1
|
Tran TH, Le TH, Tran TTP. The Potential Effect of Endogenous Antimicrobial Peptides in Cancer Immunotherapy and Prevention. J Pept Sci 2025; 31:e3664. [PMID: 39716371 DOI: 10.1002/psc.3664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 12/25/2024]
Abstract
Antimicrobial peptides (AMPs) are crucial constituents of inherent immunity and serve as vital components of human host defense, playing a pivotal role in combating invading microbial pathogens. Beyond their antimicrobial functions, AMPs also exhibit various other biological activities including apoptosis induction, wound healing promotion, and immune modulation. These peptides are found in various exposed tissues or surfaces throughout the body, such as eyes, skin, mouth, ears, respiratory tract, lungs, digestive, and urinary system. Additionally, certain AMPs such as LL-37, HNP, and lactoferrin have shown potential as candidates for anticancer activity. Given the limited selectivity between normal and cancer cells exhibited by many current immunotherapeutic agents, the inherent properties of AMPs make them promising candidates for cancer treatment. Their abundance, bioavailability, safety profile, efficiency, and harmony with the host immune system position them as attractive tools in the fight against cancer. This review is aimed at exploring the potential anticancer properties of AMPs and elucidating their relationship with immunology and cancer immunotherapy.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Thanh Huong Le
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi Thu Phuong Tran
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
2
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
3
|
Zhao L, Sun X, Hou C, Yang Y, Wang P, Xu Z, Chen Z, Zhang X, Wu G, Chen H, Xing H, Xie H, He L, Jin S, Liu B. CPNE7 promotes colorectal tumorigenesis by interacting with NONO to initiate ZFP42 transcription. Cell Death Dis 2024; 15:896. [PMID: 39695095 DOI: 10.1038/s41419-024-07288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related death globally. Also, there is still a lack of effective therapeutic strategies for CRC patients owing to a poor understanding of its pathogenesis. Here, we analysed differentially expressed genes in CRC and identified CPNE7 as a novel driver of colorectal tumorigenesis. CPNE7 is highly expressed in CRC and negatively correlated with patients' prognosis. Upregulation of CPNE7 promotes proliferation and metastasis of cancer cells in vitro and in vivo, and vice versa. Mechanistically, CPNE7 interacts with NONO to initiate ZFP42 transcription, thus promoting CRC progression. Moreover, ZFP42 knockdown inhibits tumor cell proliferation and migration while promoting apoptosis. Notably, delivery of CPNE7 shRNA or the small molecule gramicidin, which blocks the interaction between CPNE7 and NONO, hinders tumor growth in vivo. In conclusion, our findings demonstrate that the CPNE7-NONO-ZFP42 axis promotes colorectal tumorigenesis and may be a new potential therapeutic target.
Collapse
Affiliation(s)
- Liangbo Zhao
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Sun
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenying Hou
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanmei Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peiwen Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoyuan Xu
- First Clinical Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiangrui Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Guanghua Wu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong Chen
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Xing
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huimin Xie
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Luyun He
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Benyu Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
4
|
Dai H, Chen X, Yang J, Loiola RA, Lu A, Cheung KCP. Insights and therapeutic advances in pancreatic cancer: the role of electron microscopy in decoding the tumor microenvironment. Front Cell Dev Biol 2024; 12:1460544. [PMID: 39744013 PMCID: PMC11688199 DOI: 10.3389/fcell.2024.1460544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/23/2024] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer is one of the most lethal cancers, with a 5-year overall survival rate of less than 10%. Despite the development of novel therapies in recent decades, current chemotherapeutic strategies offer limited clinical benefits due to the high heterogeneity and desmoplastic tumor microenvironment (TME) of pancreatic cancer as well as inefficient drug penetration. Antibody- and nucleic acid-based targeting therapies have emerged as strong contenders in pancreatic cancer drug discovery. Numerous studies have shown that these strategies can significantly enhance drug accumulation in tumors while reducing systemic toxicity. Additionally, electron microscopy (EM) has been a critical tool for high-resolution analysis of the TME, providing insights into the ultrastructural changes associated with pancreatic cancer progression and treatment responses. This review traces the current and technological advances in EM, particularly the development of ultramicrotomy and improvements in sample preparation that have facilitated the detailed visualization of cellular and extracellular components of the TME. This review highlights the contribution of EM in assessing the efficacy of therapeutic agents, from revealing apoptotic changes to characterizing the effects of novel compounds like ionophore antibiotic gramicidin A on cellular ultrastructures. Moreover, the review delves into the potential of EM in studying the interactions between the tumor microbiome and cancer cell migration, as well as in aiding the development of targeted therapies like antibody-drug conjugates (ADCs) and aptamer-drug conjugates (ApDCs).
