1
|
Li J, Lin M, Xie Z, Chen L, Qi J, Yu B. Target Cell Extraction and Spectrum-Effect Relationship Coupled with BP Neural Network Classification for Screening Potential Bioactive Components in Ginseng Extract with a Protective Effect against Myocardial Damage. Molecules 2024; 29:2028. [PMID: 38731522 PMCID: PMC11085743 DOI: 10.3390/molecules29092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiovascular disease has become a common ailment that endangers human health, having garnered widespread attention due to its high prevalence, recurrence rate, and sudden death risk. Ginseng possesses functions such as invigorating vital energy, enhancing vein recovery, promoting body fluid and blood nourishment, calming the nerves, and improving cognitive function. It is widely utilized in the treatment of various heart conditions, including palpitations, chest pain, heart failure, and other ailments. Although numerous research reports have investigated the cardiovascular activity of single ginsenoside, there remains a lack of systematic research on the specific components group that predominantly contribute to cardiovascular efficacy in ginseng medicinal materials. In this research, the spectrum-effect relationship, target cell extraction, and BP neural network classification were used to establish a rapid screening system for potential active substances. The results show that red ginseng extract (RGE) can improve the decrease in cell viability and ATP content and inhibit the increase in ROS production and LDH release in OGD-induced H9c2 cells. A total of 70 ginsenosides were identified in RGE using HPLC-Q-TOF-MS/MS analysis. Chromatographic fingerprints were established for 12 batches of RGE by high-performance liquid chromatography (HPLC). A total of 36 common ingredients were found in 12 batches of RGE. The cell viability, ATP, ROS, and LDH of 12 batches RGE were tested to establish gray relationship analysis (GRA) and partial least squares discrimination analysis (PLS-DA). BP neural network classification and target cell extraction were used to narrow down the scope of Spectral efficiency analysis and screen the potential active components. According to the cell experiments, RGE can improve the cell viability and ATP content and reduce the oxidative damage. Then, seven active ingredients, namely, Ginsenoside Rg1, Rg2, Rg3, Rb1, Rd, Re, and Ro, were screened out, and their cardiovascular activity was confirmed in the OGD model. The seven ginsenosides were the main active substances of red ginseng in treating myocardial injury. This study offers a reference for quality control in red ginseng and preparations containing red ginseng for the management of cardiovascular diseases. It also provides ideas for screening active ingredients of the same type of multi-pharmacologically active traditional Chinese medicines.
Collapse
Affiliation(s)
- Junyi Li
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Min Lin
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zexin Xie
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Liwenyu Chen
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Boyang Yu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (J.L.); (M.L.); (Z.X.); (L.C.)
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Wang M, Yan M, Tan L, Zhao X, Liu G, Zhang Z, Zhang J, Gao H, Qin W. Non-coding RNAs: targets for Chinese herbal medicine in treating myocardial fibrosis. Front Pharmacol 2024; 15:1337623. [PMID: 38476331 PMCID: PMC10928947 DOI: 10.3389/fphar.2024.1337623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases have become the leading cause of death in urban and rural areas. Myocardial fibrosis is a common pathological manifestation at the adaptive and repair stage of cardiovascular diseases, easily predisposing to cardiac death. Non-coding RNAs (ncRNAs), RNA molecules with no coding potential, can regulate gene expression in the occurrence and development of myocardial fibrosis. Recent studies have suggested that Chinese herbal medicine can relieve myocardial fibrosis through targeting various ncRNAs, mainly including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Thus, ncRNAs are novel drug targets for Chinese herbal medicine. Herein, we summarized the current understanding of ncRNAs in the pathogenesis of myocardial fibrosis, and highlighted the contribution of ncRNAs to the therapeutic effect of Chinese herbal medicine on myocardial fibrosis. Further, we discussed the future directions regarding the potential applications of ncRNA-based drug screening platform to screen drugs for myocardial fibrosis.
