inhibits the generation of inflammatory mediators that lead to disc degeneration and the generation of low back pain. Human clinical trials are warranted and eagerly anticipated with this compound to assess its efficacy in the treatment of IVD degeneration and the prevention of the generation of low back pain.
Collapse
Affiliation(s)
- Ashish D. Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSydneyNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
14
|
Jehan F, Zarka M, de la Houssaye G, Veziers J, Ostertag A, Cohen‐Solal M, Geoffroy V. New insights into the role of matrix metalloproteinase 3 (MMP3) in bone. FASEB Bioadv 2022; 4:524-538. [PMID: 35949513 PMCID: PMC9353456 DOI: 10.1096/fba.2021-00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
The Matrix Metalloproteinases are important regulators of bone metabolism and can influence bone mass and bone remodeling. We investigate the role of Matrix Metalloproteinase 3 (MMP3) on bone in mice, by using Mmp3 knockout (Mmp3 KO) in the context of estrogen deficiency, and in human, by analyzing the association of promoter polymorphism with bone mineral density in postmenopausal women and with MMP3 expression. We presented evidence in this paper that Mmp3 KO significantly increases trabecular bone mass and trabecular number and does not affect cortical bone thickness. We also found that Mmp3 KO protects from the deleterious effects of ovariectomy on bone mineral density in mice by preventing deterioration of bone microarchitecture. The effect of Mmp3 KO does not involve bone formation parameters but instead acts by inhibition of bone resorption, leading to a reduced bone loss associated to ovariectomy. By studying a human cohort, we found that a polymorphism located in the promoter of the human MMP3 gene is associated with bone mineral density in postmenopausal women and found that MMP3 rs632478 promoter variants are associated with change in promoter activity in transfection experiments. In conclusion MMP3, although weakly expressed in bone cells, could be one of the important regulators of sex hormone action in bone and whose activity could be targeted for therapeutic applications such as in Osteoporosis.
Collapse
Affiliation(s)
- Frédéric Jehan
- Inserm U1132 BIOSCARParis UniversitéParisFrance
- Nantes UniversitéOniris, Univ Angers, CHU Nantes, Inserm, Regenerative Medicine and SkeletonRMeS, UMR 1229F‐44000 NantesFrance
| | | | | | - Joëlle Veziers
- Nantes UniversitéOniris, Univ Angers, CHU Nantes, Inserm, Regenerative Medicine and SkeletonRMeS, UMR 1229F‐44000 NantesFrance
| | | | | | - Valérie Geoffroy
- Inserm U1132 BIOSCARParis UniversitéParisFrance
- Nantes UniversitéOniris, Univ Angers, CHU Nantes, Inserm, Regenerative Medicine and SkeletonRMeS, UMR 1229F‐44000 NantesFrance
| |
Collapse
|
15
|
Irisin Ameliorates Intervertebral Disc Degeneration by Activating LATS/YAP/CTGF Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9684062. [PMID: 35915608 PMCID: PMC9338732 DOI: 10.1155/2022/9684062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022]
Abstract
Unbalanced metabolism of an extracellular matrix (ECM) in nucleus pulposus cells (NPCs) is widely acknowledged as the primary cause of intervertebral disc degeneration (IDD). Irisin, a novel myokine, is cleaved from fibronectin type III domain-containing 5 (FNDC5) and has recently been proven to regulate the metabolism of ECM. However, little is known about its potential on NPCs and the development of IDD. Therefore, this study sought to examine the protective effects and molecular mechanism of irisin on IDD in vivo and in vitro. Decreased expression levels of FNDC5 and anabolism markers (COL2A1 and ACAN) but increased levels of catabolism markers (ADAMTS4) were found in degenerative nucleus pulposus (NP) tissues. In a punctured-induced rat IDD model, irisin treatment was found to significantly slow the development of IDD, and in TNF-α-stimulated NPCs, irisin treatment partly reversed the disorder of ECM metabolism. In mechanism, RNA-seq results suggested that irisin treatment affected the Hippo signaling pathway. Further studies revealed that with irisin treatment, the phosphorylation levels of key factors (LATS and YAP) were downregulated, while the expression level of CTGF was upregulated. Moreover, CTGF knockdown partially eliminated the protective effects of irisin on the metabolism of ECM in NPCs, including inhibiting the anabolism and promoting the catabolism. Taken together, this study demonstrated that the expression levels of FNDC5 were decreased in degenerative NP tissues, while irisin treatment promoted the anabolism, inhibited the catabolism of the ECM in NPCs, and delayed the progression of IDD via LATS/YAP/CTGF signaling. These results shed light on the protective actions of irisin on NPCs, leading to the development of a novel therapeutic target for treating IDD.