Collapse
Affiliation(s)
- Hong Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Xingxuan Chen
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Jiawen Yang
- School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | | | - Aiping Lu
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Kenneth C. P. Cheung
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Sun G, Shao Y, Ma Q, Song S, Chen Y, Li Y, Gao Y, Wang H, Shang Z. NFYA-mediated promotion of castration-resistant prostate cancer progression through EGR4 regulation. Discov Oncol 2024; 15:528. [PMID: 39367986 PMCID: PMC11456033 DOI: 10.1007/s12672-024-01392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
This research investigates the intricate involvement of nuclear Transcription Factor Y Subunit Alpha (NFYA) in the advancement of castration-resistant prostate cancer (CRPC) and its consequential impact on early Growth Response 4 (EGR4) expression. NFYA demonstrates a significant elevation in CRPC tissues and cell lines, displaying robust upregulation in metastatic prostate cancer (mPCa) samples, closely associated with the Gleason score. Immunohistochemistry validates heightened nuclear staining of NFYA in CRPC patients, highlighting its crucial role in the progression of advanced prostate cancer. Silencing NFYA through siRNA in androgen-independent cell lines markedly impedes cell growth and migration, emphasizing NFYA's pivotal role in promoting CRPC behavior. RNA-seq analysis identifies EGR4 as a downstream target of NFYA, with both genes consistently upregulated in CRPC. Validating this finding, heightened expression of EGR4 is observed in CRPC samples. In vivo studies utilizing a mouse model demonstrate that NFYA silencing substantially inhibits LNCaP-AI/22RV1shNFYA xenograft tumor growth, accompanied by reduced expression of EGR4 and Ki67. This comprehensive study reveals the multifaceted role of NFYA in CRPC progression, elucidates its downstream impact on EGR4, and underscores the therapeutic potential of targeting NFYA to inhibit CRPC growth in vivo. These findings contribute valuable insights into potential therapeutic strategies for managing CRPC.
Collapse
Affiliation(s)
- Guijiang Sun
- Department of Kidney Disease and Blood Purification, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yi Shao
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qianwang Ma
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shengju Song
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yutong Chen
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yang Li
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yue Gao
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Haitao Wang
- Department of Oncology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Zhiqun Shang
- Department of Kidney Disease and Blood Purification, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
6
|
Wang B, Zhang S, Wang H, Wang M, Tao Y, Ye M, Fan Z, Wang Y, Liu L. Identification of EGR4 as a prospective target for inhibiting tumor cell proliferation and a novel biomarker in colorectal cancer. Cancer Gene Ther 2024; 31:871-883. [PMID: 38459370 DOI: 10.1038/s41417-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
EGR4 (Early Growth Response 4) is a member of the EGR family, involving in tumorigenesis. However, the function and action mechanism of EGR4 in the pathogenesis of colorectal cancer (CRC) remain unclear. To address this, we assessed the prognosis of CRC based on EGR4 using the Kaplan-Meier plotter tool and tissue microarray. The abundance of immunoinfiltration was evaluated through ssGSEA, TISIDB, and TIMER. In vitro experiments involving knockdown or overexpression of EGR4 were performed, and RNA-sequencing was conducted to explore potential mechanisms. Furthermore, we used oxaliplatin and 5-fluorouracil to validate the impact of EGR4 on chemo-resistance. Pan-cancer analysis and tissue microarray showed that EGR4 was highly expressed in CRC and significantly correlated with an unfavorable prognosis. Moreover, EGR4 expression was associated with immunoinfiltration and cancer-associated fibroblasts in the CRC microenvironment. Functional enrichment demonstrated that high-expressional EGR4 were involved in chromatin and nucleosome assembly. Additionally, EGR4 promoted the proliferation of CRC cells. Mechanistically, EGR4 upregulated TNFα to activate the NF-κB signaling pathway, and its knockdown reduced p65 nuclear translocation. Importantly, combining shEGR4 with oxaliplatin and 5-fluorouracil significantly inhibited CRC proliferation. Taken together, these findings provide new insights into the potential prognosis and therapeutic targets of EGR4 in CRC.
