1
|
Ge C, Meng D, Peng Y, Huang P, Wang N, Zhou X, Chang D. The activation of the HIF-1α-VEGFA-Notch1 signaling pathway by Hydroxysafflor yellow A promotes angiogenesis and reduces myocardial ischemia-reperfusion injury. Int Immunopharmacol 2024; 142:113097. [PMID: 39260311 DOI: 10.1016/j.intimp.2024.113097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Hydroxyl Safflower Yellow A (HSYA) is the primary bioactive compound derived from Safflower, which has been scientifically proven to possess anti-inflammatory, anti-apoptotic, and ameliorative properties against mitochondrial damage during acute myocardial ischemia-reperfusion injury (MIRI); however, its effects during the recovery stage remain unknown. Angiogenesis plays a crucial role in the rehabilitation process. AIM OF THE STUDY The objective of this study was to investigate the long-term angiogenic effect of HSYA and its contribution to recovery after myocardial ischemia, as well as explore its underlying mechanism using non-targeted metabolomics and network pharmacology. MATERIALS AND METHODS The MIRI model in rat was established by ligating the left anterior descending branch of the coronary artery. The effect of HSYA was assessed based on myocardial infarction volume and histopathology. Immunofluorescence staining was employed to evaluate angiogenesis, while ELISA was used to detect markers of myocardial injury. Additionally, a rat myocardial microvascular endothelial cell (CMECs) injury model was established using oxygen-glucose deprivation/reoxygenation (OGD/R), followed by scratch assays, migration assays, and tube formation experiments to assess angiogenesis. Western blot analysis was conducted to validate the underlying mechanism. RESULTS Our findings provide compelling evidence for the therapeutic efficacy of HSYA in reducing myocardial infarction size, facilitating cardiac functional recovery, and reversing pathological alterations within the heart. Furthermore, we elucidate that HSYA exerts its effects on promoting migration and generation of myocardial microvascular endothelial cells through activation of the HIF-1α-VEGFA-Notch1 signaling pathway. CONCLUSION These results underscore how HSYA enhances cardiac function via angiogenesis promotion and activation of the aforementioned signaling cascade.
Collapse
Affiliation(s)
- Chaowen Ge
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Dongdong Meng
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Yuqin Peng
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Ping Huang
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China.
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| |
Collapse
|
2
|
Cheng Y, Lin G, Xie Y, Xuan B, He S, Shang Z, Yan M, Lin J, Wei L, Peng J, Shen A. Baicalin ameliorates angiotensin II-induced cardiac hypertrophy and mitogen-activated protein kinase signaling pathway activation: A target-based network pharmacology approach. Eur J Pharmacol 2024; 981:176876. [PMID: 39127302 DOI: 10.1016/j.ejphar.2024.176876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Baicalin, a flavonoid glycoside from Scutellaria baicalensis Georgi., exerts anti-hypertensive effects. The present study aimed to assess the cardioprotective role of baicalin and explore its potential mechanisms. Network pharmacology analysis pointed out a total of 477 potential targets of baicalin were obtained from the PharmMapper and SwissTargetPrediction databases, while 11,280 targets were identified associating with hypertensive heart disease from GeneCards database. Based on the above 382 common targets, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed enrichment in the regulation of cardiac hypertrophy, cardiac contraction, cardiac relaxation, as well as the mitogen-activated protein kinase (MAPK) and other signaling pathways. Moreover, baicalin treatment exhibited the amelioration of increased cardiac index and pathological alterations in angiotensin II (Ang II)-infused C57BL/6 mice. Furthermore, baicalin treatment demonstrated a reduction in cell surface area and a down-regulation of hypertrophy markers (including atrial natriuretic peptide and brain natriuretic peptide) in vivo and in vitro. In addition, baicalin treatment led to a decrease in the expression of phosphorylated c-Jun N-terminal kinase (p-JNK)/JNK, phosphorylated p38 (p-p38)/p38, and phosphorylated extracellular signal-regulated kinase (p-ERK)/ERK in the cardiac tissues of Ang II-infused mice and Ang II-stimulated H9c2 cells. These findings highlight the cardioprotective effects of baicalin, as it alleviates hypertensive cardiac injury, cardiac hypertrophy, and the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Guosheng Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Yi Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Bihan Xuan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Shuyu He
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Zucheng Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Mengchao Yan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Jing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
3
|
Cao Z, Ma N, Shan M, Wang S, Du J, Cheng J, Sun P, Sun N, Jin L, Fan K, Yin W, Li H, Yin C, Sun Y. Baicalin Inhibits FIPV Infection In Vitro by Modulating the PI3K-AKT Pathway and Apoptosis Pathway. Int J Mol Sci 2024; 25:9930. [PMID: 39337417 PMCID: PMC11431997 DOI: 10.3390/ijms25189930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Feline infectious peritonitis (FIP), a serious infectious disease in cats, has become a challenging problem for pet owners and the industry due to the lack of effective vaccinations and medications for prevention and treatment. Currently, most natural compounds have been proven to have good antiviral activity. Hence, it is essential to develop efficacious novel natural compounds that inhibit FIPV infection. Our study aimed to screen compounds with in vitro anti-FIPV effects from nine natural compounds that have been proven to have antiviral activity and preliminarily investigate their mechanisms of action. In this study, the CCK-8 method was used to determine the maximum noncytotoxic concentration (MNTC), 50% cytotoxic concentration (CC50), and 50% effective concentration (EC50) of natural compounds on CRFK cells and the maximum inhibition ratio (MIR) of the compounds inhibit FIPV. The effect of natural compounds on FIPV-induced apoptosis was detected via Annexin V-FITC/PI assay. Network pharmacology (NP), molecular docking (MD), and 4D label-free quantitative (4D-LFQ) proteomic techniques were used in the joint analysis the mechanism of action of the screened natural compounds against FIPV infection. Finally, Western blotting was used to validate the analysis results. Among the nine natural compounds, baicalin had good antiviral effects, with an MIR > 50% and an SI > 3. Baicalin inhibited FIPV-induced apoptosis. NP and MD analyses showed that AKT1 was the best target of baicalin for inhibiting FIPV infection. 4D-LFQ proteomics analysis showed that baicalin might inhibit FIPV infection by modulating the PI3K-AKT pathway and the apoptosis pathway. The WB results showed that baicalin promoted the expression of EGFR, PI3K, and Bcl-2 and inhibited the expression of cleaved caspase 9 and Bax. This study found that baicalin regulated the PI3K-AKT pathway and the apoptosis pathway in vitro and inhibited FIPV-induced apoptosis, thus exerting anti-FIPV effects.
Collapse
Affiliation(s)
- Zhongda Cao
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Nannan Ma
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Maoyang Shan
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shiyan Wang
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jige Du
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jia Cheng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Lin Jin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yaogui Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
4
|
Feng T, Xu Q, Yu Z, Song F, Luo Q, Wang S, Tang H, Li H. Exploring the underlying mechanisms of Danshen-Shanzha Decoction on coronary heart disease: An integrated analysis combining pharmacoinformatics and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118779. [PMID: 39244177 DOI: 10.1016/j.jep.2024.118779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Danshen-Shanzha Decoction (DSD) is a renowned herbal combination consisting of the root of Salvia miltiorrhiza Bunge (known as Danshen in Chinese) and the fruits of Crataegus pinnatifida Bunge (known as Shanzha in Chinese), which has exhibited remarkable clinical efficacy in the treatment of coronary heart disease (CHD) in traditional Chinese medicine, with its earliest recorded application dating to around 202 BCE during the Han Dynasty. Despite significant advancements in the fundamental research and clinical applications of DSD over the past few decades, the precise bioactive components as well as the underlying mechanisms responsible for its protective effect on CHD remain unelucidated. AIM OF THE STUDY The present study was designed to elucidate the bioactive components and potential mechanism of DSD in the treatment of CHD using in silico technologies integrated with pharmacoinformatic methods and experimental validation. MATERIALS AND METHODS The chemical components of DSD were analyzed and identified using UPLC-Q-TOF-MS. Pharmacoinformatic-based methods were employed to comprehensively investigate the principal active components and targets of DSD for treating CHD. GO and KEGG pathway analyses were utilized to elucidate the underlying mechanism responsible for DSD's efficacy against CHD. Molecular docking and molecular dynamics simulation were performed to assess the binding affinity between active components and putative targets. Furthermore, surface plasmon resonance (SPR) was carried out to verify the affinity and kinetic characteristics of major components to STAT3 protein. Subsequently, a series of in vitro experiments, including cell viability test, flow cytometric analysis, ELISA and western blotting, were conducted to validate the predicted results in an oxygen-glucose deprivation (OGD)-stimulated H9c2 model. RESULTS A total of 96 compounds were characterized by UPLC-Q-TOF-MS, and 281 overlapping targets were identified through pharmacoinformatic-based methods. Among these, ten critical compounds were determined as the core active components of DSD. The core targets associated with the development of CHD included STAT3, SRC, TP53, JUN, and AKT1. Notably, Dihydrotanshinone I and (+)-Epicatechin exhibited strong binding affinity towards STAT3. The potential mechanisms by which DSD modulates the pathological progression of CHD were predicted to involve inflammation, oxidative stress, and apoptosis. Importantly, the cytoprotective effect of DSD against apoptosis was confirmed in OGD-stimulated H9c2 cells, as evidenced by the upregulation of Bcl-2 expression and downregulation of both Bax and cleaved caspase-3 expressions upon DSD treatment. Furthermore, DSD significantly enhanced the phosphorylated protein expressions of JAK2 and STAT3 compared to the OGD group, suggesting its potential role in modulating related signaling pathways. CONCLUSIONS The current study successfully fills the gap in the understanding of the chemical profiles of DSD, predicting its active components, potential targets, and molecular mechanisms in the treatment of CHD. These findings not only provide a valuable strategy but also robust data support for future investigations into DSD, thereby facilitating the identification of novel therapeutic targets for traditional Chinese medicines in the battle against CHD.
Collapse
Affiliation(s)
- Tian Feng
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Qiong Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Zhe Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Fan Song
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Qian Luo
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China; College of Life Science and Medicine, Northwest University, Xi'an, 710069, China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China; College of Life Science and Medicine, Northwest University, Xi'an, 710069, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| | - Hua Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Wu Q, Yao J, Xiao M, Zhang X, Zhang M, Xi X. Targeting Nrf2 signaling pathway: new therapeutic strategy for cardiovascular diseases. J Drug Target 2024; 32:874-883. [PMID: 38753446 DOI: 10.1080/1061186x.2024.2356736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, with oxidative stress (OS) identified as a primary contributor to their onset and progression. Given the elevated incidence and mortality rates associated with CVDs, there is an imperative need to investigate novel therapeutic strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), ubiquitously expressed in the cardiovascular system, has emerged as a promising therapeutic target for CVDs due to its role in regulating OS and inflammation. This review aims to delve into the mechanisms and actions of the Nrf2 pathway, highlighting its potential in mitigating the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Qi Wu
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Jiangting Yao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengyun Xiao
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Xiawei Zhang
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| | - Mengxiao Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xinting Xi
- School of Medical Imaging, Bengbu Medical University, Bengbu, China
| |
Collapse
|
6
|
Si L, Lai Y. Pharmacological mechanisms by which baicalin ameliorates cardiovascular disease. Front Pharmacol 2024; 15:1415971. [PMID: 39185317 PMCID: PMC11341428 DOI: 10.3389/fphar.2024.1415971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Baicalin is a flavonoid glycoside obtained from the dried root of Scutellaria baicalensis Georgi, which belongs to the Labiatae family. Accumulating evidence indicates that baicalin has favorable therapeutic effects on cardiovascular diseases. Previous studies have revealed the therapeutic effects of baicalin on atherosclerosis, myocardial ischemia/reperfusion injury, hypertension, and heart failure through anti-inflammatory, antioxidant, and lipid metabolism mechanisms. In recent years, some new ideas related to baicalin in ferroptosis, coagulation and fibrinolytic systems have been proposed, and new progress has been made in understanding the mechanism by which baicalin protects cardiomyocytes. However, many relevant underlying mechanisms remain unexplained, and much experimental data is lacking. Therefore, further research is needed to determine these mechanisms. In this review, we summarize the mechanisms of baicalin, which include its anti-inflammatory and antioxidant effects; inhibition of endothelial cell apoptosis; modulation of innate immunity; suppression of vascular smooth muscle cells proliferation, migration, and contraction; regulation of coagulation and fibrinolytic systems; inhibition of myocardial hypertrophy; prevention of myocardial fibrosis; and anti-apoptotic effects on cardiomyocytes.