Collapse
Affiliation(s)
- Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
3
|
Li F, Li D, Yan X, Zhu F, Tang S, Liu J, Yan J, Chen H. Quercetin Promotes the Repair of Mitochondrial Function in H9c2 Cells Through the miR-92a-3p/Mfn1 Axis. Curr Pharm Biotechnol 2024; 25:1858-1866. [PMID: 38173217 DOI: 10.2174/0113892010266863231030052150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Cardiocerebrovascular disease is a severe threat to human health. Quercetin has a wide range of pharmacological effects such as antitumor and antioxidant. In this study, we aimed to determine how quercetin regulates mitochondrial function in H9c2 cells. METHODS An H9c2 cell oxygen glucose deprivation/reoxygenation (OGD/R) model was constructed. The expression of miR-92a-3p and mitofusin 1 (Mfn1) mRNA in the cells was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the mitochondrial membrane potential of cells were examined by JC-1 staining. ATP production in the cells was detected using a biochemical assay. Mitochondrial morphological changes were observed using transmission electron microscopy. Detection of miR-92a-3p binding to Mfn1 was done using dual luciferase. Western blotting was used to detect the protein expression of Mfn1 in the cells. RESULTS miR-92a-3p is essential in regulating cell viability, apoptosis, and tumor cell metastasis. OGD/R induced miR-92a-3p expression, decreased mitochondrial membrane potential and mitochondrial ATP production, and increased mitochondrial damage. Mitochondria are the most critical site for ATP production. Continued opening of the mitochondrial permeability transition pore results in an abnormal mitochondrial transmembrane potential. Both quercetin and inhibition of miR-29a-3p were able to downregulate miR-29a-3p levels, increase cell viability, mitochondrial membrane potential, and ATP levels, and improve mitochondrial damage morphology. Furthermore, we found that downregulation of miR-29a-3p upregulated the protein expression of Mfn1 in cells. Additionally, miR-92a-3p was found to bind to Mfn1 in a luciferase assay. miR- 29a-3p overexpression significantly inhibited the protein expression level of Mfn1. Quercetin treatment partially reversed the effects of miR-29a-3p overexpression in H9c2 cells. CONCLUSION Quercetin promoted the recovery of mitochondrial damage in H9c2 cells through the miR-92a-3p/Mfn1 axis.
Collapse
Affiliation(s)
- Fen Li
- Department of Neurology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Dongsheng Li
- Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Xisheng Yan
- Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Fen Zhu
- Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Shifan Tang
- Department of Cardiology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Jianguang Liu
- Department of Neurology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, 430056, Hubei, China
| | - Jie Yan
- Department of Forensic Science, Changsha, 410013, Hunan, China
| | - Haifeng Chen
- Department of Clinical Medicine, Jianghan University, Wuhan, 430056, Hubei, China
| |
Collapse
|
4
|
Liu J, Li X, Guo JW, Chen BX, Sun H, Huang JQ, Hu Y, Xu XY, Jiang MT, Gao XM, Yang WZ, Wang QL, Guo DA. Characterization and comparison of cardiomyocyte protection activities of non-starch polysaccharides from six ginseng root herbal medicines. Int J Biol Macromol 2023; 253:126994. [PMID: 37730001 DOI: 10.1016/j.ijbiomac.2023.126994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Ginseng is rich of polysaccharides, however, the evidence supporting polysaccharides to distinguish various ginseng species is rarely reported. Focusing on six root ginseng (e.g., Panax ginseng-PG, P. quinquefolius-PQ, P. notoginseng-PN, red ginseng-RG, P. japonicus-PJ, and P. japonicus var. major-PJM), the contained non-starch polysaccharides (NPs) were structurally characterized and compared by both the chemical and biological evaluation. Holistic fingerprinting at three levels (the NPs and the acid hydrolysates involving oligosaccharides and monosaccharides) utilized various chromatography methods, and the treatment of H9c2 cells with the NPs by OGD and H2O2-induced injury models was used to assess the protective effect. NPs from six Panax herbal medicines occupied about 20 % of the total polysaccharides, which were of the highest content in RG and the lowest in PN. NPs from six ginseng exhibited weak differentiations in the molecular weight distribution, while marker oligosaccharides were found to distinguish PN and RG from the others. Glc and GalA were more abundant in the NPs for PG and RG, respectively. NPs from PQ (100/200 μg/mL) showed significant cardiomyocyte protection effect by regulating the mitochondrial functions. This work further testifies the role of polysaccharides in quality control of herbal medicine, with new markers discovered beneficial to distinguish the ginseng.