Collapse
|
16
|
Comparisons between needle puncture and chondroitinase ABC to induce intervertebral disc degeneration in rabbits. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2788-2800. [PMID: 35739423 DOI: 10.1007/s00586-022-07287-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE This study aimed to compare the effect of needle puncture and chondroitinase ABC (ChABC) injection on inducing intervertebral disc (IVD) degeneration (IVDD) in rabbits. METHODS Sixteen New Zealand white rabbits were used in this study. Briefly, the rabbits were divided into four groups. In the annulus fibrosis (AF) needle puncture group, a 16-G needle was used to puncture the L5-6 and L6-7 IVDs, while in the sham group, these IVDs were not punctured. In the ChABC group, 30 μL 0.5 Unit/mL ChABC was injected into L5-6 and L6-7 IVDs using a 26-G needle, while in the vehicle group, these IVDs were injected with 30 μL phosphate-buffered saline (PBS). X-ray and MRI scans were performed at the 4th, 12th and 16th weeks postoperatively. Histological, immunohistochemical and biochemical analyses were performed at the 16th week postoperatively. RESULTS Both needle puncture and ChABC successfully established IVDD in rabbits at 4th, 12th and 16th weeks, confirmed by X-ray and MRI scan. The progression of IVDD went in a time-dependent manner. The IVDD in the ChABC group was less severe than in the needle puncture group throughout the study. Aggrecan and type II collagen significantly decreased, while tumor necrosis factor-α and superoxide dismutase 2 increased in the needle puncture and ChABC groups, compared with the sham and PBS groups. CONCLUSIONS Both AF needle puncture and ChABC injection can successfully induce IVDD in rabbits. Compared with ChABC injection, AF needle puncture can induce more severe IVDD.
Collapse
|
17
|
Costăchescu B, Niculescu AG, Teleanu RI, Iliescu BF, Rădulescu M, Grumezescu AM, Dabija MG. Recent Advances in Managing Spinal Intervertebral Discs Degeneration. Int J Mol Sci 2022; 23:6460. [PMID: 35742903 PMCID: PMC9223374 DOI: 10.3390/ijms23126460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Low back pain (LBP) represents a frequent and debilitating condition affecting a large part of the global population and posing a worldwide health and economic burden. The major cause of LBP is intervertebral disc degeneration (IDD), a complex disease that can further aggravate and give rise to severe spine problems. As most of the current treatments for IDD either only alleviate the associated symptoms or expose patients to the risk of intraoperative and postoperative complications, there is a pressing need to develop better therapeutic strategies. In this respect, the present paper first describes the pathogenesis and etiology of IDD to set the framework for what has to be combated to restore the normal state of intervertebral discs (IVDs), then further elaborates on the recent advances in managing IDD. Specifically, there are reviewed bioactive compounds and growth factors that have shown promising potential against underlying factors of IDD, cell-based therapies for IVD regeneration, biomimetic artificial IVDs, and several other emerging IDD therapeutic options (e.g., exosomes, RNA approaches, and artificial intelligence).
Collapse
Affiliation(s)
- Bogdan Costăchescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
| | - Raluca Ioana Teleanu
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania;
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Florin Iliescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Marius Gabriel Dabija
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
18
|
Correlation Analysis between Tamoxifen and Lumbar Intervertebral Disc Degeneration: A Retrospective Case-Control Study. Pain Res Manag 2022; 2022:3330260. [PMID: 35685675 PMCID: PMC9173976 DOI: 10.1155/2022/3330260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
Objectives To investigate the correlation between tamoxifen (TAM) and lumbar intervertebral disc (IVD) degeneration (IVDD). Methods The patients who visited the department of spine surgery from January 2015 to December 2020 were retrospectively reviewed. Those with a history of breast cancer surgery were identified and their data were collected. These data included patients' age, body mass index (BMI), menstrual history, postoperative history, drug treatment plan, and imaging data. The participants were divided into the TAM group and the non-TAM group. Lumbar IVDD was assessed by lumbar lordosis (LL), vertebral CT density, lumbar disc height index (DHI), Modic changes, and modified Pfirrmann grading score. SPSS 20 was used for statistical analysis. Results A total of 75 patients were included in this study, 46 patients in the TAM group and 29 patients in the non-TAM group. No significant differences were present in age, BMI, postoperative history, LL, and vertebral CT density between the two groups. The DHI of L1/2 and L2/3 in the TAM group was lower compared to the non-TAM group (P=0.038 and P=0.034, respectively), while comparisons regarding the DHI of L3/4, L4/5, and L5/S1, and the average DHI between TAM and non-TAM groups were not significant. The modified Pfirrmann grading scores of the L1/2 and L2/3 IVDs in the TAM group were higher than those in the non-TAM group (P=0.004 and P=0.025, respectively). Comparisons of L3/4, L4/5, and L5/S1 between the two groups were not significant. The comparisons regarding the occurrence of Modic changes did not show a significant difference between the TAM and non-TAM groups. Conclusions This study indicates that there might be some positive correlation between TAM use and lumbar IVDD. In particular, the degeneration of L1/2 and L2/3 has shown a correlation with TAM use.