Collapse
Affiliation(s)
- Lujia Si
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Bajgai B, Suri M, Singh H, Hanifa M, Bhatti JS, Randhawa PK, Bali A. Naringin: A flavanone with a multifaceted target against sepsis-associated organ injuries. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155707. [PMID: 38788393 DOI: 10.1016/j.phymed.2024.155707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Sepsis causes multiple organ dysfunctions and raises mortality and morbidity rates through a dysregulated host response to infection. Despite the growing research interest over the last few years, no satisfactory treatment exists. Naringin, a naturally occurring bioflavonoid with vast therapeutic potential in citrus fruits and Chinese herbs, has received much attention for treating sepsis-associated multiple organ dysfunctions. PURPOSE The review describes preclinical evidence of naringin from 2011 to 2024, particularly emphasizing the mechanism of action mediated by naringin against sepsis-associated specific injuries. The combination therapy, safety profile, drug interactions, recent advancements in formulation, and future perspectives of naringin are also discussed. METHODS In vivo and in vitro studies focusing on the potential role of naringin and its mechanism of action against sepsis-associated organ injuries were identified and summarised in the present manuscript, which includes contributions from 2011 to 2024. All the articles were extracted from the Medline database using PubMed, Science Direct, and Web of Science with relevant keywords. RESULTS Research findings revealed that naringin modulates many signaling cascades, such as Rho/ROCK and PPAR/STAT1, PIP3/AKT and KEAP1/Nrf2, and IkB/NF-kB and MAPK/Nrf2/HO-1, to potentially protect against sepsis-induced intestinal, cardiac, and lung injury, respectively. Furthermore, naringin treatment exhibits anti-inflammatory, anti-apoptotic, and antioxidant action against sepsis harm, highlighting naringin's promising effects in septic settings. Naringin could be employed as a treatment against sepsis, based on studies on combination therapy, synergistic effects, and toxicological investigation that show no reported severe side effects. CONCLUSION Naringin might be a promising therapeutic approach for preventing sepsis-induced multiple organ failure. Naringin should be used alongside other therapeutic therapies with caution despite its great therapeutic potential and lower toxicity. Nonetheless, clinical studies are required to comprehend the therapeutic benefits of naringin against sepsis.
Collapse
Affiliation(s)
- Bivek Bajgai
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Mohd Hanifa
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda, Bathinda, India
| | - Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences, Amritsar Group of Colleges, Amritsar, Punjab, 143001, India; Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Anjana Bali
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
8
|
Shen C, Chen X, Lin Y, Yang Y. Hypoxia triggers cardiomyocyte apoptosis via regulating the m 6A methylation-mediated LncMIAT/miR-708-5p/p53 axis. Heliyon 2024; 10:e32455. [PMID: 38961902 PMCID: PMC11219354 DOI: 10.1016/j.heliyon.2024.e32455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Long-time hypoxia induced cardiomyocyte apoptosis is an important mechanism of myocardial ischemia (MI) injury. Interestingly, long noncoding RNA myocardial infarction-associated transcript (LncMIAT) has been involved in the regulation of MI injury; however, the underlying mechanism by which LncMIAT affects the progression of hypoxia-induced cardiomyocyte apoptosis remains unclear. In the present study, hypoxia was found to promote cardiomyocyte apoptosis through an increased expression of LncMIAT in vitro. Biological investigations and dual-luciferase gene reporter assay further revealed that LncMIAT was able to bind with miR-708-5p to upregulate the p53-mediated cell death of the cardiomyocytes. Silencing of LncMIAT or overexpression of miR-708-5p led to a significant reduction in p53-mediated cardiomyocyte apoptosis. The methylated RNA immunoprecipitation (MeRIP)-qPCR results showed that hypoxia exerted its effects on LncMIAT through AKLBH5-N6-methyladenosine (m6A) methylation and therefore hypoxia was shown to trigger HL-1 cardiomyocyte apoptosis via the m6A methylation-mediated LncMIAT/miR-708-5p/p53 axis. Silencing of AKLBH5 significantly alleviated the m6A methylation-mediated LncMIAT upregulation and p53-mediated cardiomyocyte apoptosis, while promoted miR-708-5p expression. Taken together, the present study highlighted that LncMIAT could act as a key biological target during hypoxia-induced cardiomyocyte apoptosis. In addition, it was shown that hypoxia could promote cardiomyocyte apoptosis through regulation of the m6A methylation-mediated LncMIAT/miR-708-5p/p53 signaling axis.
Collapse
Affiliation(s)
- Chuqiao Shen
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, 230012, PR China
| | - Xiaoqi Chen
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China
| | - Yixuan Lin
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, 230012, PR China
| |
Collapse
|
9
|
Wang H, Han J, Dmitrii G, Zhang XA. Potential Targets of Natural Products for Improving Cardiac Ischemic Injury: The Role of Nrf2 Signaling Transduction. Molecules 2024; 29:2005. [PMID: 38731496 PMCID: PMC11085255 DOI: 10.3390/molecules29092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Myocardial ischemia is the leading cause of health loss from cardiovascular disease worldwide. Myocardial ischemia and hypoxia during exercise trigger the risk of sudden exercise death which, in severe cases, will further lead to myocardial infarction. The Nrf2 transcription factor is an important antioxidant regulator that is extensively engaged in biological processes such as oxidative stress, inflammatory response, apoptosis, and mitochondrial malfunction. It has a significant role in the prevention and treatment of several cardiovascular illnesses, since it can control not only the expression of several antioxidant genes, but also the target genes of associated pathological processes. Therefore, targeting Nrf2 will have great potential in the treatment of myocardial ischemic injury. Natural products are widely used to treat myocardial ischemic diseases because of their few side effects. A large number of studies have shown that the Nrf2 transcription factor can be used as an important way for natural products to alleviate myocardial ischemia. However, the specific role and related mechanism of Nrf2 in mediating natural products in the treatment of myocardial ischemia is still unclear. Therefore, this review combs the key role and possible mechanism of Nrf2 in myocardial ischemic injury, and emphatically summarizes the significant role of natural products in treating myocardial ischemic symptoms, thus providing a broad foundation for clinical transformation.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| |
Collapse
|
10
|
Avdatek F, Güngör Ş, Gülhan MF, İnanç ME, Olğaç KT, Denk B, Yeni D, Taşdemir U. Cryopreservation of ram semen: baicalein efficiency on oxidative stress, chromatin integrity, viability and motility post thaw. Front Vet Sci 2024; 11:1394273. [PMID: 38645646 PMCID: PMC11027560 DOI: 10.3389/fvets.2024.1394273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Baicalein (B) has potential antioxidant properties, but it has not been tested as a ram semen extender. This study aimed to assess the impact of B on various sperm parameters and determine its potential influence on semen quality after the freeze-thawing process. During the breeding season, ejaculates were obtained from four rams with the aid of an artificial vagina. The collected mixed semen samples were divided into four groups: control (C; 0), B0.5 (0.5 mM), B1 (1 mM), and B2 (2 mM). After semen extension, the samples were loaded into 0.25 mL straws and stored for 2 h at 4°C prior to freezing in liquid nitrogen vapor and thawed in a water bath at 37°C. Among the groups, B0.5 demonstrated the highest progressive motility results, while B1 and B2 exhibited reduced motility (p < 0.05). In terms of high mitochondrial membrane potential, plasma membrane and acrosome integrity, and viability, B0.5 showed significantly superior outcomes to the other B groups (p < 0.05), although it was not significantly better than C. B1 displayed the highest plasma membrane integrity levels (p < 0.05). Notably, B2 displayed the lowest total antioxidant status levels among the groups (p < 0.05). The findings of this study suggested that the in vitro spermatological characteristics of ram spermatozoa such as progressive motility and chromatin integrity can be protected from the freeze-thawing process by using the 0.5 mM dose of baicalein as a semen extender. The treatment of sperm freezing might benefit from further in-depth research on the role of B in the improvement of cryoinjury and its underlying processes.
Collapse
Affiliation(s)
- Fatih Avdatek
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Şükrü Güngör
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Mehmet Fuat Gülhan
- Technical Sciences Vocational School, Department of Aromatic Plants, Aksaray University, Aksaray, Türkiye
| | - Muhammed Enes İnanç
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Kemal Tuna Olğaç
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Ankara University, Ankara, Türkiye
| | - Barış Denk
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Deniz Yeni
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Umut Taşdemir
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Aksaray University, Aksaray, Türkiye
| |
Collapse
|
11
|
Ma X, Gao L, Ge R, Yuan T, Lin B, Zhen L. CDC-like kinase 3 deficiency aggravates hypoxia-induced cardiomyocyte apoptosis through AKT signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:333-342. [PMID: 38438604 DOI: 10.1007/s11626-024-00886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Hypoxia-induced cardiomyocyte apoptosis is one major pathological change of acute myocardial infarction (AMI), but the underlying mechanism remains unexplored. CDC-like kinase 3 (CLK3) plays crucial roles in cell proliferation, migration and invasion, and nucleotide metabolism, however, the role of CLK3 in AMI, especially hypoxia-induced apoptosis, is largely unknown. The expression of CLK3 was elevated in mouse myocardial infarction (MI) models and neonatal rat ventricular myocytes (NRVMs) under hypoxia. Furthermore, CLK3 knockdown significantly promoted apoptosis and inhibited NRVM survival, while CLK3 overexpression promoted NRVM survival and inhibited apoptosis under hypoxic conditions. Mechanistically, CLK3 regulated the phosphorylation status of AKT, a key player in the regulation of apoptosis. Furthermore, overexpression of AKT rescued hypoxia-induced apoptosis in NRVMs caused by CLK3 deficiency. Taken together, CLK3 deficiency promotes hypoxia-induced cardiomyocyte apoptosis through AKT signaling pathway.
Collapse
Affiliation(s)
- Xiue Ma
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Liming Gao
- Department of Cardiology, Ji'an Hospital, Shanghai East Hospital, Ji'an, 343000, Jiangxi, China
| | - Rucun Ge
- Shandong Provincial Third Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Tianyou Yuan
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Bowen Lin
- School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Lixiao Zhen
- Shandong Provincial Third Hospital, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
12
|
Gao WY, Tian MY, Li ML, Gao SR, Wei XL, Gao C, Zhou YY, Li T, Wang HJ, Bian BL, Si N, Zhao W, Zhao HY. Study on the potential mechanism of Qingxin Lianzi Yin Decoction on renoprotection in db/db mice via network pharmacology and metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155222. [PMID: 38382279 DOI: 10.1016/j.phymed.2023.155222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) was one of the most popular and most significant microvascular complications of diabetes mellitus. Qingxin Lianzi Yin Decoction (QXLZY) was a traditional Chinese classical formula, suitable for chronic urinary system diseases. QXLZY had good clinical efficacy in early DN, but the underlying molecular mechanism remained unrevealed. PURPOSE This study aimed to establish the content determination method of QXLZY index components and explore the mechanism of QXLZY on DN by network pharmacology and metabolomics studies. METHODS Firstly, the content determination methods of QXLZY were established with calycosin-7-O-β-d-glucoside, acteoside, baicalin and glycyrrhizic acid as index components. Secondly, pharmacological experiments of QXLZY were evaluated using db/db mice. UHPLC-LTQ-Orbitrap MS was used to carry out untargeted urine metabolomics, serum metabolomics, and kidney metabolomics studies. Thirdly, employing network pharmacology, key components and targets were analyzed. Finally, targeted metabolomics studies were performed on the endogenous constituents in biological samples for validation based on untargeted metabolomics results. RESULTS A method for the simultaneous determination of multiple index components in QXLZY was established, which passed the comprehensive methodological verification. It was simple, feasible, and scientific. The QXLZY treatment alleviated kidney injury of db/db mice, included the degree of histopathological damage and the level of urinary microalbumin/creatinine ratio. Untargeted metabolomics studies had identified metabolic dysfunction in pathways associated with amino acid metabolism in db/db mice. Treatment with QXLZY could reverse metabolite abnormalities and influence the pathways related to energy metabolism and amino acid metabolism. It had been found that pathways with a high degree were involved in signal transduction, prominently on amino acids metabolism and lipid metabolism, analyzed by network pharmacology. Disorders of amino acid metabolism did occur in db/db mice. QXLZY could revert the levels of metabolites, such as quinolinic acid, arginine, and asparagine. CONCLUSION This study was the first time to demonstrate that QXLZY alleviated diabetes-induced pathological changes in the kidneys of db/db mice by correcting disturbances in amino acid metabolism. This work could provide a new experimental basis and theoretical guidance for the rational application of QXLZY on DN, exploring the new pharmacological effect of traditional Chinese medicine, and promoting in-depth research and development.