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; School of Pharmacy, Hebei Medical University, 361 Zhongshan Donglu, Shijiazhuang, Hebei 050017, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jing-Wen Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Bo-Xue Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - He Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jia-Qi Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mei-Ting Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiu-Mei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - Qi-Long Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
5
|
He G, Chen G, Liu W, Ye D, Liu X, Liang X, Song J. Salvianolic Acid B: A Review of Pharmacological Effects, Safety, Combination Therapy, New Dosage Forms, and Novel Drug Delivery Routes. Pharmaceutics 2023; 15:2235. [PMID: 37765204 PMCID: PMC10538146 DOI: 10.3390/pharmaceutics15092235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Salvianolic acid B is extracted from the roots and rhizomes of Danshen (Salvia miltiorrhiza Bge., family Labiatae). It is a water-soluble, weakly acidic drug that has demonstrated antitumor and anti-inflammatory effects on various organs and tissues such as the lung, heart, kidney, intestine, bone, liver, and skin and protective effects in diseases such as depression and spinal cord injury. The mechanisms underlying the protective effects of salvianolic acid B are mainly related to its anti-inflammatory, antioxidant, anti- or pro-apoptotic, anti- or pro-autophagy, anti-fibrotic, and metabolism-regulating functions. Salvianolic acid B can regulate various signaling pathways, cells, and molecules to achieve maximum therapeutic effects. This review summarizes the safety profile, combination therapy potential, and new dosage forms and delivery routes of salvianolic acid B. Although significant research progress has been made, more in-depth pharmacological studies are warranted to identify the mechanism of action, related signaling pathways, more suitable combination drugs, more effective dosage forms, and novel routes of administration of salvianolic acid B.
Collapse
Affiliation(s)
- Guannan He
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Guangfeng Chen
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Weidong Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Dongxue Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Xuehuan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Xiaodong Liang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Jing Song
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd., Dezhou 251200, China
| |
Collapse
|
6
|
Li J, Liu W, Peng F, Cao X, Xie X, Peng C. The multifaceted biology of lncR-Meg3 in cardio-cerebrovascular diseases. Front Genet 2023; 14:1132884. [PMID: 36968595 PMCID: PMC10036404 DOI: 10.3389/fgene.2023.1132884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Cardio-cerebrovascular disease, related to high mortality and morbidity worldwide, is a type of cardiovascular or cerebrovascular dysfunction involved in various processes. Therefore, it is imperative to conduct additional research into the pathogenesis and new therapeutic targets of cardiovascular and cerebrovascular disorders. Long non-coding RNAs (lncRNAs) have multiple functions and are involved in nearly all cellular biological processes, including translation, transcription, signal transduction, and cell cycle control. LncR-Meg3 is one of them and is becoming increasingly popular. By binding proteins or directly or competitively binding miRNAs, LncR-Meg3 is involved in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, epithelial-mesenchymal transition, and other processes. Recent research has shown that LncR-Meg3 is associated with acute myocardial infarction and can be used to diagnose this condition. This article examines the current state of knowledge regarding the expression and regulatory function of LncR-Meg3 in relation to cardiovascular and cerebrovascular diseases. The abnormal expression of LncR-Meg3 can influence neuronal cell death, inflammation, apoptosis, smooth muscle cell proliferation, etc., thereby aggravating or promoting the disease. In addition, we review the bioactive components that target lncR-Meg3 and propose some potential delivery vectors. A comprehensive and in-depth analysis of LncR-Meg3’s role in cardiovascular disease suggests that targeting LncR-Meg3 may be an alternative therapy in the near future, providing new options for slowing the progression of cardiovascular disease.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenxiu Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| |