Collapse
|
19
|
Wang F, Shan H, Song G, Chen S, Zhang C, Liu Y, Wu T. 17β-Estradiol attenuates inflammation and tendon degeneration in a rat model of Achilles tendinitis. Immunopharmacol Immunotoxicol 2022; 44:556-564. [PMID: 35404181 DOI: 10.1080/08923973.2022.2065639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION 17β-Estradiol (E2) is an immune-regulatory agent with anti-inflammatory effects. However, it is still unknown whether E2 exerts pharmacological properties against Achilles tendinitis (AT). This study aims to investigate the effects of E2 on AT and its underlying mechanisms. MATERIALS AND METHODS The established model of Achilles tendinitis was intraperitoneally injected with E2 (10, 20, or 30 μg/kg/d). After 8 weeks, biomechanical properties of the Achilles tendon were determined. Hydroxyproline content and tendon degeneration-related biomarkers were determined. The levels of inflammatory cytokines and apoptotic-related biomarkers in tendon tissues were determined. Furthermore, western blotting was determined to detect the expressions of ER-α and the PI3K/Akt pathway in tendon tissues. RESULTS E2 relieved AT-related symptoms in a dose-dependent manner. E2 ameliorated tendon degeneration by regulating tendon degeneration-related biomarkers (e.g., collagen type I and III, Decorin (DCN), and tenascin-C). Besides, treatment with E2 suppressed inflammatory cytokines and increased anti-inflammatory cytokines. Treatment with E2 also regulated cell apoptosis in tendon tissues. The underlying mechanism study revealed that treatment with E2 activated ER-α and upregulated the PI3K/Akt pathway. CONCLUSION The regulatory effects of E2 on inflammation and tendon degeneration in a rat model of AT were associated with the ER-α and the PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200000, China
| | - Haojie Shan
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200000, China
| | - Guoxun Song
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200000, China
| | - Song Chen
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200000, China
| | - Chengyuan Zhang
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200000, China
| | - Yingjie Liu
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200000, China
| | - Tianyi Wu
- Department of Orthopaedical Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200000, China
| |
Collapse
|
20
|
BRD4 Inhibition Suppresses Senescence and Apoptosis of Nucleus Pulposus Cells by Inducing Autophagy during Intervertebral Disc Degeneration: An In Vitro and In Vivo Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9181412. [PMID: 35308165 PMCID: PMC8933081 DOI: 10.1155/2022/9181412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/10/2021] [Accepted: 02/06/2022] [Indexed: 01/10/2023]
Abstract
Intervertebral disc degeneration (IDD) is the most common chronic skeletal muscle degeneration disease. Although the underlying mechanisms remain unclear, nucleus pulposus (NP) autophagy, senescence, and apoptosis are known to play a critical role in this process. Previous studies suggest that bromodomain-containing protein 4 (BRD4) promotes senescent and apoptotic effects in several age-related degenerative diseases. It is not known, however, if BRD4 inhibition is protective in IDD. In this study, we explored whether BRD4 influenced IDD. In human clinical specimens, the BRD4 level was markedly increased with the increasing Pfirrmann grade. At the cellular level, BRD4 inhibition prevented IL-1β-induced senescence and apoptosis of NP cells and activated autophagy via the AMPK/mTOR/ULK1 signaling pathway. Inhibition of autophagy by 3-methyladenine (3-MA) partially reversed the antisenescence and antiapoptotic effects of BRD4. In vivo, BRD4 inhibition attenuated IDD. Taken together, the results of this study showed that BRD4 inhibition reduced NP cell senescence and apoptosis by induced autophagy, which ultimately alleviated IDD. Therefore, BRD4 may serve as a novel potential therapeutic target for the treatment of IDD.