Collapse
Affiliation(s)
- Wen-Ya Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Meng-Yao Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ming-Li Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuang-Rong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao-Lu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan-Yan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tao Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hong-Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bao-Lin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Zhao
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
13
|
Ma Y, Qian Y, Chen Y, Ruan X, Peng X, Sun Y, Zhang J, Luo J, Zhou S, Deng C. Resveratrol modulates the inflammatory response in hPDLSCs via the NRF2/HO-1 and NF-κB pathways and promotes osteogenic differentiation. J Periodontal Res 2024; 59:162-173. [PMID: 37905727 DOI: 10.1111/jre.13200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate resveratrol's specific role as an anti-inflammatory and osteogenic differentiation of hPDLSCs in periodontitis and to reveal the mechanisms involved. BACKGROUND Numerous studies have shown that inhibiting the inflammatory response of periodontal tissues and promoting the regeneration of alveolar bone are crucial treatments for periodontitis. Resveratrol has been found to have certain anti-inflammatory property. However, the anti-inflammatory mechanism and osteogenic effect of resveratrol in periodontitis are poorly understood. MATERIALS AND METHODS We constructed an in vitro periodontitis model by LPS stimulation of hPDLSCs and performed WB, RT-qPCR, and immunofluorescence to analyze inflammatory factors and related pathways. In addition, we explored the osteogenic ability of resveratrol in in vitro models. RESULTS In vitro, resveratrol ameliorated the inflammatory response associated with activation of the NF-κB pathway through activation of the NRF2/HO-1 pathway, characterized by inhibition of p65/p50 nuclear translocation and the proinflammatory cytokines interleukin-1β levels. Resveratrol also has a positive effect on osteogenic differentiation. CONCLUSIONS Observations suggest that resveratrol modulates the inflammatory response in hPDLSCs via the NRF2/HO-1 and NF-κB pathways and promotes osteogenic differentiation.
Collapse
Affiliation(s)
- Yifan Ma
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Yi Qian
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yuteng Chen
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Xiaoxu Ruan
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Xiaoya Peng
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Yi Sun
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Jue Zhang
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Jingjing Luo
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Songlin Zhou
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| |
Collapse
|
14
|
Bangar A, Khan H, Kaur A, Dua K, Singh TG. Understanding mechanistic aspect of the therapeutic role of herbal agents on neuroplasticity in cerebral ischemic-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117153. [PMID: 37717842 DOI: 10.1016/j.jep.2023.117153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke is one of the leading causes of death and disability. The only FDA-approved therapy for treating stroke is tissue plasminogen activator (tPA), exhibiting a short therapeutic window. Due to this reason, only a small number of patients can be benefitted in this critical period. In addition, the use of endovascular interventions may reverse vessel occlusion more effectively and thus help further improve outcomes in experimental stroke. During recovery of blood flow after ischemia, patients experience cognitive, behavioral, affective, emotional, and electrophysiological changes. Therefore, it became the need for an hour to discover a novel strategy for managing stroke. The drug discovery process has focused on developing herbal medicines with neuroprotective effects via modulating neuroplasticity. AIM OF THE STUDY We gather and highlight the most essential traditional understanding of therapeutic plants and their efficacy in cerebral ischemia-reperfusion injury. In addition, we provide a concise summary and explanation of herbal drugs and their role in improving neuroplasticity. We review the pharmacological activity of polyherbal formulations produced from some of the most frequently referenced botanicals for the treatment of cerebral ischemia damage. MATERIALS AND METHODS A systematic literature review of bentham, scopus, pubmed, medline, and embase (elsevier) databases was carried out with the help of the keywords like neuroplasticity, herbal drugs, neural progenitor cells, neuroprotection, stem cells. The review was conducted using the above keywords to understand the therapeutic and mechanistic role of herbal neuroprotective agents on neuroplasticity in cerebral ischemic-reperfusion injury. RESULTS Neuroplasticity emerged as an alternative to improve recovery and management after cerebral ischemic reperfusion injury. Neuroplasticity is a physiological process throughout one's life in response to any stimuli and environment. Traditional herbal medicines have been established as an adjuvant to stroke therapy since they were used from ancient times and provided promising effects as an adjuvant to experimental stroke. The plants and phytochemicals such as Curcuma longa L., Moringa oliefera Lam, Panax ginseng C.A. Mey., and Rehmannia glutinosa (Gaertn.) DC., etc., have shown promising effects in improving neuroplasticity after experimental stroke. Such effects occur by modulation of various molecular signalling pathways, including PI3K/Akt, BDNF/CREB, JAK/STAT, HIF-1α/VEGF, etc. CONCLUSIONS: Here, we gave a perspective on plant species that have shown neuroprotective effects and can show promising results in promoting neuroplasticity with specific targets after cerebral ischemic reperfusion injury. In this review, we provide the complete detail of studies conducted on the role of herbal drugs in improving neuroplasticity and the signaling pathway involved in the recovery and management of experimental stroke.
Collapse
Affiliation(s)
- Annu Bangar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | | |
Collapse
|
15
|
Liu N, Su H, Lou Y, Kong J. The improvement of homocysteine-induced myocardial inflammation by vitamin D depends on activation of NFE2L2 mediated MTHFR. Int Immunopharmacol 2024; 127:111437. [PMID: 38150882 DOI: 10.1016/j.intimp.2023.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES Myocardial inflammation underlies a broad spectrum of conditions that cause damage to the myocardium and lead to structural and functional defects. Homocysteine (Hcy) is closely related to the occurrence and development of cardiovascular diseases. We investigated the mechanism underlying the effects of vitamin D as a prophylactic treatment for Hcy-induced cardiac inflammation. METHODS The levels of 25(OH)D3 and Hcy were assessed using ELISA kits. Expression levels of the vitamin D receptor (VDR), NFE2 like bZIP transcription factor 2 (NFE2L2), methylenetetrahydrofolate reductase (MTHFR) and inflammatory factors were examined by Western blotting, immunohistochemistry and real time polymerase chain reaction. NFE2L2/MTHFR-knockdown HL-1 cells and NFE2L2+/- mouse were used to test the effects of vitamin D. RESULTS We found the levels of Hcy in the serum and myocardial tissue of mice in the Hcy + CCE group were lower than in the Hcy groups, which was opposed to the trend exhibited by the serum 25(OH)D3 level of mice. The mRNA and protein expression levels of the inflammatory factors in cardiac tissues and cardiomyocytes were strongly decreased by the Hcy treatment, compared to the Hcy + CCE/Hcy + 1,25(OH)2D3 groups. Moreover, the results revealed that the level of nuclear NFE2L2 in Hcy + CCE/Hcy + 1,25(OH)2D3 group was increased compared to Hcy group with a reciprocal decrease in the level of cytosolic NFE2L2 in vivo and in vitro. Similarly, the MTHFR mRNA and protein expression in the Hcy + CCE group was higher than the Hcy group. We determined that NFE2L2 promoted the expression of MTHFR. However, based on Hcy treatment, the combination of 1,25(OH)2D3 and MTHFR-/- reversed the decline in IL-6 and TNFα expression caused by 1,25(OH)2D3 alone. Chromatin immunoprecipitation and luciferase reporter assays showed the up-regulation effect of VDR on NFE2L2 and NFE2L2 on MTHFR. CONCLUSIONS Our findings indicate that vitamin D/VDR could improve Hcy-induced myocardial inflammation through activation of NFE2L2 mediated MTHFR.
Collapse
Affiliation(s)
- Ning Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Han Su
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yan Lou
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
16
|
Hou Z, Yang F, Chen K, Wang Y, Qin J, Liang F. hUC-MSC-EV-miR-24 enhances the protective effect of dexmedetomidine preconditioning against myocardial ischemia-reperfusion injury through the KEAP1/Nrf2/HO-1 signaling. Drug Deliv Transl Res 2024; 14:143-157. [PMID: 37540334 DOI: 10.1007/s13346-023-01388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
The cardioprotective effect of microRNAs (miRNAs) on myocardial ischemic-reperfusion (I/R) injury has been documented. Here, we aim to decipher the mechanism of miR-24 delivered by human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hUC-MSC-EVs) in myocardial I/R injury after dexmedetomidine (DEX) preconditioning. We collected and identified hUC-MSCs and extracted EVs, which were co-cultured with DEX-preconditioned hypoxia/reoxygenation (H/R) cardiomyocyte models or injected into I/R mouse models. The cardiomyocytes and myocardial injury were evaluated by molecular biology experiments. miR-24 was highly expressed in hUC-MSC-EVs. hUC-MSC-EVs could transfer miR-24 into cardiomyocytes where miR-24 augmented cell viability and inhibited cell apoptosis after DEX preconditioning. In the co-culture system of RAW264.7 macrophages with hUC-MSC-EVs, miR-24 promoted M2-type polarization of macrophages and reduced M1-type macrophage polarization. Mechanistically, miR-24 targeted KEAP1 and inhibited its expression, resulting in disruption of the Nrf2/HO-1 signaling. In vivo data confirmed that miR-24 delivered by hUC-MSC-EVs enhanced the suppressing effect of DEX preconditioning on inflammation and apoptosis in rats following myocardial I/R injury. Overall, miR-24 delivered by hUC-MSC-EVs can promote M2 polarization of macrophages and enhance the protective effect of DEX preconditioning on myocardial I/R injury by down-regulating the KEAP1/Nrf2/HO-1 signaling axis.
Collapse
Affiliation(s)
- Zixin Hou
- Department of Anesthesiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Fengrui Yang
- Department of Anesthesiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China
- Department of Anesthesiology, Hengyang Medical School, Affiliated Huaihua Hospital, University of South China, Huaihua, 418000, People's Republic of China
| | - Kemin Chen
- Department of Anesthesiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Yuxia Wang
- Department of Anesthesiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Jie Qin
- Department of Anesthesiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Feng Liang
- Department of Anesthesiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
17
|
Wang T, Gao L, Tan J, Zhuoma D, Yuan R, Li B, Huang S. The Neuroprotective Effect of Sophocarpine against Glutamate-Induced HT22 Cell Cytotoxicity. J Oleo Sci 2024; 73:359-370. [PMID: 38433000 DOI: 10.5650/jos.ess23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Neuronal cell death and dysfunction of the central nervous system can be caused by oxidative stress, which is associated with the development of neurodegenerative diseases. Sophocarpine, an alkaloid compound derived from Sophora moorcroftiana (Benth.) Baker seeds, has a wide range of medicinal value. This study sought to determine how sophocarpine exerts neuroprotective effects by inhibited oxidative stress and apoptosis in mouse hippocampus neuronal (HT22) cells. 20mM glutamate-induced HT22 cells were used to develop an in vitro model of oxidative stress damage. The Cell Counting Kit-8 (CCK-8) assay was used to assess cell viability. According to the instructions on the kits to detect reactive oxygen species (ROS) levels and oxidative stress indicators. HT22 cells were examined using immunofluorescence and Western Blotting to detect Nuclear Factor Erythroid 2-related Factor 2 (Nrf2) expression. The expression of proteins and messenger RNA (mRNA) for heme oxygenase-1 (HO-1) was examined by Western Blotting and Quantitative real time polymerase chain reaction (qRT-PCR). Mitochondrial membrane potential (MMP) and Cell apoptosis were used by 5, 5', 6, 6'-Tetrachloro-1, 1', 3, 3'-tetraethyl-imidacarbocyanine iodide (JC- 1) kit and Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick-End Labeling (TUNEL) apoptosis assay kit, respectively. Finally, the expression of pro-apoptotic proteins was detected by Western Blotting. The result demonstrated that sophocarpine (1.25 μM-10 μM) can significantly inhibit glutamate-induced cytotoxicity and ROS generation, improve the activity of antioxidant enzymes. Sophocarpine increased the expression of HO-1 protein and mRNA and the nuclear translocation of Nrf2 to play a cytoprotective role; however, cells were transfected with small interfering RNA targeting HO-1 (si-HO-1) reversed the above effects of sophocarpine. In addition, sophocarpine significantly inhibited glutamate induced mitochondrial depolarization and further inhibited cell apoptosis by reducing the expression level of caspase-related proteins.