Collapse
|
7
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
8
|
LncRNA-MEG3 attenuates hyperglycemia-induced damage by enhancing mitochondrial translocation of HSP90A in the primary hippocampal neurons. Exp Cell Res 2022; 419:113320. [PMID: 35998683 DOI: 10.1016/j.yexcr.2022.113320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
Abstract
The diabetic cognitive impairments are associated with high-glucose (HG)-induced mitochondrial dysfunctions in the brain. Our previous studies demonstrated that long non-coding RNA (lncRNA)-MEG3 alleviates diabetic cognitive impairments. However, the underlying mechanism has still remained elusive. Therefore, this study was designed to investigate whether the mitochondrial translocation of HSP90A and its phosphorylation are involved in lncRNA-MEG3-mediated neuroprotective effects of mitochondrial functions in HG-treated primary hippocampal neurons and diabetic rats. The primary hippocampal neurons were exposed to 75 mM glucose for 72 h to establish a HG model in vitro. Firstly, the RNA pull-down and RNA immunoprecipitation (RIP) assays clearly indicated that lncRNA-MEG3-associated mitochondrial proteins were Annexin A2, HSP90A, and Plectin. Although HG promoted the mitochondrial translocation of HSP90A and Annexin A2, lncRNA-MEG3 over-expression only enhanced the mitochondrial translocation of HSP90A, rather than Annexin A2, in the primary hippocampal neurons treated with or without HG. Meanwhile, Plectin mediated the mitochondrial localization of lncRNA-MEG3 and HSP90A. Furthermore, HSP90A threonine phosphorylation participated in regulating mitochondrial translocation of HSP90A, and lncRNA-MEG3 also enhanced mitochondrial translocation of HSP90A through suppressing HSP90A threonine phosphorylation. Finally, the anti-apoptotic role of mitochondrial translocation of HSP90A was found to be associated with inhibiting death receptor 5 (DR5) in HG-treated primary hippocampal neurons and diabetic rats. Taken together, lncRNA-MEG3 could improve mitochondrial functions in HG-exposed primary hippocampal neurons, and the underlying mechanisms were involved in enhanced mitochondrial translocation of HSP90A via suppressing HSP90A threonine phosphorylation, which may reveal a potential therapeutic target for diabetic cognitive impairments.
Collapse
|
9
|
Yan F, Chen Z, Cui W. H3K9me2 regulation of BDNF expression via G9a partakes in the progression of heart failure. BMC Cardiovasc Disord 2022; 22:182. [PMID: 35439934 PMCID: PMC9020036 DOI: 10.1186/s12872-022-02621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Heart disease is a major cause of mortality in developed countries. The associated pathology is mainly characterized by the loss of cardiomyocytes that contributes to heart failure (HF). This study aims to investigate the mechanism of euchromatic histone lysine methyltransferase 2 (EHMT2, also term G9a) in HF in rats. Methods Differentially expressed mRNAs in HF were screened using GEO database. Sera from subjects with or without HF were collected, and PCR was performed to detect the G9a expression. G9a was downregulated in cardiomyocytes exposed to oxygen–glucose deprivation (OGD), followed by CCK8, flow cytometry, colorimetric method, and western blot assays. Established HF rats were delivered with lentiviral vectors carrying sh-G9a, and TTC staining, HE staining, TUNEL, ELISA, and western blot were performed. The regulation of G9a on the downstream target BDNF was investigated by RT-qPCR, Western blot, and ChIP-qPCR. Finally, rescue experiments were carried out to substantiate the effect of G9a on cardiomyocyte apoptosis and injury via the BDNF/TrkB axis. Results G9a was overexpressed, whereas BDNF was downregulated in HF. Knockdown of G9a inhibited apoptosis and injury in OGD-treated cardiomyocytes and attenuated the extent of HF and myocardial injury in rats. Silencing of G9a promoted BDNF transcription by repressing H3K9me2 modification of the BDNF promoter. Further depletion of BDNF partially reversed the effect of sh-G9a in alleviating cardiomyocyte apoptosis and injury by inhibiting the TrkB signaling pathway. Conclusion G9a inhibits BDNF expression through H3K9me2 modification, thereby impairing the TrkB signaling pathway and exacerbating the development of HF. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02621-w.