Collapse
|
21
|
Shi Z, He J, He J, Xu Y. High hydrostatic pressure (30 atm) enhances the apoptosis and inhibits the proteoglycan synthesis and extracellular matrix level of human nucleus pulposus cells via promoting the Wnt/β-catenin pathway. Bioengineered 2022; 13:3070-3081. [PMID: 35100096 PMCID: PMC8974124 DOI: 10.1080/21655979.2022.2025518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrostatic pressure is known to regulate bovine nucleus pulposus cell metabolism, but its mechanism in human nucleus pulposus cells (HNPCs) remains obscure, which attracts our attention and becomes the focus in this study. Specifically, HNPCs were treated with SKL2001 (an agonist in the Wnt/β-catenin pathway) or XAV-939 (an inhibitor of the Wnt/β-catenin pathway), and pressurized under the hydrostatic pressure of 1, 3 and 30 atm. The viability, apoptosis and proteoglycan synthesis of treated HNPC were assessed by CCK-8, flow cytometry and radioisotope incorporation assays. The levels of extracellular matrix, Collagen-II, matrix metalloproteinase 3 (MMP3), Wnt-3a and β-catenin were measured by toluidine blue staining, immunocytochemistry and Western blot. Appropriate hydrostatic stimulation (3 atm) enhanced the viability and proteoglycan synthesis yet inhibited the apoptosis of HNPCs, which also up-regulated extracellular matrix and Collagen-II levels, and down-regulated MMP3, Wnt-3a and β-catenin levels in treated HNPCs. Furthermore, high hydrostatic pressure (30 atm) inhibited the viability and proteoglycan synthesis, and promoted the morphological change and apoptosis of HNPCs, which also down-regulated extracellular matrix and Collagen-II levels and up-regulated MMP3, Wnt-3a and β-catenin levels. Besides, SKL2001 reversed the effects of hydrostatic pressure (3 atm) on inhibiting Wnt-3a, β-catenin, and MMP3 levels and promoting Collagen-II level in HNPC; whereas, XAV-939 reversed the effects of high hydrostatic pressure (30 atm) on promoting MMP3, Wnt-3a, and β-catenin levels and inhibiting Collagen-II level and proteoglycan synthesis of HNPCs. Collectively, high hydrostatic pressure promoted the apoptosis and inhibited the viability of HNPCs via activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zongting Shi
- Department of Spine, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jun He
- Department of Orthopedics, Zhejiang Hospital, Hangzhou City, Zhejiang Province, China
| | - Jian He
- Department of Orthopedics, Zhejiang Hospital, Hangzhou City, Zhejiang Province, China
| | - Yuan Xu
- Department of Orthopedics, Zhejiang Hospital, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
22
|
Du L, Li X, Gao Q, Yuan P, Sun Y, Chen Y, Huang B, Deng Y, Wang B. LncRNA nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) aggravates nucleus pulposus cell apoptosis and extracellular matrix degradation. Bioengineered 2022; 13:2746-2762. [PMID: 35094651 PMCID: PMC8973659 DOI: 10.1080/21655979.2021.2016087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Emerging reports uncover that long noncoding RNAs (lncRNAs) help regulate intervertebral disc degeneration (IVDD). Here, we probe the function of lncRNA nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) in IVDD. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was applied to verify the expression of NR2F1-AS1 and miR-145-5p in nucleus pulposus (NP) tissues from IVDD patients or NP cells dealt with IL-1β or TNF-α. Flow cytometry or the TdT-mediated dUTP nick end labeling (TUNEL) assay was performed to validate the apoptosis of NP cells with selective regulation of NR2F1-AS1 and miR-145-5p. ECM-related genes, FOXO1, Bax, and Bcl2 were evaluated by qRT-PCR or Western blot (WB). The targeted relationships between NR2F1-AS1 and miR-145-5p, miR-145-5p and FOXO1 were testified by the dual-luciferase reporter assay and the RNA immunoprecipitation (RIP) assay. Our outcomes substantiated that NR2F1-AS1 was up-regulated, while miR-145-5p was down-regulated in intervertebral disc tissues of IVDD patients or NP cells treated with IL-1β or TNF-α. Besides, overexpressing NR2F1-AS1 intensified ECM degradation and NP cell apoptosis induced by IL-1β, while knocking down NR2F1-AS1 or up-regulating miR-145-5p reversed IL-1β-mediated effects in NP cells. Meanwhile, NR2F1-AS1 choked miR-145-5p and abated its effects in NP cells. This study confirms that NR2F1-AS1 modulates IVDD progression by up-regulating the FOXO1 pathway through the sponge of miR-145-5p as a competitive endogenous RNA (ceRNA).