Collapse
Affiliation(s)
- Tong Wang
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Liying Gao
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Jiahua Tan
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Dongzhi Zhuoma
- Department of Pharmacy, Medical College, Tibet University
| | - Ruiying Yuan
- Department of Pharmacy, Medical College, Tibet University
| | - Bin Li
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
- Department of Pharmacy, Medical College, Tibet University
| | - Shan Huang
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| |
Collapse
|
18
|
Chen Q, Liu R, Wei C, Wang X, Wu X, Fan R, Yu X, Li Z, Mao R, Hu J, Zhu N, Liu X, Li Y, Xu M. Exogenous Nucleotides Ameliorate Age-Related Decline in Testosterone in Male Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice by Modulating the Local Renin-Angiotensin System Antioxidant Pathway. Nutrients 2023; 15:5130. [PMID: 38140389 PMCID: PMC10745527 DOI: 10.3390/nu15245130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
In older men, an age-related decline in testosterone is closely associated with various adverse health outcomes. With the progression of aging, hyperactivation of the local renin-angiotensin system (RAS) and oxidative stress increase in the testis. The regulation of RAS antioxidants may be a target to delay testicular aging and maintain testosterone levels. Exogenous nucleotides (NTs) have anti-aging potential in several systems, but there are no studies of their effects on the reproductive system. In our study, we examined the effects of exogenous NTs on testosterone synthesis and explored possible mechanisms of action. Therefore, senescence-accelerated mouse prone-8 (SAMP8) mice and senescence-accelerated mouse resistant 1 (SAMR1) were used in the experiment, and they were randomly divided into an NTs free group (NTs-F), a normal control group (control), a low-dose NTs group (NTs-L), a middle-dose NTs (NTs-M), a high-dose NTs group (NTs-H) and SAMR1 groups, and the testis of the mice were collected for testing after 9 months of intervention. The results showed that exogenous NTs could increase the testicular organ index in mice during aging, and delayed the age-associated decline in testosterone levels in SAMP8 male mice, possibly by modulating the local RAS antioxidant pathway and reducing oxidative stress to protect the testis. The present study provides new research clues for the development of preventive and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Qianqian Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Chan Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiujuan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xin Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiaochen Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Zhen Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Ruixue Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Jiani Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
19
|
Li X, Ding Z, Liu K, Wang Q, Song L, Chai Z, Yu J, Ma D, Xiao B, Ma C. Astrocytic phagocytosis of myelin debris and reactive characteristics in vivo and in vitro. Biol Cell 2023; 115:e202300057. [PMID: 37851997 DOI: 10.1111/boc.202300057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND INFORMATION Persistent myelin debris can inhibit axonal regeneration, thereby hindering remyelination. Effective removal of myelin debris is essential to eliminate the interference of myelin debris in oligodendrocyte progenitor cell (OPC) activation, recruitment to demyelinating sites and/or differentiation into mature oligodendrocytes (OLs). In addition to microglia, it has been reported that astrocytic phagocytosis of myelin debris is a feature of early demyelination. RESULTS In the present study, astrocytes effectively phagocytized myelin debris in vitro and in vivo. On the 5th day after injecting myelin debris into the brain, astrocytes were enriched in the area injected with myelin debris compared with microglia, and their ability to engulf myelin debris was stronger than that of microglia. When exposed to myelin debris, astrocytes phagocytizing myelin debris triggered self-apoptosis, accompanied by the activation of NF-κB, down-regulation of Nrf2, and the increase of ciliary neurotrophic factor (CNTF) and basic fibroblast growth factor (bFGF). However, the activation of astrocytic NF-κB did not influence the inflammatory cytokines IL-1β, IL-6, and TNF-α, and the anti-inflammatory factor IL-10. The proliferation of astrocytes and mobilization of OPCs in the subventricular zone were elevated on the 5th day after intracerebral injection of myelin debris. CONCLUSIONS The results suggested that myelin phagocytosis of astrocytes should help improve the microenvironment and promote myelin regeneration by increasing CNTF and bFGF within the central nervous system. SIGNIFICANCE However, the molecular interaction of astrocytes acting as phagocytes remains to be further explored. Therefore, an improvement of astrocytes to phagocytize myelin debris may be a promising treatment measure to prevent demyelination and promote remyelination in MS and other diseases with prominent myelin injury.
Collapse
Affiliation(s)
- Xiaohui Li
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhibin Ding
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Kexin Liu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- The Key Laboratory of Nervous System Disease Prevention and Treatment under Health Commission of Shanxi Province, Sinopharm Tongmei General Hospital, Datong, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Dong Ma
- The Key Laboratory of Nervous System Disease Prevention and Treatment under Health Commission of Shanxi Province, Sinopharm Tongmei General Hospital, Datong, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cungen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| |
Collapse
|
20
|
Zhu Z, Pu J, Li Y, Chen J, Ding H, Zhou A, Zhang X. RBM25 regulates hypoxic cardiomyocyte apoptosis through CHOP-associated endoplasmic reticulum stress. Cell Stress Chaperones 2023; 28:861-876. [PMID: 37736860 PMCID: PMC10746693 DOI: 10.1007/s12192-023-01380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Ischemic heart failure (HF) is one of the leading causes of global morbidity and mortality; blocking the apoptotic cascade could help improve adverse outcomes of it. RNA-binding motif protein 25 (RBM25) is an RNA-binding protein related to apoptosis; however, its role remains unknown in ischemic HF. The main purpose of this study is to explore the mechanism of RBM25 in ischemic HF. Establishing an ischemic HF model and oxygen-glucose deprivation (OGD) model. ELISA was performed to evaluate the BNP level in the ischemic HF model. Echocardiography and histological analysis were performed to assess cardiac function and infarct size. Proteins were quantitatively and locationally analyzed by western blotting and immunofluorescence. The morphological changes of endoplasmic reticulum (ER) were observed with ER-tracker. Cardiac function and myocardial injury were observed in ischemic HF rats. RBM25 was elevated in cardiomyocytes of hypoxia injury hearts and localized in nucleus both in vitro and in vivo. In addition, cell apoptosis was significantly increased when overexpressed RBM25. Moreover, ER stress stimulated upregulation of RBM25 and promoted cell apoptosis through the CHOP related pathway. Finally, inhibiting the expression of RBM25 could ameliorate the apoptosis and improve cardiac function through blocking the activation of CHOP signaling pathway. RBM25 is significantly upregulated in ischemic HF rat heart and OGD model, which leads to apoptosis by modulating the ER stress through CHOP pathway. Knockdown of RBM25 could reverse apoptosis-mediated cardiac dysfunction. RBM25 may be a promising target for the treatment of ischemic HF.
Collapse
Affiliation(s)
- Ziwei Zhu
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jie Pu
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jianshu Chen
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Hong Ding
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Anyu Zhou
- Department of Cardiology, Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - XiaoWei Zhang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Liu Y, Li Z, Li H, Wan S, Tang S. Bacillus pumilus TS1 alleviates Salmonella Enteritidis-induced intestinal injury in broilers. BMC Vet Res 2023; 19:41. [PMID: 36759839 PMCID: PMC9912683 DOI: 10.1186/s12917-023-03598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND In the current context of reduced and limited antibiotic use, several pathogens and stressors cause intestinal oxidative stress in poultry, which leads to a reduced feed intake, slow or stagnant growth and development, and even death, resulting in huge economic losses to the poultry breeding industry. Oxidative stress in animals is a non-specific injury for which no targeted drug therapy is available; however, the health of poultry can be improved by adding appropriate feed additives. Bacillus pumilus, as a feed additive, promotes growth and development and reduces intestinal oxidative stress damage in poultry. Heat shock protein 70 (HSP70) senses oxidative damage and repairs unfolded and misfolded proteins; its protective effect has been widely investigated. Mitogen-activated protein kinase/protein kinase C (MAPK/PKC) and hypoxia inducible factor-1 alpha (HIF-1α) are also common proteins associated with inflammatory response induced by several stressors, but there is limited research on these proteins in the context of poultry intestinal Salmonella Enteritidis (SE) infections. In the present study, we isolated a novel strain of Bacillus pumilus with excellent performance from the feces of healthy yaks, named TS1. To investigate the effect of TS1 on SE-induced enteritis in broilers, 120 6-day-old white-feathered broilers were randomly divided into four groups (con, TS1, SE, TS1 + SE). TS1 and TS1 + SE group chickens were fed with 1.4 × 107 colony-forming units per mL of TS1 for 15 days and intraperitoneally injected with SE to establish the oxidative stress model. Then, we investigated whether TS1 protects the intestine of SE-treated broiler chickens using inflammatory cytokine gene expression analysis, stress protein quantification, antioxidant quantification, and histopathological analysis. RESULTS The TS1 + SE group showed lower MDA and higher GSH-Px, SOD, and T-AOC than the SE group. TS1 alleviated the effects of SE on intestinal villus length and crypt depth. Our results suggest that SE exposure increased the expression of inflammatory factors (IL-1β, IL-6, TNF-α, IL-4, and MCP-1), p38 MAPK, and PKCβ and decreased the expression of HSP60, HSP70, and HIF-1α, whereas TS1 alleviated these effects. CONCLUSIONS Bacillus pumilus TS1 alleviated oxidative stress damage caused by SE and attenuated the inflammatory response in broilers through MAPK/PKC regulation of HSPs/HIF-1α.
Collapse
Affiliation(s)
- Yinkun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangshuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Beyaz S, Aslan A, Gok O, Agca CA, Ozercan IH. Fullerene C 60 Attenuates Heart Tissue Inflammation by Modulating COX-2 and TNF-Alpha Signaling Pathways in DMBA Induced Breast Cancer in Rats. Cardiovasc Toxicol 2023; 23:75-85. [PMID: 36705854 DOI: 10.1007/s12012-023-09780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023]
Abstract
The present study aimed to investigate the therapeutic effect of fullerene C60 nanoparticle against heart tissue damage caused by 7,12-dimethylbenz [a] anthracene (DMBA) in female rats. Female Wistar albino rats, 8 weeks old (n = 60) weighing around (150 ± 10 g) were used for the study. These rats were divided into 4 groups and each group included 15 rats. Groups: (i) Control Group: Fed with standard diet; (ii) C60 Group: C60 (1.7 mg/kg bw, oral gavage); (iii) DMBA Group: DMBA (45 mg/kg bw, oral gavage); (iv) C60 and DMBA Group: C60 (1.7 mg/kg bw, oral gavage) and DMBA (45 mg/kg bw, oral gavage) group. Malondialdehyde (MDA) analysis, catalase activity (CAT), and glutathione (GSH) in heart tissue were determined by spectrophotometer. In addition, heart tissue DNA damage was investigated. Caspase-3, p53, HO-1, COX-2, and TNF-α protein expression levels in heart tissue were determined by western blotting. As a result, Caspase-3, p53, HO-1 protein expression, GSH levels and CAT activity increased, COX-2, TNF-α protein expression, and MDA levels were significantly decreased in the C60 + DMBA group compared to the DMBA group. Therefore, the fullerene C60 nanoparticle may be a promising and effective therapy for the treatment of heart diseases associated with inflammation.