Collapse
Affiliation(s)
- Bangting Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, China
| | - Shijie Zhang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Haiyang Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Min Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Yuwen Tao
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Mujie Ye
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Zhining Fan
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Yan Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China.
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, China.
| | - Li Liu
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University and Jiangsu Province Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Choi MS, Lee CY, Kim JH, Lee YM, Lee S, Kim HJ, Heo K. Gramicidin, a Bactericidal Antibiotic, Is an Antiproliferative Agent for Ovarian Cancer Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2059. [PMID: 38138162 PMCID: PMC10744341 DOI: 10.3390/medicina59122059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Gramicidin, a bactericidal antibiotic used in dermatology and ophthalmology, has recently garnered attention for its inhibitory actions against cancer cell growth. However, the effects of gramicidin on ovarian cancer cells and the underlying mechanisms are still poorly understood. We aimed to elucidate the anticancer efficacy of gramicidin against ovarian cancer cells. Materials and Methods: The anticancer effect of gramicidin was investigated through an in vitro experiment. We analyzed cell proliferation, DNA fragmentation, cell cycle arrest and apoptosis in ovarian cancer cells using WST-1 assay, terminal deoxynucleotidyl transferase dUTP nick and labeling (TUNEL), DNA agarose gel electrophoresis, flow cytometry and western blot. Results: Gramicidin treatment induces dose- and time-dependent decreases in OVCAR8, SKOV3, and A2780 ovarian cancer cell proliferation. TUNEL assay and DNA agarose gel electrophoresis showed that gramicidin caused DNA fragmentation in ovarian cancer cells. Flow cytometry demonstrated that gramicidin induced cell cycle arrest. Furthermore, we confirmed via Western blot that gramicidin triggered apoptosis in ovarian cancer cells. Conclusions: Our results strongly suggest that gramicidin exerts its inhibitory effect on cancer cell growth by triggering apoptosis. Conclusively, this study provides new insights into the previously unexplored anticancer properties of gramicidin against ovarian cancer cells.
Collapse
Affiliation(s)
- Min Sung Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (M.S.C.); (Y.M.L.); (S.L.)
| | - Chae Yeon Lee
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (C.Y.L.); (J.H.K.)
| | - Ji Hyeon Kim
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (C.Y.L.); (J.H.K.)
| | - Yul Min Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (M.S.C.); (Y.M.L.); (S.L.)
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (M.S.C.); (Y.M.L.); (S.L.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (C.Y.L.); (J.H.K.)
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (M.S.C.); (Y.M.L.); (S.L.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (C.Y.L.); (J.H.K.)
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyun Heo
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (M.S.C.); (Y.M.L.); (S.L.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (C.Y.L.); (J.H.K.)