Collapse
Affiliation(s)
- Longlong Du
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuefeng Li
- Department of Traditional Chinese and Western Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Qimeng Gao
- Department of Traditional Chinese and Western Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Puwei Yuan
- Department of Traditional Chinese and Western Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Yindi Sun
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yingpu Chen
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bo Huang
- Department of Orthopaedic, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Yu Deng
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Baohui Wang
- Pain Area of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
23
|
Ohnishi T, Iwasaki N, Sudo H. Causes of and Molecular Targets for the Treatment of Intervertebral Disc Degeneration: A Review. Cells 2022; 11:cells11030394. [PMID: 35159202 PMCID: PMC8834258 DOI: 10.3390/cells11030394] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a pathological condition that can lead to intractable back pain or secondary neurological deficits. There is no fundamental cure for this condition, and current treatments focus on alleviating symptoms indirectly. Numerous studies have been performed to date, and the major strategy for all treatments of IVDD is to prevent cell loss due to programmed or regulated cell death. Accumulating evidence suggests that several types of cell death other than apoptosis, including necroptosis, pyroptosis, and ferroptosis, are also involved in IVDD. In this study, we discuss the molecular pathway of each type of cell death and review the literature that has identified their role in IVDD. We also summarize the recent advances in targeted therapy at the RNA level, including RNA modulations through RNA interference and regulation of non-coding RNAs, for preventing cell death and subsequent IVDD. Therefore, we review the causes and possible therapeutic targets for RNA intervention and discuss the future direction of this research field.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Correspondence:
| |
Collapse
|
24
|
Hemati K, Pourhanifeh MH, Fatemi I, Hosseinzadeh A, Mehrzadi S. Anti-degenerative effect of melatonin on intervertebral disc: protective contribution against inflammation, oxidative stress, apoptosis, and autophagy. Curr Drug Targets 2022; 23:711-718. [PMID: 35034592 DOI: 10.2174/1389450123666220114151654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of lower back pain. Although the etiology of IVD degeneration (IVDD) is unclear, excessive oxidative stress, inflammation and apoptosis and disruption of autophagy play important role in the pathogenesis of IVDD. Therefore, finding a solution to mitigate these processes could stop or reduce the development of IVDD. Melatonin, a powerful antioxidant, plays an important role in regulating cartilage tissue hemostasis. Melatonin inhibits destruction of extracellular matrix (ECM) of disc. Melatonin preserves ECM contents including sox-9, aggrecan, and collagen II through inhibiting matrix degeneration enzymes such as MMP-13. These protective effects may be mediated by the inhibition of oxidative stress, inflammation and apoptosis, and regulation of autophagy in IVD cells.
Collapse
Affiliation(s)
- Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Darawsha A, Trachtenberg A, Levy J, Sharoni Y. The Protective Effect of Carotenoids, Polyphenols, and Estradiol on Dermal Fibroblasts under Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10122023. [PMID: 34943127 PMCID: PMC8698602 DOI: 10.3390/antiox10122023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Skin ageing is influenced by several factors including environmental exposure and hormonal changes. Reactive oxygen species (ROS), which mediate many of the effects of these factors, induce inflammatory processes in the skin and increase the production of matrix metalloproteinases (MMPs) in dermal fibroblasts, which leads to collagen degradation. Several studies have shown the protective role of estrogens and a diet rich in fruits and vegetables on skin physiology. Previous studies have shown that dietary carotenoids and polyphenols activate the cell’s antioxidant defense system by increasing antioxidant response element/Nrf2 (ARE/Nrf2) transcriptional activity and reducing the inflammatory response. The aim of the current study was to examine the protective effect of such dietary-derived compounds and estradiol on dermal fibroblasts under oxidative stress induced by H2O2. Human dermal fibroblasts were used to study the effect of H2O2 on cell number and apoptosis, MMP-1, and pro-collagen secretion as markers of skin damage. Treatment of cells with H2O2 led to cell death, increased secretion of MMP-1, and decreased pro-collagen secretion. Pre-treatment with tomato and rosemary extracts, and with estradiol, reversed the effects of the oxidative stress. This was associated with a reduction in intracellular ROS levels, probably through the measured increased activity of ARE/Nrf2. Conclusions: This study indicates that carotenoids, polyphenols, and estradiol protect dermal fibroblasts from oxidative stress-induced damage through a reduction in ROS levels.
Collapse
|
26
|
Zhao Y, Wang H, Li Z, Wang Z, Huo Y, Yang S, Ding W. Lumbar Disk Degeneration in Female Patients with and without Ovariectomy: A Case-Control Study. World Neurosurg 2021; 156:68-75. [PMID: 34571241 DOI: 10.1016/j.wneu.2021.09.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We sought to provide clinical evidence of the potential influence of ovariectomy (OVX) on intervertebral disk degeneration. METHODS We retrospectively reviewed patients with a history of OVX who visited our hospital for lower back pain. In addition, 60 age-matched patients without OVX were randomly selected as control subjects. Next, the following demographic data were recorded and compared among groups: age, body mass index, duration of OVX, history of smoking, alcohol use, hypertension, diabetes, cardiocerebrovascular disease, hyperlipemia, osteoporosis, and degenerative spondylolisthesis. Next, the severity of lumbar disk degeneration, evaluated by the modified Pfirrmann grading system, was compared between groups. Data analyses were performed with SPSS 20.0. software. RESULTS A total of 15 OVX (unilateral, n = 10; bilateral, n = 5) patients were included with a mean age of 62.40 ± 10.64. The average durations of OVX were 21.33 ± 9.24 years. There existed no remarkable intergroup differences in the demographic data (P > 0.05). Overall, the average Pfirrmann grading scores from L1/2 to L5/S1 presented as L1/2 < L2/3 < L3/4 ≤ L5/S1 ≤ L4/5, with no marked differences between groups (P > 0.05). Nevertheless, OVX groups displayed a relatively higher score at each level than non-OVX group. Moreover, the scores from L3/4 to L5/S1 were higher in the bilateral OVX group relative to the unilateral OVX group while they were equal at L1/2 and L2/3. CONCLUSIONS Our findings demonstrated that OVX contributed to the progression of lumbar disk degeneration to some extent, but it appeared to be a long-term event.