Collapse
Affiliation(s)
- Seda Beyaz
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey.
| | - Ozlem Gok
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Can Ali Agca
- Faculty of Science, Department of Molecular Biology and Genetics, Bingol University, Bingol, Turkey
| | | |
Collapse
|
23
|
Tao H, Zhao Y, Li L, He Y, Zhang X, Zhu Y, Hong G. Comparative metabolomics of flavonoids in twenty vegetables reveal their nutritional diversity and potential health benefits. Food Res Int 2023; 164:112384. [PMID: 36737968 DOI: 10.1016/j.foodres.2022.112384] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Vegetables are rich in flavonoids and are widely consumed in our daily life. However, comprehensive information on flavonoids components in vegetable varieties and the distribution of flavonoids with health-promoting effects in different vegetables are rarely investigated. Here, we analyzed the constitution of flavonoids among 20 vegetables by widely-targeted metabolome analysis. A total of 403 flavonoids were detected and classified as flavonoid, flavonols, anthocyanins, isoflavones, flavonoid carbonoside, dihydroflavone, chalcones, flavanols, dihydroflavonol, tannin, proanthocyanidins, and other flavonoids. Interestingly, we found that the content and types of flavonoids in bean sprouts and hot pepper were relatively abundant, whereas those were lower in carrot, lettuce, and Zizania latifolia. Then, we characterized the representative flavonoids including flavonoid, flavonols, chalcones, and isoflavones, and related them to the health-promoting effects of vegetables. Finally, we examined the relevance of the flavonoids to antioxidant capacity. Both bean sprouts and hot pepper possessed higher antioxidant enzyme activity, which were responsible for their great antioxidant capacity. Our study established a database of major flavonoids components in vegetables and further provides a new hint for the selection and breeding of vegetables based on their health-promoting effects.
Collapse
Affiliation(s)
- Han Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China.
| |
Collapse
|
24
|
Effect of Xuefu Zhuyu Capsule on Myocardial Infarction: Network Pharmacology and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5652276. [PMID: 36760468 PMCID: PMC9904938 DOI: 10.1155/2023/5652276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023]
Abstract
Background Myocardial infarction (MI) is the most severe manifestation of cardiovascular disease. Xuefu Zhuyu Capsule (XFC), a proprietary Chinese medicine, is widely used in various cardiovascular diseases. At present, the molecular mechanism of XFC remains unclear. Objective To explore the mechanism of anti-MI effects of XFC by combining network pharmacology and experiments. Methods TCMSP, GeneCards, and DisGeNET databases were used to find the target of XFC. PPI analysis was performed by the STRING database. KEGG and GO analyses were performed by Metascape Database. Molecular docking was performed by Autodock Vina. HE staining, echocardiography, immunofluorescence, and TUNEL were performed to verify the prediction results. Results Network pharmacology showed that quercetin, kaempferol, β-sitosterol, luteolin, and baicalein were the main active ingredients of XFC. TNF, IL6, TP53, VEGFA, JUN, CASP3, and SIRT1 were the main targets of XFC. KEGG results showed that key genes were mainly enriched in lipid and atherosclerosis, PI3K-Akt signaling pathway, MAPK signaling pathway, and NF-κB signaling pathway. HE staining showed that XFC could improve the morphology of myocardial tissue. Echocardiography showed that XFC could improve cardiac function. TUNEL showed that XFC could reduce cardiomyocyte apoptosis. Immunofluorescence showed that XFC could reduce the expression of α-smooth muscle actin (α-SMA) and increase the expression of CD31. In addition, we found that XFC may exert its therapeutic effects through SIRT1. Conclusion This study demonstrated that SIRT1 may be the target of XFC in the treatment of MI. The active ingredients of XFC and SIRT1 can be stably bound. XFC could inhibit apoptosis, promote angiogenesis, and improve myocardial fibrosis through SIRT1.
Collapse
|
25
|
Huang Y, Zhang Y, Wu Y, Xiang Q, Yu R. An Integrative Pharmacology-Based Strategy to Uncover the Mechanism of Zuogui Jiangtang Shuxin Formula in Diabetic Cardiomyopathy. Drug Des Devel Ther 2023; 17:237-260. [PMID: 36726736 PMCID: PMC9885885 DOI: 10.2147/dddt.s390883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Purpose This study aimed to explore the mechanism of Zuogui Jiangtang Shuxin formula (ZGJTSXF) in the treatment of diabetic cardiomyopathy (DCM) by an integrative strategy combining serum pharmacochemistry, network pharmacology analysis, and experimental validation. Methods An Ultra high performance liquid chromatography-high resolution mass spectrometry (UPLC-Q-Exactive-Orbitrap-MS) method was constructed to identify compounds in rat serum after oral administration of ZGJTSXF. A component-target network between the targets of ZGJTSXF ingredients and DCM was established using Cytoscape. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to deduce ZGJTSXF-associated targets and pathways. The DCM model mice were treated with ZGJTSXF, and the predicted important signaling pathways were verified using quantitative PCR and Western blot. Results We identified 78 compounds in serum of medicated rats, which mainly included flavonoids, small peptides, nucleosides, organic acids, phenylpropanoids, alkaloids, phenanthrenequinones, iridoids, phenols, and saponins. Network pharmacology analysis revealed that ZGJTSXF may regulate targets including ALB, TNF, AKT1, GAPDH, VEGFA, EGFR, SRC, CASP3, MAPK3, JUN, and PI3K/AKT signaling pathway in the treatment of DCM. ZGJTSXF administration improved blood sugar levels, heart function, and cardiac morphological changes in DCM mice. Notably, ZGJTSXF inhibited cardiomyocytes apoptosis, which was associated with restored PI3K/Akt signaling and upregulated Bcl-2 and Bcl-xL proteins expression. Conclusion Our preliminary results proposed the material basis and possible mechanisms of ZGJTSXF in treating DCM, which is related to the activation of the PI3K/AKT signaling pathway and apoptosis inhibition. These findings shed new light in developing ZGJTSXF-based therapeutics in treating DCM.
Collapse
Affiliation(s)
- Yalan Huang
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China,The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410021, People’s Republic of China
| | - Yanling Zhang
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China,General Hospital of Ningxia Medical University, Ningxia, 750003, People’s Republic of China
| | - Yongjun Wu
- College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Qin Xiang
- Science and Technology Department, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China,Qin Xiang, Science and Technology Department, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China, Email
| | - Rong Yu
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China,Correspondence: Rong Yu, Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, 410208, People’s Republic of China, Email
| |
Collapse
|
26
|
Chen J, Huang Q, Li J, Yao Y, Sun W, Zhang Z, Qi H, Chen Z, Liu J, Zhao D, Mi J, Li X. Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115715. [PMID: 36108895 DOI: 10.1016/j.jep.2022.115715] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer (P. ginseng) is effective in the prevention and treatment of myocardial ischemia-reperfusion (I/R) injury. The mechanism by which P. ginseng exerts cardioprotective effects is complex. P. ginseng contains many pharmacologically active ingredients, such as molecular glycosides, polyphenols, and polysaccharides. P. ginseng and each of its active components can potentially act against myocardial I/R injury. Myocardial I/R was originally a treatment for myocardial ischemia, but it also induced irreversible damage, including oxygen-containing free radicals, calcium overload, energy metabolism disorder, mitochondrial dysfunction, inflammation, microvascular injury, autophagy, and apoptosis. AIM OF THE STUDY This study aimed to clarify the protective effects of P. ginseng and its active ingredients against myocardial I/R injury, so as to provide experimental evidence and new insights for the research and application of P. ginseng in the field of myocardial I/R injury. MATERIALS AND METHODS This review was based on a search of PubMed, NCBI, Embase, and Web of Science databases from their inception to February 21, 2022, using terms such as "ginseng," "ginsenosides," and "myocardial reperfusion injury." In this review, we first summarized the active ingredients of P. ginseng, including ginsenosides, ginseng polysaccharides, and phytosterols, as well as the pathophysiological mechanisms of myocardial I/R injury. Importantly, preclinical models with myocardial I/R injury and potential mechanisms of these active ingredients of P. ginseng for the prevention and treatment of myocardial disorders were generally summarized. RESULTS P. ginseng and its active components can regulate oxidative stress related proteins, inflammatory cytokines, and apoptosis factors, while protecting the myocardium and preventing myocardial I/R injury. Therefore, P. ginseng can play a role in the prevention and treatment of myocardial I/R injury. CONCLUSIONS P. ginseng has a certain curative effect on myocardial I/R injury. It can prevent and treat myocardial I/R injury in several ways. When ginseng exerts its effects, should be based on the theory of traditional Chinese medicine and with the help of modern medicine; the clinical efficacy of P. ginseng in preventing and treating myocardial I/R injury can be improved.
Collapse
Affiliation(s)
- Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Weichen Sun
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhaoqiang Chen
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jiaqi Liu
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jia Mi
- Department of Endocrinology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| | - Xiangyan Li
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
27
|
Guo C, Lyu Y, Xia S, Ren X, Li Z, Tian F, Zheng J. Organic extracts in PM2.5 are the major triggers to induce ferroptosis in SH-SY5Y cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114350. [PMID: 36508794 DOI: 10.1016/j.ecoenv.2022.114350] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
As a major air pollutant, PM2.5 can induce apoptosis of nerve cells, causing impairment of the learning and memory capabilities of humans and animals. Ferroptosis is a newly discovered way of programmed cell death. It is unclear whether the neurotoxicity induced by PM2.5 is related to the ferroptosis of nerve cells. In this study, we observed the changes in ferroptosis hallmarks of SH-SY5Y cells after exposure to various doses (40, 80, and 160 μg/mL PM2.5) for 24 h, exposure to 40 μg/mL PM2.5 for various times (24, 48, and 72 h), as well as exposure to various components (Po, organic extracts; Pw, water-soluble extracts; Pc, carbon core component). The results showed that PM2.5 reduced the cell viability, the content of GSH, and the activity of GSH-PX and SOD in SH-SY5Y cells with exposure dose and duration increasing. On the other hand, PM2.5 increased the content of iron, MDA, and the level of lipid ROS in SH-SY5Y cells with exposure dose and duration increasing. Additionally, PM2.5 reduced the expression levels of HO-1, NRF2, SLC7A11, and GPX4. The ferroptosis inhibitors Fer-1 and DFO significantly increase the cells viabilities and significantly reversed the changes of other above ferroptosis hallmarks. We also observed the different effects on ferroptosis hallmarks in the SH-SY5Y cells exposed to PM2.5 (160 μg/mL) and its various components (organic extracts, water-soluble extracts, and carbon core) for 24 h. We found that only the organic extracts shared similar results with PM2.5 (160 μg/mL). This study demonstrated that PM2.5 induced ferroptosis of SH-SY5Y cells, and organic extracts might be the primary component that caused ferroptosis.
Collapse
Affiliation(s)
- CanCan Guo
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - Yi Lyu
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China; Department of Biochemistry and Molecular Biology, School of Preclinical Medicine in Shanxi Medical University, Taiyuan 030001, China
| | - ShuangShuang Xia
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - XueKe Ren
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - ZhaoFei Li
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - FengJie Tian
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China
| | - JinPing Zheng
- Department of Health Toxicology, School of Public Health in Shanxi Medical University, Taiyuan 030001, China; Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, China.
| |
Collapse
|
28
|
Zhao Q, Sun X, Zheng C, Xue C, Jin Y, Zhou N, Sun S. The evolutionarily conserved hif-1/bnip3 pathway promotes mitophagy and mitochondrial fission in crustacean testes during hypoxia. Am J Physiol Regul Integr Comp Physiol 2023; 324:R128-R142. [PMID: 36468826 DOI: 10.1152/ajpregu.00212.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hypoxia-inducible factor 1 (HIF-1) cascade is an ancient and strongly evolutionarily conserved signaling pathway that is involved in the hypoxic responses of most metazoans. Despite immense advances in the understanding of the HIF-1-mediated regulation of hypoxic responses in mammals, the contribution of the hif-1 cascade in the hypoxic adaptation of nonmodel invertebrates remains unclear. In this study, we used the oriental river prawn Macrobrachium nipponense for investigating the roles of hif-1-regulated mitophagy in crustacean testes under hypoxic conditions. We identified that the Bcl-2/adenovirus E1B 19-kDa interacting protein (bnip3) functions as a regulator of mitophagy in M. nipponense and demonstrated that hif-1α activates bnip3 by binding to the bnip3 promoter. Hif-1α knockdown suppressed the expression of multiple mitophagy-related genes, and prawns with hif-1α knockdown exhibited higher mortality under hypoxic conditions. We observed that the levels of BNIP3 were induced under hypoxic conditions and detected that bnip3 knockdown inhibited the mitochondrial translocation of dynamin-related protein 1 (drp1), which is associated with mitochondrial fission. Notably, bnip3 knockdown inhibited hypoxia-induced mitophagy and aggravated the deleterious effects of hypoxia-induced reactive oxygen species (ROS) production and apoptosis. The experimental studies demonstrated that hypoxia induced mitochondrial fission in M. nipponense via drp1. Altogether, the study elucidated the mechanism underlying hif-1/bnip3-mediated mitochondrial fission and mitophagy and demonstrated that this pathway protects crustaceans against ROS production and apoptosis induced by acute hypoxia.