Collapse
Affiliation(s)
- Fang Yan
- Department of Cardiac Surgery, Hebei Medical University, Shijiazhuang, 050011, Hebei, People's Republic of China.,Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Ziying Chen
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| | - Wei Cui
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
10
|
Heidary Moghaddam R, Samimi Z, Asgary S, Mohammadi P, Hozeifi S, Hoseinzadeh-Chahkandak F, Xu S, Farzaei MH. Natural AMPK Activators in Cardiovascular Disease Prevention. Front Pharmacol 2022; 12:738420. [PMID: 35046800 PMCID: PMC8762275 DOI: 10.3389/fphar.2021.738420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVD), as a life-threatening global disease, is receiving worldwide attention. Seeking novel therapeutic strategies and agents is of utmost importance to curb CVD. AMP-activated protein kinase (AMPK) activators derived from natural products are promising agents for cardiovascular drug development owning to regulatory effects on physiological processes and diverse cardiometabolic disorders. In the past decade, different therapeutic agents from natural products and herbal medicines have been explored as good templates of AMPK activators. Hereby, we overviewed the role of AMPK signaling in the cardiovascular system, as well as evidence implicating AMPK activators as potential therapeutic tools. In the present review, efforts have been made to compile and update relevant information from both preclinical and clinical studies, which investigated the role of natural products as AMPK activators in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Reza Heidary Moghaddam
- Clinical Research Development Center, Imam Ali and Taleghani Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute,.Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Hozeifi
- School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Suowen Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Wang GK, Yang JS, Huang YF, Liu JS, Tsai CW, Bau DAT, Chang WS. Culture Separation, Identification and Unique Anti-pathogenic Fungi Capacity of Endophytic Fungi from Gucheng Salvia Miltiorrhiza. In Vivo 2021; 35:325-332. [PMID: 33402481 DOI: 10.21873/invivo.12263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Salvia miltiorrhiza is a medical herb for human disorders including cardiovascular diseases and cancer. However, the interactions between Salvia miltiorrhiza and its endophytes are largely unknown. The current study aimed at identifying its endophytic fungi and examining their inhibitory effects on anti-pathogenic fungus. MATERIALS AND METHODS Distinct species of endophytic fungi were isolated from the roots of Salvia miltiorrhiza, cultured, sequenced, aiming to predict their taxonomical structures. Meanwhile, extracts from each endophytic fungus fermentations were isolated, compared and evaluated on the inhibitory efficacies on five pathological fungi, Cercospora nicotianae, Phoma arachnidicola, Staphylococcus, Phytophthora eggplant, and Rhizoctonia cerealis. RESULTS A total of 34 strains of endophytic fungi were obtained from Salvia miltiorrhiza. Among them, SX19 and C. Gloeosporioids exhibited the most effective inhibitions on five pathogenic fungi. CONCLUSION The anti-fungal activities of the endophytic fungus from Salvia miltiorrhiza were confirmed for the first time, and this may benefit crop quality and production in the future.