Collapse
Affiliation(s)
- Yachao Zhao
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Hebei Province, P. R. China
| | - Haidong Wang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Hebei Province, P. R. China
| | - Zhaohui Li
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Hebei Province, P. R. China
| | - Zhiwei Wang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Hebei Province, P. R. China
| | - Yachong Huo
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Hebei Province, P. R. China
| | - Sidong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Hebei Province, P. R. China
| | - Wenyuan Ding
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Hebei Province, P. R. China.
| |
Collapse
|
27
|
Intervertebral Disc Degeneration Induced by Needle Puncture and Ovariectomy: A Rat Coccygeal Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5510124. [PMID: 34055972 PMCID: PMC8147532 DOI: 10.1155/2021/5510124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Objectives To establish a novel animal model of intervertebral disc degeneration (IVDD) in rats and to investigate the effect of 17β-estradiol (E2) intervention in this model. Methods This study was divided into two parts: animal model (four groups: Sham, ovariectomy (OVX), Puncture, and OVX+Puncture; three-time points: 4, 8, and 12 weeks; three female rats/group/time point) and drug intervention (Sham, OVX+Puncture+corn oil, and OVX+Puncture+E2; three female rats/group). The rats were analyzed by micromagnetic resonance imaging (MRI), hematoxylin and eosin (HE) staining, and safranin-O staining. Results MRI and histological scores significantly differed among the four groups at the three-time points (all P < 0.05). IVDD progressed with time in the OVX, Puncture, and OVX+Puncture groups (all P < 0.05). The changes were the most obvious in the OVX+Puncture group. In the E2 intervention part, the Veh group had the worst MRI signals and histological scores (P < 0.05). The MRI scores in the E2 group were less obvious compared to the Sham group (P > 0.05). Also, the histological scores were significantly different between the Sham and E2 groups (P < 0.05). Conclusions The combination of ovariectomy and needle puncture can synergically induce IVDD in rat coccygeal discs. Estrogen treatment can effectively ameliorate IVDD progression in the newly established IVDD models.
Collapse
|
28
|
He J, Yang J, Shen T, He J. Overexpression of long non-coding RNA XIST promotes IL-1β-induced degeneration of nucleus pulposus cells through targeting miR-499a-5p. Mol Cell Probes 2021; 57:101711. [PMID: 33722663 DOI: 10.1016/j.mcp.2021.101711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/07/2021] [Accepted: 03/08/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Long non-coding RNA X-interactive specific transcript (XIST) is implicated in many diseases. However, its role and interaction with microRNA (miR)-499a-5p in intervertebral disc degeneration (IDD) remained unclear. METHODS Nucleus pulposus (NP) tissue samples were collected and nucleus pulposus cells (NPCs) were isolated for Interleukin-1β (IL-1β) treatment and identification. XIST and miR-499a-5p expressions in the tissue were measured with quantitative real-time polymerase chain reaction (qRT-PCR). After IL-1β treatment, NPC apoptosis was detected by flow cytometry. The potential binding sites of XIST and miR-499a-5p were predicted by starBase and confirmed by dual-luciferase reporter assay. Relative expressions of tissue inhibitor of metalloproteinases-3 (TIMP-3), Matrix metalloproteinases-3 (MMP-3), MMP-13, Collagen II, Aggrecan and apoptosis-related proteins (Bcl-2 associated X protein, Bax; B-cell lymphoma 2, Bcl-2; cleaved caspase-3) were measured by qRT-PCR and Western blot as needed. RESULTS XIST expression was upregulated in the NP tissues of patients with IDD, and IL-1β treatment resulted in a degradation of NPCs. Overexpressed XIST promoted the effects of IL-1β on increasing NPC apoptosis and expressions of XIST, MMP-3, MMP-13, Bax and Cleaved caspase-3, but down-regulated TIMP-3, Collagen II, Aggrecan and Bcl-2 expressions. Silencing XIST, however, showed the opposite effects to its overexpression. MiR-499a-5p expression was downregulated in NP tissues of IDD patients and could bind with XIST, while its upregulation reversed the effects of overexpressed XIST in the IL-1β-treated NPCs. CONCLUSION Overexpressed XIST caused NPC degeneration through promoting apoptosis and extracellular matrix degradation of IL-1β-treated NPCs through targeting miR-499a-5p, and therefore can serve as a potential treatment for IDD.