Collapse
Affiliation(s)
- Qianqian Zhao
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Xichao Sun
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Cheng Zheng
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Cheng Xue
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Yiting Jin
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, People's Republic of China
| | - Shengming Sun
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, People's Republic of China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Xu J, Pi J, Zhang Y, Zhou J, Zhang S, Wu S. Effects of Ferroptosis on Cardiovascular Diseases. Mediators Inflamm 2023; 2023:6653202. [PMID: 37181809 PMCID: PMC10175025 DOI: 10.1155/2023/6653202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
Ferroptosis is a novel form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which causes membrane injury. Under the catalysis of iron ions, cells deficient in glutathione peroxidase (GPX4) cannot preserve the balance in lipid oxidative metabolism, and the buildup of reactive oxygen species on the membrane lipids leads to cell death. An increasing body of evidence suggests that ferroptosis plays a significant role in the development and occurrence of cardiovascular diseases. In this paper, we mainly elaborated on the molecular mechanisms regulating ferroptosis and its impact on cardiovascular disease to lay the groundwork for future studies on the prophylaxis and treatment of this patient population.
Collapse
Affiliation(s)
- Jiayi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinkui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanjing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinhan Zhou
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuxia Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sisi Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
30
|
Dai HY, Chang MX, Sun L. HOTAIRM1 knockdown reduces MPP +-induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway. Transl Neurosci 2023; 14:20220296. [PMID: 37529170 PMCID: PMC10388137 DOI: 10.1515/tnsci-2022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023] Open
Abstract
Objective Parkinson's disease (PD) is the second most common neurodegenerative disease with complex pathogenesis. Although HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) is upregulated in PD, its exact role in HOTAIRM1 is seldom reported. The purpose of this study is to research the effect of HOTAIRM1 on 1-methyl-4-phenylpyridonium (MPP+)-induced cytotoxicity and oxidative stress in SH-SY5Y cells. Methods SH-SY5Y cells were treated with MPP+ at various concentrations or time points to induce SH-SY5Y cytotoxicity, so as to determine the optimal MPP+ concentration and time point. HOTAIRM1 expression upon MPP+ treatment was analyzed through qRT-PCR. Next, HOTAIRM1 was downregulated to observe the variance of SH-SY5Y cell viability, apoptosis, oxidative stress-related indexes, and protein levels of the Nrf2/HO-1 pathway. In addition, rescue experiments were carried out to assess the role of Nrf2 silencing in HOTAIRM1 knockdown on MPP+-induced oxidative stress in SH-SY5Y cells. Results MPP+ treatment-induced cytotoxicity and upregulated HOTAIRM1 expression in SH-SY5Y cells in a dose- and time-dependent manner. Mechanically, HOTAIRM1 knockdown enhanced cell viability, limited apoptosis, and oxidative stress, therefore protecting SH-SY5Y cells from MPP+-induced SH-SY5Y cytotoxicity. On the other hand, HOTAIRM1 knockdown activated the protein levels of Nrf2 and HO-1. Nrf2 silencing could counteract the neuroprotective effect of HOTAIRM1 knockdown on in vitro PD model. Conclusion Our data demonstrated that HOTAIRM1 knockdown could inhibit apoptosis and oxidative stress and activated the Nrf2/HO-1 pathway, therefore exerting neuroprotective effect on the PD cell model.
Collapse
Affiliation(s)
- Hui-Yu Dai
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ming-Xiu Chang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ling Sun
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
31
|
Nadeem RI, Aboutaleb AS, Younis NS, Ahmed HI. Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways. TOXICS 2023; 11:48. [PMID: 36668774 PMCID: PMC9865818 DOI: 10.3390/toxics11010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Gentamicin (GNT) is the most frequently used aminoglycoside. However, its therapeutic efficacy is limited due to nephrotoxicity. Thus, the potential anticipatory effect of Diosmin (DIOS) against GNT-prompted kidney damage in rats together with the putative nephroprotective pathways were scrutinized. Four groups of rats were used: (1) control; (2) GNT only; (3) GNT plus DIOS; and (4) DIOS only. Nephrotoxicity was elucidated, and the microRNA-21 (miR-21) and microRNA-155 (miR-155) expression and Nrf2/HO-1 and p38-MAPK/NF-κB pathways were assessed. GNT provoked an upsurge in the relative kidney weight and serum level of urea, creatinine, and KIM-1. The MDA level was markedly boosted, with a decline in the level of TAC, SOD, HO-1, and Nrf2 expression in the renal tissue. Additionally, GNT exhibited a notable amplification in TNF-α, IL-1β, NF-κB p65, and p38-MAPK kidney levels. Moreover, caspase-3 and BAX expression were elevated, whereas the Bcl-2 level was reduced. Furthermore, GNT resulted in the down-regulation of miR-21 expression along with an up-regulation of the miR-155 expression. Histological examination revealed inflammation, degradation, and necrosis. GNT-provoked pathological abnormalities were reversed by DIOS treatment, which restored normal kidney architecture. Hence, regulating miR-21 and -155 expression and modulating Nrf2/HO-1 and p38-MAPK/NF-κB pathways could take a vital part in mediating the reno-protective effect of DIOS.
Collapse
Affiliation(s)
- Rania I. Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Amany S. Aboutaleb
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, Faculty of Clinical Pharmacy, King Faisal University, Al-Ahsa, Al-Hofuf 31982, Saudi Arabia
| | - Hebatalla I. Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| |
Collapse
|
32
|
Wu X, Wei J, Yi Y, Gong Q, Gao J. Activation of Nrf2 signaling: A key molecular mechanism of protection against cardiovascular diseases by natural products. Front Pharmacol 2022; 13:1057918. [PMID: 36569290 PMCID: PMC9772885 DOI: 10.3389/fphar.2022.1057918] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are a group of cardiac and vascular disorders including myocardial ischemia, congenital heart disease, heart failure, hypertension, atherosclerosis, peripheral artery disease, rheumatic heart disease, and cardiomyopathies. Despite considerable progress in prophylaxis and treatment options, CVDs remain a leading cause of morbidity and mortality and impose an extremely high socioeconomic burden. Oxidative stress (OS) caused by disequilibrium in the generation of reactive oxygen species plays a crucial role in the pathophysiology of CVDs. Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor of endogenous antioxidant defense systems against OS, is considered an ideal therapeutic target for management of CVDs. Increasingly, natural products have emerged as a potential source of Nrf2 activators with cardioprotective properties and may therefore provide a novel therapeutic tool for CVD. Here, we present an updated comprehensive summary of naturally occurring products with cardioprotective properties that exert their effects by suppression of OS through activation of Nrf2 signaling, with the aim of providing useful insights for the development of therapeutic strategies exploiting natural products.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
33
|
Kostyuk SV, Ershova ES, Martynov AV, Artyushin AV, Porokhovnik LN, Malinovskaya EM, Jestkova EM, Zakharova NV, Kostyuk GP, Izhevskaia VL, Kutsev SI, Veiko NN. In Vitro Analysis of Biological Activity of Circulating Cell-Free DNA Isolated from Blood Plasma of Schizophrenic Patients and Healthy Controls-Part 2: Adaptive Response. Genes (Basel) 2022; 13:genes13122283. [PMID: 36553550 PMCID: PMC9777734 DOI: 10.3390/genes13122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidized in vitro genomic DNA (gDNA) is known to launch an adaptive response in human cell cultures. The cfDNA extracted from the plasma of schizophrenic patients (sz-cfDNA) and healthy controls (hc-cfDNA) contains increased amounts of 8-oxodG, a DNA-oxidation marker. The aim of the research was answering a question: can the human cfDNA isolated from blood plasma stimulate the adaptive response in human cells? In vitro responses of ten human skin fibroblasts (HSFs) and four peripheral blood mononuclear cell (PBMC) lines after 1-24 h of incubation with sz-cfDNA, gDNA and hc-cfDNA containing different amounts of 8-oxodG were examined. Expressions of RNA of eight genes (NOX4, NFE2L2, SOD1, HIF1A, BRCA1, BRCA2, BAX and BCL2), six proteins (NOX4, NRF2, SOD1, HIF1A, γH2AX and BRCA1) and DNA-oxidation marker 8-oxodG were analyzed by RT-qPCR and flow cytometry (when analyzing the data, a subpopulation of lymphocytes (PBL) was identified). Adding hc-cfDNA or sz-cfDNA to HSFs or PBMC media in equal amounts (50 ng/mL, 1-3 h) stimulated transient synthesis of free radicals (ROS), which correlated with an increase in the expressions of NOX4 and SOD1 genes and with an increase in the levels of the markers of DNA damage γH2AX and 8-oxodG. ROS and DNA damage induced an antioxidant response (expression of NFE2L2 and HIF1A), DNA damage response (BRCA1 and BRCA2 gene expression) and anti-apoptotic response (changes in BAX and BCL2 genes expression). Heterogeneity of cells of the same HSFs or PBL population was found with respect to the type of response to (sz,hc)-cfDNA. Most cells responded to oxidative stress with an increase in the amount of NRF2 and BRCA1 proteins along with a moderate increase in the amount of NOX4 protein and a low amount of 8-oxodG oxidation marker. However, upon the exposure to (sz,hc)-cfDNA, the size of the subpopulation with apoptosis signs (high DNA damage degree, high NOX4 and low NRF2 and BRCA1 levels) also increased. No significant difference between the responses to sz-cfDNA and hc-cfDNA was observed. Sz-cfDNA and hc-cfDNA showed similarly high bioactivity towards fibroblasts and lymphocytes. Conclusion: In cultured human cells, hc-cfDNA and sz-cfDNA equally stimulated an adaptive response aimed at launching the antioxidant, repair, and anti-apoptotic processes. The mediator of the development of the adaptive response are ROS produced by, among others, NOX4 and SOD1 enzymes.