Collapse
Affiliation(s)
- Guo-Kai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P.R. China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, P.R. China
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Yu-Fei Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Jin-Song Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P.R. China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, P.R. China
| | - Chia-Wen Tsai
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.; .,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.;
| |
Collapse
|
12
|
Salvianolic acid B protects against MPP+-induced neuronal injury via repressing oxidative stress and restoring mitochondrial function. Neuroreport 2021; 32:815-823. [PMID: 33994527 DOI: 10.1097/wnr.0000000000001660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Maintaining normal conditions in the mitochondria and repressing oxidative stress has emerged as a crucial therapeutic strategy to ameliorate neuron damage in Parkinson's disease. Salvianolic acid B (SalB) is a polyphenolic compound isolated from Salvia miltiorrhiza, which has been prescribed for various biological properties, including antioxidative stress, anti-inflammation and neuroprotection in pathological conditions. Previously, SalB was reported to be of benefit in slowing Parkinson's disease pathology, but whether the neuroprotective role of SalB is associated with a mitochondrial protective action is still elusive. Here we aimed to explore the effects of SalB on mitochondrial function in Parkinson's disease to uncover the underlying cellular mechanisms. The results showed that SalB significantly alleviated 1-methyl-4-phenylpyridinium (MPP+)-induced mitochondrial disruption in line with ameliorated oxidative injury, which is evidenced by inhibited mitochondrial membrane potential collapse, reduced reactive oxygen species (ROS) generation, increased expression of NAD(P)H: quinone oxidoreductase, and enhanced mitochondrial biosynthesis - the upregulation of nuclear respiratory factor 1 and mitochondrial transcription factor A expressions. Mechanistically, SalB not only increased AMP-activated protein kinase (AMPK) activation and sirtuin3 mRNA and protein levels, but also attenuated ROS-triggered neuroinflammation by downregulating the expressions of NOD-like receptor family pyrin domain containing 3, caspase-1 and Interleukin-1β (IL-1β). In conclusion, these in-vitro findings, for the first time, demonstrate that SalB offers protection against MPP+-induced neuronal injury via upregulating sirtuin3 expression and activating the AMPK signaling to restore mitochondrial function.
Collapse
|
13
|
Hou Z, Liang Z, Li Y, Su F, Chen J, Zhang X, Yang D. Quantitative Determination and Validation of Four Phenolic Acids in Salvia Miltiorrhiza Bunge using 1H-NMR Spectroscopy. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666191231104909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Although chromatography and spectrometry-based methods have been used to
analyse phenolic acids in Chinese traditional medicine Salvia miltiorrhiza Bunge (SMB), quantitative
nuclear magnetic resonance (qNMR) has never previously been used to analyse fresh SMB root extracts.
Objective:
To establish a fast and simple method of quantitating danshensu, lithospermic acid, rosmarinic
acid, and salvianolic acid B content in fresh SMB root using 1H-NMR spectroscopy.
Method:
Fresh SMB root was extracted using a 70% methanol aqueous solution and quantitatively
analysed for danshensu, lithospermic acid, rosmarinic acid, and salvianolic acid B using 1H-NMR
spectroscopy. Different internal standards were compared and the results were validated using highperformance
liquid chromatography.
Results:
The established method was accurate and precise with good recovery. The LOD and LOQ
indicated the excellent sensitivity of the method. The robustness was testified by the modification of
four different parameters, and the differences among each parameter were all less than 2%.
Conclusion:
qNMR offers a fast, reliable, and accurate method of identifying and quantifying danshensu,
lithospermic acid, rosmarinic acid, and salvianolic acid B in fresh SMB root extracts.
Collapse
Affiliation(s)
- Zhuoni Hou
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Yuanyuan Li
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Feng Su
- College of Pharmaceutical Sciences, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou,China
| | - Jipeng Chen
- College of Pharmaceutical Sciences, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou,China
| | - Xiaodan Zhang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| |
Collapse
|
14
|
Wang RN, Zhao HC, Huang JY, Wang HL, Li JS, Lu Y, Di LQ. Challenges and strategies in progress of drug delivery system for traditional Chinese medicine Salviae Miltiorrhizae Radix et Rhizoma (Danshen). CHINESE HERBAL MEDICINES 2021; 13:78-89. [PMID: 36117766 PMCID: PMC9476708 DOI: 10.1016/j.chmed.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
Traditional Chinese medicines (TCMs), with a history of thousands of years, are widely used clinically with effective treatment. However, the drug delivery systems (DDSs) for TCMs remains major challenges due to the characteristics of multi-components including alkaloids, flavones, anthraquinones, glycosides, proteins, volatile oils and other types. Therefore, the novel preparations and technology of modern pharmaceutics is introduced to improve TCM therapeutic effects due to instability and low bioavailability of active ingredients. Salviae Miltiorrhizae Radix et Rhizoma, the radix and rhizomes of Salvia miltiorrhiza Bunge (Danshen in Chinese), is a well known Chinese herbal medicine for protecting the cardiovascular system, with active ingredients mainly including lipophilic tanshinones and hydrophilic salvianolic acids. In this review, this drug is taken as an example to present challenges and strategies in progress of DDSs for TCMs. This review would also summary the characteristics of active ingredients in it including physicochemical properties and pharmacological effects. The purpose of this review is to provide inspirations and ideas for the DDSs designed from TCMs by summarizing the advances on DDSs for both single- and multi-component from Danshen.