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
8
|
Chen Y, Ai L, Zhang Y, Li X, Xu S, Yang W, Jin J, Ma Y, Hu Z, Zhang Y, Rong Y, Zhang S. The EZH2-H3K27me3 axis modulates aberrant transcription and apoptosis in cyclophosphamide-induced ovarian granulosa cell injury. Cell Death Discov 2023; 9:413. [PMID: 37963880 PMCID: PMC10646043 DOI: 10.1038/s41420-023-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Chemotherapy-induced ovarian damage and infertility are significant concerns for women of childbearing age with cancer; however, the underlying mechanisms are still not fully understood. Our study has revealed a close association between epigenetic regulation and cyclophosphamide (CTX)-induced ovarian damage. Specifically, CTX and its active metabolite 4-hydroperoxy cyclophosphamide (4-HC) were found to increase the apoptosis of granulosa cells (GCs) by reducing EZH2 and H3K27me3 levels, both in vivo and in vitro. Furthermore, RNA-seq and CUT&Tag analyses revealed that the loss of H3K27me3 peaks on promoters led to the overactivation of genes associated with transcriptional regulation and apoptosis, indicating that stable H3K27me3 status could help to provide a safeguard against CTX-induced ovarian damage. Administration of the H3K27me3-demethylase inhibitor, GSK-J4, prior to CTX treatment could partially mitigate GC apoptosis by reversing the reduction of H3K27me3 and the aberrant upregulation of specific genes involved in transcriptional regulation and apoptosis. GSK-J4 could thus potentially be a protective agent for female fertility when undergoing chemotherapy. The results provide new insights into the mechanisms for chemotherapy injury and future clinical interventions for fertility preservation.
Collapse
Affiliation(s)
- Yingyan Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Leilei Ai
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yingyi Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xiang Li
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Shiqian Xu
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Weijie Yang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jiamin Jin
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yerong Ma
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Zhanhong Hu
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yinli Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yan Rong
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China.
| | - Songying Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China.
| |
Collapse
|
9
|
Yang M, Liu S, Zhang C. Antimicrobial peptides with antiviral and anticancer properties and their modification and nanodelivery systems. CURRENT RESEARCH IN BIOTECHNOLOGY 2023. [DOI: 10.1016/j.crbiot.2023.100121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
10
|
Carvalho J. A computational model of cell membrane bioelectric polarization and depolarization, connected with cell proliferation, in different tissue geometries. J Theor Biol 2023; 557:111338. [PMID: 36343668 DOI: 10.1016/j.jtbi.2022.111338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A reliable theory of biological tissues growth and organization, a fundamental tool for a comprehensive interpretation of experimental observations and a guide to progress in life sciences, is definitively missing. This would support the advancement of knowledge for both normal and pathological expansion and regulation of tissues and organisms. In this work is presented a computational model of cell culture that describes its growth and organization using cell proliferation as its default state, constrained by contact inhibition, closely connected to the cell bioelectric state. The model results describe in a correct way the reported experimental results, involving contact inhibition due to the presence of other cells, and gap junctions for signaling, molecules exchange and extracellular environment sensing. Starting from depolarized cells (in this model considered tantamount to proliferative), the cell culture grows until it fills the available domain and, due to the contact inhibition constraint, it turns into quiescence (a consequence of cell polarization), except on the periphery. Using drugs or via protein expression manipulation, it is possible to change the final tissue state, to fully polarized or depolarized. Other experimental tests are proposed and the expected results simulated. This model can be extended to pathological events, such as carcinogenesis, with cells homeostasis perturbed by a cell depolarizing (carcinogenic) event and express its default proliferative state without adequate control. This simplified model of tissue organization, regulated by the cell's bioelectric state and their interaction with vicinity, is an alternative to the description of the experimental results by mechanical stress, and can be further tested and extended in dedicated experiments.