Collapse
Affiliation(s)
- Jun He
- Department of Orthopedics, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China
| | - Jing Yang
- Department of Cardiology, Zhejiang Hospital, Xihu District, Hangzhou, Zhejiang, 310013, China
| | - Tulan Shen
- Outpatient Department, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China
| | - Jian He
- Department of Orthopedics, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China.
| |
Collapse
|
29
|
Kamali A, Ziadlou R, Lang G, Pfannkuche J, Cui S, Li Z, Richards RG, Alini M, Grad S. Small molecule-based treatment approaches for intervertebral disc degeneration: Current options and future directions. Theranostics 2021; 11:27-47. [PMID: 33391459 PMCID: PMC7681102 DOI: 10.7150/thno.48987] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Low back pain (LBP) is a major reason for disability, and symptomatic intervertebral disc (IVD) degeneration (IDD) contributes to roughly 40% of all LBP cases. Current treatment modalities for IDD include conservative and surgical strategies. Unfortunately, there is a significant number of patients in which conventional therapies fail with the result that these patients remain suffering from chronic pain and disability. Furthermore, none of the current therapies successfully address the underlying biological problem - the symptomatic degenerated disc. Both spinal fusion as well as total disc replacement devices reduce spinal motion and are associated with adjacent segment disease. Thus, there is an unmet need for novel and stage-adjusted therapies to combat IDD. Several new treatment options aiming to regenerate the IVD are currently under investigation. The most common approaches include tissue engineering, growth factor therapy, gene therapy, and cell-based treatments according to the stage of degeneration. Recently, the regenerative activity of small molecules (low molecular weight organic compounds with less than 900 daltons) on IDD was demonstrated. However, small molecule-based therapy in IDD is still in its infancy due to limited knowledge about the mechanisms that control different cell signaling pathways of IVD homeostasis. Small molecules can act as anti-inflammatory, anti-apoptotic, anti-oxidative, and anabolic agents, which can prevent further degeneration of disc cells and enhance their regeneration. This review pursues to give a comprehensive overview of small molecules, focusing on low molecular weight organic compounds, and their potential utilization in patients with IDD based on recent in vitro, in vivo, and pre-clinical studies.
Collapse
Affiliation(s)
- Amir Kamali
- AO Research Institute Davos, Davos, Switzerland
| | - Reihane Ziadlou
- AO Research Institute Davos, Davos, Switzerland
- Department of Biomedical Engineering, Medical Faculty of the University of Basel, Basel, CH
| | - Gernot Lang
- Department of Orthopaedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - Shangbin Cui
- AO Research Institute Davos, Davos, Switzerland
- The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
30
|
Tang N, Dong Y, Liu J, Zhao H. Silencing of Long Non-coding RNA NEAT1 Upregulates miR-195a to Attenuate Intervertebral Disk Degeneration via the BAX/BAK Pathway. Front Mol Biosci 2020; 7:147. [PMID: 32850952 PMCID: PMC7433405 DOI: 10.3389/fmolb.2020.00147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background/Aims An increasing body of evidence has demonstrated that long non-coding RNAs (lncRNAs) play a vital regulatory role in intervertebral disk degeneration (IVDD). Nucleus enriched abundant transcript 1 (NEAT1), a novel cancer-related lncRNA, is associated with many malignancies, including ovarian cancer, and esophageal squamous cell carcinoma. Nevertheless, the role of NEAT1 in the progression of IVDD remains to be studied. Here, we explored the effect of NEAT1 on the progression of IVDD and the mechanisms involved. Methods An IVDD model was constructed in SD rats in vivo, and degeneration was induced by advanced glycation end product (AGE) in human nucleus pulposus cells (HNPC) in vitro. Quantitative real-time PCR was performed to detect the relative NEAT1 and miR-195a expressions and further confirmed the relationship between NEAT1 and miR-195a. Cell apoptosis was evaluated by TUNEL assay. The related mechanisms were explored by Western blot assay. Results The relative NEAT1 expression was significantly upregulated in the IVDD rat model and the denatured HNPC. Silencing of NEAT1 expression in HNPC significantly promoted the Collagen II and TIMP-1 expression induced by AGE while greatly suppressing the expressions of MMP-3 and cleaved caspase-3. Besides, downregulation of NEAT1 obviously reversed the AGE-induced apoptosis in HNPC. More interestingly, these effects of NEAT1 knockout on HNPC were largely reversed by silencing of miR-195a or overexpression of BAX under the AGE treatment. Mechanically, the direct combination of NEAT1 with miR-195a resulted in upregulation of MMP-3, cleaved caspase-3, BAX, and BAK, as well as downregulation of Collagen II and TIMP-1, which are associated with EMT and apoptosis. We also demonstrated similar results in the in vivo experiments. Conclusion NEAT1 played its role in IVDD progression via partly by mediating the miR-195 expression and might be used as a potential target for IVDD therapy.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yulei Dong
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaming Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Zhao