Collapse
Affiliation(s)
- Svetlana V. Kostyuk
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Elizaveta S. Ershova
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Andrey V. Martynov
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Andrey V. Artyushin
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Lev N. Porokhovnik
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
- Correspondence:
| | - Elena M. Malinovskaya
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Elizaveta M. Jestkova
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Natalia V. Zakharova
- N. A. Alekseev Clinical Psychiatric Hospital No 1, Moscow Healthcare Department, 117152 Moscow, Russia
| | - George P. Kostyuk
- N. A. Alekseev Clinical Psychiatric Hospital No 1, Moscow Healthcare Department, 117152 Moscow, Russia
| | - Vera L. Izhevskaia
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Sergey I. Kutsev
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Natalia N. Veiko
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
34
|
Tan YQ, Lin F, Ding YK, Dai S, Liang YX, Zhang YS, Li J, Chen HW. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154458. [PMID: 36152591 DOI: 10.1016/j.phymed.2022.154458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Scutellaria baicalensis, a medicinal herb belonging to the Lamiaceae family, has been recorded in the Chinese, European, and British Pharmacopoeias. The medicinal properties of this plant are attributed to the total flavonoids of Scutellaria baicalensis (TFSB), particularly the main component, baicalin. This study provides a systematic and comprehensive list of the identified TFSB components and their chemical structures. The quality control process, pharmacokinetics, clinical application, and safety of Scutellaria baicalensis are discussed, and its pharmacological effect on cardiovascular diseases (CVDs) is detailed. Finally, the future research trends and prospects of this medicinal plant are provided. METHODS The Chinese and English papers related to TFSB were collected from the PubMed and CNKI databases using the relevant keywords. To highlight the pharmacological mechanism, clinical application, and safety of TFSB, the collected articles were screened and classified based on their research content. RESULTS TFSB contains at least 100 different kinds of flavonoids, of which baicalin, baicalein, wogonin, wogonoside, scutellarin, and scutellarein are the main active ingredients. The preparation process of TFSB is relatively well established, and the extraction rate can be significantly increased by enzymatic pretreatment and ultrasonication. The low oral availability of TFSB may be effectively enhanced using nanoformulations. The available pharmacokinetic data show that flavonoid glycosides and aglycones with the same parent nucleus may be converted to structures that are conducive to absorption in vivo. Moreover, TFSB can protect against CVDs by inhibiting apoptosis, regulating oxidative stress response, participating in inflammatory response, protecting against myocardial fibrosis, inhibiting myocardial hypertrophy, and regulating blood vessels. In terms of clinical application and animal safety, the available studies show that TFSB can be applied in a wide range of clinical treatments and is safe to use is animals. CONCLUSION This article systematically reviews the therapeutic effect and underlying pharmacological mechanism of TFSB against CVDs. The available studies clearly suggest that TFSB has great potential for the treatment of CVDs and is worthy of in-depth research and development.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Lin
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100 Henan, China
| | - Yu-Kun Ding
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Cardiology, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Shuang Dai
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying-Xin Liang
- Traditional Chinese Medicine Orthopedics, Liuzhou Worker's Hospital, Liuzhou 545007, China
| | - Yun-Shu Zhang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Heng-Wen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
35
|
Hydroxysafflor Yellow A Exerts Neuroprotective Effects via HIF-1α/BNIP3 Pathway to Activate Neuronal Autophagy after OGD/R. Cells 2022; 11:cells11233726. [PMID: 36496986 PMCID: PMC9736542 DOI: 10.3390/cells11233726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
In the process of ischemic stroke (IS), cellular macroautophagy/autophagy and apoptosis play a vital role in neuroprotection against it. Therefore, regulating their balance is a potential therapeutic strategy. It has been proved that hydroxysafflor yellow A (HSYA) has anti-inflammatory and antioxidant effects, which can both protect neurons. By exploring bioinformatics combined with network pharmacology, we found that HIF1A and CASP3, key factors regulating autophagy and apoptosis, may be important targets of HSYA for neuroprotection in an oxygen glucose deprivation and reperfusion (OGD/R) model. In this study, we explored a possible new mechanism of HSYA neuroprotection in the OGD/R model. The results showed that OGD/R increased the expression of HIF1A and CASP3 in SH-SY5Y cells and induced autophagy and apoptosis, while HSYA intervention further promoted the expression of HIF1A and inhibited the level of CASP3, accompanied by an increase in autophagy and a decrease in apoptosis in SH-SY5Y cells. The inhibition of HIF1A diminished the activation of autophagy induced with HSYA, while the inhibition of autophagy increased cell apoptosis and blocked the neuroprotective effect of HSYA, suggesting that the neuroprotective effect of HSYA should be mediated by activating the HIF1A/BNIP3 signaling pathway to induce autophagy. These results demonstrate that HSYA may be a promising agent for treating IS.
Collapse
|
36
|
Wei Q, Hao X, Lau BWM, Wang S, Li Y. Baicalin regulates stem cells as a creative point in the treatment of climacteric syndrome. Front Pharmacol 2022; 13:986436. [DOI: 10.3389/fphar.2022.986436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Graphical AbstractThis review summarizes the regulatory role of Baicalin on the diverse behaviors of distinct stem cell populations and emphasizes the potential applications of Baicalin and stem cell therapy in climacteric syndrome.
Collapse
|
37
|
Zheng D, Chen L, Li G, Jin L, Wei Q, Liu Z, Yang G, Li Y, Xie X. Fucoxanthin ameliorated myocardial fibrosis in STZ-induced diabetic rats and cell hypertrophy in HG-induced H9c2 cells by alleviating oxidative stress and restoring mitophagy. Food Funct 2022; 13:9559-9575. [PMID: 35997158 DOI: 10.1039/d2fo01761j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetic cardiomyopathy (DCM) is one of the leading causes of death in diabetic patients, and is accompanied by increased oxidative stress and mitochondrial dysfunction. Fucoxanthin (FX), as a marine carotenoid, possesses strong antioxidant activity. The main purpose of our study was to explore whether FX could attenuate experimental cardiac hypertrophy by affecting mitophagy and oxidative stress. We found that FX improved lipid metabolism, myocardial damage, myocardial fibrosis and hypertrophy in the myocardial tissue of STZ-induced diabetic rats. Additionally, FX upregulated Nrf2 signaling to reduce the level of reactive oxygen species (ROS). FX also promoted Bnip3/Nix signaling to improve mitochondrial function and reduced the levels of mitochondrial and intracellular ROS, thereby reversing HG-induced H9c2 cell hypertrophy. However, treatment with the autophagy inhibitor CQ abolished the anti-hypertrophic effect of FX, accompanied by impaired mitochondrial function and increased ROS levels. In conclusion, we found that FX reduced the accumulation of TGF-β1, FN and α-SMA to relieve myocardial fibrosis in STZ-induced diabetic rats, and FX up-regulated Bnip3/Nix to promote mitophagy and enhanced Nrf2 signaling to alleviate oxidative stress, thereby inhibiting hypertrophy in HG-induced H9c2 cells. These results imply that FX may be developed as a functional food for DCM.
Collapse
Affiliation(s)
- Dongxiao Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Linlin Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Guoping Li
- Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Lin Jin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qihui Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zilue Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Guanyu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yuanyuan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
38
|
Formal Meta-Analysis of Hypoxic Gene Expression Profiles Reveals a Universal Gene Signature. Biomedicines 2022; 10:biomedicines10092229. [PMID: 36140330 PMCID: PMC9496516 DOI: 10.3390/biomedicines10092229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Integrating transcriptional profiles results in identifying gene expression signatures that are more robust than those obtained for individual datasets. However, a direct comparison of datasets derived from heterogeneous experimental conditions is problematic, hence their integration requires applying of specific meta-analysis techniques. The transcriptional response to hypoxia has been the focus of intense research due to its central role in tissue homeostasis and prevalent diseases. Accordingly, many studies have determined the gene expression profile of hypoxic cells. Yet, despite this wealth of information, little effort has been made to integrate these datasets to produce a robust hypoxic signature. We applied a formal meta-analysis procedure to datasets comprising 430 RNA-seq samples from 43 individual studies including 34 different cell types, to derive a pooled estimate of the effect of hypoxia on gene expression in human cell lines grown ingin vitro. This approach revealed that a large proportion of the transcriptome is significantly regulated by hypoxia (8556 out of 20,888 genes identified across studies). However, only a small fraction of the differentially expressed genes (1265 genes, 15%) show an effect size that, according to comparisons to gene pathways known to be regulated by hypoxia, is likely to be biologically relevant. By focusing on genes ubiquitously expressed, we identified a signature of 291 genes robustly and consistently regulated by hypoxia. Overall, we have developed a robust gene signature that characterizes the transcriptomic response of human cell lines exposed to hypoxia in vitro by applying a formal meta-analysis to gene expression profiles.
Collapse
|
39
|
FAT10 Combined with Miltefosine Inhibits Mitochondrial Apoptosis and Energy Metabolism in Hypoxia-Induced H9C2 Cells by Regulating the PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4388919. [PMID: 36034957 PMCID: PMC9410791 DOI: 10.1155/2022/4388919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
Hypoxia-induced cardiomyocyte apoptosis is the main contributor to heart diseases. Human leukocyte antigen F-associated transcript 10 (FAT10), the small ubiquitin-like protein family subtype involved in apoptosis, is expressed in the heart and exhibits cardioprotective functions. This study explored the impact of FAT10 on hypoxia-induced cardiomyocyte apoptosis and the involved mechanisms. The cardiomyocyte cell line H9C2 was cultivated in hypoxia-inducing conditions (94% N2, 5% CO2, and 1% O2) and the expression of FAT10 in hypoxia-stimulated H9C2 cells was identified. For this, FAT10 overexpression/interference vectors were exposed to transfection into H9C2 cells with/without the PI3K/AKT inhibitor, miltefosine. The results indicated that hypoxia exposure decreased the FAT10 expression, suppressed H9C2 cell growth, disrupted mitochondrial metabolism, and promoted H9C2 cell apoptosis and oxidative stress. However, these impacts were reversed by the FAT10 overexpression. In addition, the inhibition of PI3K/AKT in FAT10-overexpressing cells suppressed cell proliferation, impaired mitochondrial metabolism, and promoted apoptosis and oxidative stress response. The findings demonstrated that FAT10 inhibited mitochondrial apoptosis and energy metabolism in hypoxia-stimulated H9C2 cells through the PI3K/AKT pathway. This finding can be utilized for developing therapeutic targets for treating heart disorders associated with hypoxia-induced apoptosis.
Collapse
|
40
|
Lu Q, Zhou L, Wang Z, Li X, Ding L, Qiu Y, Guo P, Ye C, Fu S, Wu Z, Liu Y. Baicalin Alleviate Apoptosis via PKC-MAPK Pathway in Porcine Peritoneal Mesothelial Cells Induced by Glaesserella parasuis. Molecules 2022; 27:molecules27165083. [PMID: 36014323 PMCID: PMC9414593 DOI: 10.3390/molecules27165083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Glaesserella parasuis (GPS), a causative agent of Glässer’s disease, is thought to be the main fatal cause of peritonitis in swine, thus resulting in high mortality and morbidity and significant economic losses to the swine industry. However, the mechanisms of GPS infection-induced apoptosis and possible therapeutic pathway for GPS infection in peritonitis remain unclear. Baicalin has important biological functions during disease treatment, such as antiviral, bacterial inhibition, anti-apoptosis, and anti-inflammatory. However, whether baicalin has anti-apoptotic effects during the process of GPS infection in peritonitis is unclear. In the present study, the anti-apoptotic effect and mechanisms of baicalin in GPS infection-induced apoptosis were investigated in porcine peritoneal mesothelial cells (PPMC). The results showed that baicalin could inhibit the apoptosis rate occurrence of PPMC induced by GPS to various degrees and inhibit the expression of apoptosis-related genes and cleaved caspase-3. Meanwhile, baicalin significantly antagonized the expression of p-JNK, p-p38, and p-ERK induced by GPS in PPMC. These findings for the first time demonstrate that baicalin exerted the effect of antagonizing GPS induced apoptosis in PPMC by inhibiting the activation of the PKC-MAPK pathway and could be a therapeutic option in the management of GPS infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yu Liu
- Correspondence: or ; Tel.: +86-27-83956175; Fax: +86-27-83956175
| |
Collapse
|
41
|
Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022; 22:241. [PMID: 35906617 PMCID: PMC9336077 DOI: 10.1186/s12935-022-02660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Exosomes Derived from Baicalin-Pretreated Mesenchymal Stem Cells Alleviate Hepatocyte Ferroptosis after Acute Liver Injury via the Keap1-NRF2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8287227. [PMID: 35910831 PMCID: PMC9334037 DOI: 10.1155/2022/8287227] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
Abstract
Acute liver injury (ALI) is characterized as a severe metabolic dysfunction caused by extensive damage to liver cells. Ferroptosis is a type of cell death dependent on iron and oxidative stress, which differs from classical cell death, such as apoptosis and necrosis. Ferroptosis has unique morphological features, which mainly include mitochondrial dissolution and mitochondrial outline reduction. Furthermore, the intracellular accumulation of lipid peroxides directly affects the occurrence of ferroptosis. Baicalin, the main compound isolated from Scutellaria baicalensis, has anti-inflammatory and antioxidative effects. Recently, exosomes derived from preconditioned mesenchymal stem cells (MSCs) have shown great potential in the treatment of various diseases including ALI. This study investigates the ability of exosomes derived from baicalin-pretreated MSCs (Ba-Exo) to promote liver function recovery in mice with ALI compared with those without pretreatment. Through in vivo and in vitro experiments, this study demonstrates for the first time that Ba-Exo greatly attenuates D-galactosamine and lipopolysaccharide (D-GaIN/LPS)-induced liver damage and inhibits reactive oxygen species (ROS) production and lipid peroxide-induced ferroptosis. Moreover, P62 was significantly upregulated in Ba-Exo, whereas its downregulation in Ba-Exo counteracted the beneficial effect of Ba-Exo. P62 regulates hepatocyte ferroptosis by activating the Keap1-NRF2 pathway. The beneficial effect of Ba-Exo in inhibiting ferroptosis was also attenuated after the NRF2 pathway was inhibited. Therefore, baicalin pretreatment is an effective and promising approach to optimize the therapeutic efficacy of MSC-derived exosomes in ALI.