Collapse
Affiliation(s)
- Joao Carvalho
- CFisUC, Department of Physics, University of Coimbra, Portugal.
| |
Collapse
|
11
|
The Landscape of Early Growth Response Family Members 1-4 in Hepatocellular Carcinoma: Their Biological Roles and Diagnostic Utility. DISEASE MARKERS 2022; 2022:3144742. [PMID: 36046377 PMCID: PMC9424002 DOI: 10.1155/2022/3144742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/31/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC), which is one of the most frequent types of cancer seen all over the world, is steadily growing from year to year. EGR genes are members of the early growth response (EGR) gene family. It has been shown that EGR genes play an increasingly essential role in the development of tumors and the progression of numerous malignancies. However, the possible diagnostic and prognostic roles of EGR genes in HCC have only been examined in a limited number of studies. Expression and methylation data on EGR family members were obtained from TCGA datasets. The prognostic values of EGR members were studied. Additionally, the correlations of EGR members with immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA). In this study, we found that the expression of EGR1, EGR2, EGR3, and EGR4 was distinctly decreased in HCC specimens compared with nontumor specimens. ROC assays confirmed that they have a strong ability in screening HCC specimens from nontumor specimens. According to the findings of Pearson's correlation, EGR1, EGR2, EGR3, and EGR4 were found to have a negative association with the methylation level. Survival study revealed that EGR1, EGR2, and EGR3 were associated with the clinical outcome of HCC patients. Immune cell enrichment analysis demonstrated that the expressions of all EGR members were positively related to the levels of most types of immune cells, such as macrophages, NK cells, B cells, T cells, eosinophils, and CD8 T cells. Overall, the current work demonstrated the expression mode and prognostic value of EGR members in HCC in a comprehensive manner, offering insights for further research of the EGR family as possible clinical biomarkers in HCC.
Collapse
|
12
|
Drake JM, Lang BJ, Guerrero-Gimenez ME, Bolton J, Dow CA, Calderwood SK, Price JT, Nguyen CH. Regulation of a Novel Splice Variant of Early Growth Response 4 (EGR4-S) by HER+ Signalling and HSF1 in Breast Cancer. Cancers (Basel) 2022; 14:1567. [PMID: 35326716 PMCID: PMC8946690 DOI: 10.3390/cancers14061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
The zinc finger transcription factor EGR4 has previously been identified as having a critical role in the proliferation of small cell lung cancer. Here, we have identified a novel, shortened splice variant of this transcription factor (EGR4-S) that is regulated by Heat Shock Factor-1 (HSF1). Our findings demonstrate that the shortened variant (EGR4-S) is upregulated with high EGFR, HER2, and H-Rasv12-expressing breast cell lines, and its expression is inhibited in response to HER pathway inhibitors. Protein and mRNA analyses of HER2+ human breast tumours indicated the novel EGR4-S splice variant to be preferentially expressed in tumour tissue and not detectable in patient-matched normal tissue. Knockdown of EGR4-S in the HER2-amplified breast cancer cell line SKBR3 reduced cell growth, suggesting that EGR4-S supports the growth of HER2+ tumour cells. In addition to chemical inhibitors of the HER2 pathway, EGR4-S expression was also found to be suppressed by chemical stressors and the overexpression of HSF1. Under these conditions, reduced EGR4-S levels were associated with the observed lower cell growth rate, but the augmentation of properties associated with higher metastatic potential. Taken together, these findings identify EGR4-S as a potential biomarker for HER2 pathway activation in human tumours that is regulated by HSF1.