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
31
|
17β-Estradiol Prevents Extracellular Matrix Degradation by Downregulating MMP3 Expression via PI3K/Akt/FOXO3 Pathway. Spine (Phila Pa 1976) 2020; 45:292-299. [PMID: 31809475 DOI: 10.1097/brs.0000000000003263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro studies of the role of 17β-estradiol (E2) and its possible targets in intervertebral disc degeneration (IDD). OBJECTIVE To define the regulatory role of E2 in IDD and the potential mechanisms. SUMMARY OF BACKGROUND DATA IDD has intricate etiology that is influenced by multiple risk factors. However, the underlying molecular mechanisms of occurrence and progression of IDD are not well elucidated. The degradation of extracellular matrix (ECM) has been extensively observed in IDD. E2 was found to inhibit ECM degradation in human nuleus pulposus cells (HNPCs), but the molecular mechanism remained to be determined. METHODS Western blot and qPCR was performed to quantify the expression of target proteins in HNPCs. Luciferase reporter gene assay was applied to detect the effects of E2 and forkhead box O-3 (FOXO3) on matrix metalloproteinases (MMP)-3 promoter activity. Chromatin immunoprecipitation assay analyzed the binding of FOXO3 to MMP-3 and the effect of E2 on this process. RESULTS We identified the upregulation of collagen II and aggrecan by E2 independent of time and concentration. And E2 downregulated MMP-3 expression in human nucleus pulposus cells. The phosphorylation of FOXO3 led to the reduction of MMP-3 promoter activity. Furthermore, 17β-estradiol-induced the activation of PI3K/Akt pathway is required for FOXO3 phosphorylated. CONCLUSION E2 prevents the degradation of ECM by upregulating collagen II and aggrecan expression via reducing MMP-3 expression in HNPCs, and PI3K/Akt/FOXO3 pathway is dispensable for MMP-3 downregulated. Therefore, E2 protects against IDD by preventing ECM degradation. LEVEL OF EVIDENCE 3.
Collapse
|
32
|
Jin LY, Song XX, Li XF. The role of estrogen in intervertebral disc degeneration. Steroids 2020; 154:108549. [PMID: 31812622 DOI: 10.1016/j.steroids.2019.108549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a main contributor to low back and radicular pain, which imposes heavy economic burdens on society. However, the etiology and mechanism of IVDD are complex and still not completely clear. In particular, the role of estrogen in IVDD has not received much attention in recent research, although estrogen plays a crucial role in the metabolic dysfunction of others musculoskeletal structures, such as bone, muscle, and tendon. In this review, we attempt to describe the role of estrogen in IVDD and to summarize the proposed mechanisms in vivo and in vitro, as well as, to outline several interesting questions in this field.
Collapse
Affiliation(s)
- Lin-Yu Jin
- Department of Orthopaedic Surgery, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1058, Huan Zheng Bei Rd, Shanghai 200444, China; Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Xiao-Xing Song
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Lu, Shanghai 200025, China.
| | - Xin-Feng Li
- Department of Orthopaedic Surgery, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 1058, Huan Zheng Bei Rd, Shanghai 200444, China.
| |
Collapse
|
33
|
Puerarin Relieved Compression-Induced Apoptosis and Mitochondrial Dysfunction in Human Nucleus Pulposus Mesenchymal Stem Cells via the PI3K/Akt Pathway. Stem Cells Int 2020; 2020:7126914. [PMID: 32399049 PMCID: PMC7201526 DOI: 10.1155/2020/7126914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/04/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Puerarin (PUR), an 8-C-glucoside of daidzein extracted from Pueraria plants, is closely related to autophagy, reduced reactive oxygen species (ROS) production, and anti-inflammatory effects, but its effects on human nucleus pulposus mesenchymal stem cells (NPMSCs) have not yet been identified. In this study, NPMSCs were cultured in a compression apparatus to simulate the microenvironment of the intervertebral disc under controlled pressure (1.0 MPa), and we found that cell viability was decreased and apoptosis level was gradually increased as compression duration was prolonged. After PUR administration, apoptosis level evaluated by flow cytometry and caspase-3 activity was remitted, and protein levels of Bas as well as cleaved caspase-3 were decreased, while elevated Bcl-2 level was identified. Moreover, ATP production detection, ROS, and JC-1 fluorography as well as quantitative analysis suggested that PUR could attenuate intercellular ROS accumulation and mitochondrial dysfunction. Besides, the rat tail compression model was utilized, which indicated that PUR could restore impaired nucleus pulposus degeneration induced by compression. The PI3K/Akt pathway was identified to be deactivated after compression stimulation by western blot, and PUR could rescue the phosphorylation of Akt, thus reactivating the pathway. The effects of PUR, such as antiapoptosis, cell viability restoration, antioxidation, and mitochondrial maintenance, were all counteracted by application of the PI3K/Akt pathway inhibitor (LY294002). Summarily, PUR could alleviate compression-induced apoptosis and cell death of human NPMSCs in vitro as well as on the rat compression model and maintain intracellular homeostasis by stabilizing mitochondrial membrane potential and attenuating ROS accumulation through activating the PI3K/Akt pathway.
Collapse
|