Collapse
|
43
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
44
|
MTA1 aggravates experimental colitis in mice by promoting transcription factor HIF1A and up-regulating AQP4 expression. Cell Death Dis 2022; 8:298. [PMID: 35764613 PMCID: PMC9240051 DOI: 10.1038/s41420-022-01052-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022]
Abstract
Experimental colitis can persist as a chronic disease, accompanied with an underlying risk of development into colorectal cancer. Metastasis-associated protein 1 (MTA1), as a chromatin modifier, exerts notable association with multiple diseases, including colitis. The current study aims to investigate the mechanism of MTA1/HIF1A/AQP4 axis in experimental colitis in mice. First, experimental colitis mouse models were established using dextran sulfate sodium (DSS) and in vitro colonic epithelial cells FHC inflammation models were with lipopolysaccharide (LPS) for determination of MTA1 and HIF1A expressions. It was found that MTA1 and HIF1A were both highly-expressed in experimental colitis samples. Results of dual-luciferase reporter gene assay and ChIP assay further revealed that MTA1 activated HIF1A, and subsequently induced AQP4 transcription to up-regulate AQP4 in experimental colitis. Following loss- and gain-function, the effects of MTA1/HIF1A/AQP4 axis on apoptosis and viability of colon epithelial cells were detected by a combination of TUNEL staining and flow cytometry, and CCK-8 assay. It was observed that silencing of MAT1 in the FHC and NCM460 cells reduced IL-1β and TNF-α expressions induced by LPS. Meanwhile, AQP4 promoted LPS-induced inflammation, and exacerbated apoptosis of colon epithelial cells and augmented experimental colitis development in mice. In vivo experiments further verified that TGN-020 treatment effectively alleviated DSS-induced experimental colitis in mice and diminished apoptosis of colon epithelial cells. Altogether, MTA1 may promote AQP4 transcription by activating HIF1A, thus exacerbating DSS-induced experimental colitis in mice, which provides a novel direction for the treatment of experimental colitis.
Collapse
|
45
|
Cheng L, Fan Y, Cheng J, Wang J, Liu Q, Feng Z. Long non-coding RNA ZFY-AS1 represses periodontitis tissue inflammation and oxidative damage via modulating microRNA-129-5p/DEAD-Box helicase 3 X-linked axis. Bioengineered 2022; 13:12691-12705. [PMID: 35659193 PMCID: PMC9275892 DOI: 10.1080/21655979.2021.2019876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A large number of studies have manifested long non-coding RNA (lncRNA) is involved in the modulation of the development of periodontitis, but the specific mechanism has not been fully elucidated. The purpose of this study was to explore the biological function and latent molecular mechanism of lncZFY-AS1 in periodontitis. The results clarified lncZFY-AS1 and DEAD-Box Helicase 3 X-Linked (DDX3X) were up-regulated, but microRNA (miR)-129-5p was down-regulated in periodontitis. Knockdown of lncZFY-AS2 or overexpression of miR-129-5p decreased macrophage infiltration and periodontal membrane cell apoptosis, increased cell viability, repressed inflammatory factors and nuclear factor kappa B activation, reduced oxidative stress, but promoted nuclear factor-E2-related factor 2/heme oxygenase 1 expression. LncZFY-AS1 elevation further aggravated periodontitis inflammation, oxidative stress, and apoptosis. LncZFY competitively adsorbed miR-129-5p to mediate DDX3X expression. Knockdown lncZFY’s improvement effect on periodontitis was reversed by depressive miR-129-5p or enhancive DDX3X. In conclusion, these data suggest lncZFY-AS1 promotes inflammatory injury and oxidative stress in periodontitis by competitively binding to miR-129-5p and mediating DDX3X expression. LncZFY-AS1/miR-129-5p/DDX3X may serve as a novel molecular target for treatment of periodontitis in the future.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - YuLing Fan
- Department of Stomatology, School of Stomatology, Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Jue Cheng
- Department of Stomatology, The Community Health Service Center of Beijing Jiao Tong University, Beijing City, China
| | - Jun Wang
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - Qingmei Liu
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - ZhiYuan Feng
- Department of Orthodontics, Shanxi Provincial People’s Hospital, Taiyuan City, Shanxi Province, China
| |
Collapse
|
46
|
Liang Y, Jie H, Liu Q, Li C, Xiao R, Xing X, Sun J, Yu S, Hu Y, Xu GH. Knockout of circRNA single stranded interacting protein 1 (circRBMS1) played a protective role in myocardial ischemia-reperfusion injury though inhibition of miR-2355-3p/Mammalian Sterile20-like kinase 1 (MST1) axis. Bioengineered 2022; 13:12726-12737. [PMID: 35611768 PMCID: PMC9275998 DOI: 10.1080/21655979.2022.2068896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Evidence suggests circRBMS1 regulates mRNA to mediate cell apoptosis, inflammation, and oxidative stress in different diseases. MST1 is reported to be the target and activator of apoptosis-related molecules and signaling pathways. Hence, the present study aims to investigate the role of circ-RBMS1/miR-2355-3p/MST1 in the development of I/R injury. In vitro experiments showed increased circ-RBMS1 and decreased miR-2355-3p in H/R-induced HCMs. CircRBMS1 served as a sponge for miR-2355-3p and miR-2355-3p targeted MST1. Furthermore, knockout of circRBMS1 attenuated cell apoptosis, oxidized stress, and inflammation in H/R-induced HCMs. In vivo experiments indicated circRBMS1 knockdown attenuated cardiac function damage, cell apoptosis, oxidative stress injury and inflammatory response through miR-2355-3p/MST1 axis in mice. In summary, these results demonstrated circRBMS1 played a protective role in myocardial I/R injury though inhibition of miR-2355-3p/MST1 axis. It might provide a new therapeutic target for cardiac I/R injury.
Collapse
Affiliation(s)
- Yingping Liang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huanhuan Jie
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Liu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chang Li
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renjie Xiao
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xianliang Xing
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Sun
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuchun Yu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanhui Hu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guo-Hai Xu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
47
|
Yingrui W, Zheng L, Guoyan L, Hongjie W. Research progress of active ingredients of Scutellaria baicalensis in the treatment of type 2 diabetes and its complications. Biomed Pharmacother 2022; 148:112690. [DOI: 10.1016/j.biopha.2022.112690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
|
48
|
The Role of Endoplasmic Reticulum Stress and NLRP3 Inflammasome in Liver Disorders. Int J Mol Sci 2022; 23:ijms23073528. [PMID: 35408890 PMCID: PMC8998408 DOI: 10.3390/ijms23073528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle responsible for the synthesis, modification, folding and assembly of proteins; calcium storage; and lipid synthesis. When ER homeostatic balance is disrupted by a variety of physiological and pathological factors—such as glucose deficiency, environmental toxins, Ca2+ level changes, etc.—ER stress can be induced. Abnormal ER stress can be involved in many diseases. NOD-like receptor family pyrin domain-containing 3 (NLRP3), an intracellular receptor, can perceive internal and external stimuli. It binds to apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 to assemble into a protein complex called the NLRP3 inflammasome. Evidence indicates that ER stress and the NLRP3 inflammasome participate in many pathological processes; however, the exact mechanism remains to be understood. In this review, we summarized the role of ER stress and the NLRP3 inflammasome in liver disorders and analyzed the mechanisms, to provide references for future related research.
Collapse
|
49
|
Fan H, He J, Bai Y, He Q, Zhang T, Zhang J, Yang G, Xu Z, Hu J, Yao G. Baicalin improves the functions of granulosa cells and the ovary in aged mice through the mTOR signaling pathway. J Ovarian Res 2022; 15:34. [PMID: 35300716 PMCID: PMC8932175 DOI: 10.1186/s13048-022-00965-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Background The mammalian follicle is the basic functional unit of the ovary, and its normal development is required to obtaining oocytes capable of fertilization. As women get older or decline in ovarian function due to certain pathological factors, the growth and development of follicles becomes abnormal, which ultimately leads to infertility and other related female diseases. Kuntai capsules are currently used in clinical practice to improve ovarian function, and they contain the natural compound Baicalin, which is a natural compound with important biological activities. At present, the role and mechanism of Baicalin in the development of ovarian follicles is unclear. Methods Human primary granulosa cells collected from follicular fluid, and then cultured and treated with Baicalin or its normal control, assessed for viability, subjected to RT-PCR, western blotting, flow cytometry, and hormone analyses. The estrus cycle and oocytes of CD-1 mice were studied after Baicalin administration and compared with controls. Ovaries were collected from the mice and subjected to hematoxylin-eosin staining and immunohistochemistry analysis. Results We showed that Baicalin had a dose-dependent effect on granulosa cells cultured in vitro. A low concentration of Baicalin (for example, 10 μM) helped to maintain the viability of granulosa cells; however, at a concentration exceeding 50 μM, it exerted a toxic effect. A low concentration significantly improved the viability of granulosa cells and inhibited cell apoptosis, which may be related to the resultant upregulation of Bcl-2 expression and downregulation of Bax and Caspase 3. By constructing a hydrogen peroxide-induced cell oxidative stress damage model, we found that Baicalin reversed the cell damage caused by hydrogen peroxide. In addition, Baicalin increased the secretion of estradiol and progesterone by upregulating P450arom and stAR. The results of the in vivo experiment showed that the intragastric administration of Baicalin to aged mice improved the estrous cycle and oocyte quality. Furthermore, we observed that Baicalin enhanced the viability of granulosa cells through the mTOR pathway, which in turn improve ovarian function. Conclusion These results indicate that Baicalin could improve the viability of ovarian granulosa cells and the secretion of steroid hormones and thus could help to improve degenerating ovarian function and delay ovarian aging. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-00965-7.
Collapse
Affiliation(s)
- Huiying Fan
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiahuan He
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yucheng Bai
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qina He
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tongwei Zhang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junya Zhang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guang Yang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ziwen Xu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingyi Hu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guidong Yao
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
50
|
Luo Y, Liu L, Liao Y, Yang P, Liu X, Lu L, Chen J, Qu C. Multifunctional Baicalin-Modified Contact Lens for Preventing Infection, Regulating the Ocular Surface Microenvironment and Promoting Corneal Repair. Front Bioeng Biotechnol 2022; 10:855022. [PMID: 35309981 PMCID: PMC8926214 DOI: 10.3389/fbioe.2022.855022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Corneal injury inevitably leads to disruption of the ocular surface microenvironment, which is closely associated with delayed epithelial cell repair and the development of infection. Recently, drug-loaded therapeutic contact lenses have emerged as a new approach to treating corneal injury due to their advantages of relieving pain, promoting corneal repair, and preventing infection. However, few therapeutic contact lenses could modulate the ocular surface’s inflammation and oxidative stress microenvironment. To address this, in this study, we covalently immobilized multifunctional baicalin (BCL), a flavon molecular with anti-inflammatory, anti-oxidative stress, and antibacterial capabilities, onto the surface of the contact lens. The BCL-modified contact lens showed excellent optical properties, powerful antibacterial properties, and non-toxicity to endothelial cells. Furthermore, the BCL-modified contact lens could significantly modulate the ocular surface microenvironment, including inhibition of macrophage aggregation and resistance to epithelium damage caused by oxidative stress. In animal models, BCL-modified corneal contact lens effectively promoted corneal epithelial cells repair. These excellent properties suggested that multifunctional BCL molecules had great application potential in the surface engineering of ophthalmic medical materials.
Collapse
Affiliation(s)
- Yue Luo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- The Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Luying Liu
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Yuzhen Liao
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Xiaoqi Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Lei Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jiang Chen
- The Department of Neurosurgery, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Jiang Chen, ; Chao Qu,
| | - Chao Qu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- The Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Jiang Chen, ; Chao Qu,
| |
Collapse
|