Collapse
Affiliation(s)
- Ruo-ning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
- Corresponding authors.
| | - Hua-cong Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
| | - Jian-yu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
| | - Hong-lan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
| | - Jun-song Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
| | - Yin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing 210046, China
| | - Liu-qing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
- Corresponding authors.
| |
Collapse
|
15
|
Overview of Salvia miltiorrhiza as a Potential Therapeutic Agent for Various Diseases: An Update on Efficacy and Mechanisms of Action. Antioxidants (Basel) 2020; 9:antiox9090857. [PMID: 32933217 PMCID: PMC7555792 DOI: 10.3390/antiox9090857] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Salvia miltiorrhiza Bunge (S. miltiorrhiza) is a medicinal herb that has been used for the treatment for various diseases such as cardiovascular and cerebrovascular diseases in East Asia including Korea. Considering its extensive usage as a therapeutic agent for multiple diseases, there is a need to review previous research regarding its therapeutic benefits and their mechanisms. Therefore, we searched PubMed and PubMed Central for articles reporting its therapeutic effects on certain disease groups including cancers, cardiovascular, liver, and nervous system diseases. This review provides an overview of therapeutic benefits and targets of S. miltiorrhiza, including inflammation, fibrosis, oxidative stress, and apoptosis. The findings on multi-functional properties of S. miltiorrhiza discussed in this article support the efficacy of S. miltiorrhiza extract on various diseases, but also call for further research on the multiple mechanisms that mediate its therapeutic effects.
Collapse
|
16
|
Salvianolic acid B promotes the osteogenic differentiation of human periodontal ligament cells through Wnt/β-catenin signaling pathway. Arch Oral Biol 2020; 113:104693. [PMID: 32179247 DOI: 10.1016/j.archoralbio.2020.104693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Osteogenic differentiation of human periodontal ligament cells (hPDLCs) is crucial for regenerate periodontal tissues. In this study, we investigated the function of salvianolic acid B (Sal B) in osteogenesis of hPDLCs. METHODS HPDLCs were isolated from healthy third molar roots. HPDLCs at passage 3 were identified by morphological observation and immunohistochemistry of vimentin. The viability of hPDLCs incubated with Sal B at concentrations of 0μM, 0.1μM, 0.5μM, 1μM and 5μM were measured by CCK-8 assay. To evaluate the effect of Sal B on osteogenic differentiation of hPDLCs, the alkaline phosphatase (ALP) activity, osteogenic differentiation markers, and mineralized nodules were determined by ALP kit, qRT-PCR and alizarin red S staining, respectively. To confirm the function of Sal B in hPDLCs involved in Wnt/β-catenin signaling pathway, hPDLCs were incubated with Sal B or co-incubated with Sal B and DKK-1 (a inhibitor of Wnt/β-catenin). The levels of Wnt/β-catenin signaling pathway and osteogenic differentiation-associated indicators were then determined. RESULTS HPDLCs showed a typical fibroblast-like and spindle-shaped, with vimentin-positive. The viability of hPDLCs had no obvious change with stimulation of Sal B at various doses. Sal B promoted the increase of ALP activity, osteogenic differentiation markers levels, mineralized nodules and activation of Wnt/β-catenin signaling pathway, and DKK-1 could block those effects of Sal B on hPDLCs. CONCLUSION Sal B promoted osteogenesis of hPDLCs through Wnt/β-catenin signaling pathway, which providing a potential drug for periodontitis treatment.
Collapse
|