Collapse
Affiliation(s)
- Jeremy M Drake
- ProMetTre Cancer Research, Melbourne 3205, Australia
- College of Health and Biomedicine, Victoria University, Melbourne 8001, Australia
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Martin Eduardo Guerrero-Gimenez
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza 5500, Argentina
| | - Jack Bolton
- College of Health and Biomedicine, Victoria University, Melbourne 8001, Australia
| | - Christopher A Dow
- Dorevitch Pathology, Western Hospital, Melbourne 3011, Australia
- Department of Medicine, University of Melbourne, Melbourne 3052, Australia
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John T Price
- College of Health and Biomedicine, Victoria University, Melbourne 8001, Australia
- Institute for Health and Sport, Victoria University, Melbourne 8001, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, Melbourne 8001, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - Chau H Nguyen
- College of Health and Biomedicine, Victoria University, Melbourne 8001, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| |
Collapse
|
13
|
A Note of Caution: Gramicidin Affects Signaling Pathways Independently of Its Effects on Plasma Membrane Conductance. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2641068. [PMID: 34722759 PMCID: PMC8553451 DOI: 10.1155/2021/2641068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/01/2022]
Abstract
Gramicidin is a thoroughly studied cation ionophore widely used to experimentally manipulate the plasma membrane potential (PMP). In addition, it has been established that the drug, due to its hydrophobic nature, is capable of affecting the organization of membrane lipids. We have previously shown that modifications in the plasma membrane potential of epithelial cells in culture determine reorganizations of the cytoskeleton. To elucidate the molecular mechanisms involved, we explored the effects of PMP depolarization on some putative signaling intermediates. In the course of these studies, we came across some results that could not be interpreted in terms of the properties of gramicidin as an ionic channel. The purpose of the present work is to communicate these results and, in general, to draw attention to the fact that gramicidin effects can be misleadingly attributed to its ionic or electrical properties. In addition, this work also contributes with some novel findings of the modifications provoked on the signaling intermediates by PMP depolarization and hyperpolarization.
Collapse
|
14
|
Hao L, Huang F, Yu X, Xu B, Liu Y, Zhang Y, Zhu Y. The Role of Early Growth Response Family Members 1-4 in Prognostic Value of Breast Cancer. Front Genet 2021; 12:680132. [PMID: 34178038 PMCID: PMC8220134 DOI: 10.3389/fgene.2021.680132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Early growth response family members (EGRs), EGR1–4, have increasingly attracted attention in multiple cancers. However, the exact expression patterns and prognostic values of EGRs in the progress of breast cancer (BRCA) remain largely unknown. The mRNA expression and prognostic characteristics of EGRs were examined by the Cancer Genome Atlas (TCGA), Oncomine, and Kaplan-Meier plotter. Enrichment analyses were conducted based on protein-protein interaction (PPI) network. The Tumor Immune Estimation Resource (TIMER) database and MethSurv were further explored. The protein expression of EGR1 in BRCA was measured by western blotting and immunohistochemistry. The migration of mammary epithelial cells was determined by Boyden chamber assay. The transcriptional levels of EGR1/2/3 displayed significantly low expression in BRCA compared with that in normal tissues, while EGR4 was shown adverse expression pattern. Survival analysis revealed upregulated EGR1–4 were remarkably associated with favorable relapse-free survival (RFS). A close correlation with specific tumor-infiltrating immune cells (TIICs) and several CpG sites of EGRs were exhibited. Immunohistochemistry assays showed that the protein expression of EGR1 was remarkably downregulated in BRCA compared with that in paracancerous tissues. The migration of MCF10A mammary epithelial cells was increased after the silence of EGR1 by siRNA transfection. This study provides a novel insight to the role of EGRs in the prognostic value of BRCA.
Collapse
Affiliation(s)
- Leiyu Hao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Fengru Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinqian Yu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Bujie Xu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Zhou X, Zhang FY, Liu Y, Wei DX. A Risk Prediction Model for Breast Cancer Based on Immune Genes Related to Early Growth Response Proteins Family. Front Mol Biosci 2021; 7:616547. [PMID: 33614706 PMCID: PMC7887293 DOI: 10.3389/fmolb.2020.616547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
Early growth response proteins (EGRs), a transcriptional regulatory family comprised of EGR1, EGR2, EGR3, and EGR 4, are reportedly involved in a vast array of functions. However, EGRs, as a whole, are rarely studied in breast cancer cases. This research was performed based on public datasets. The results demonstrated that, except EGR4, the other EGRs were differentially expressed genes in breast cancer. Subsequently, this study determined the prognosis significance of the EGR family, higher expression levels of EGRs indicating better overall survival (OS) and disease-free survival (DFS), except EGR4. So we attempted to explore the potential mechanism behind the prognostic value of EGRs. At the DNA level, however, neither DNA methylation status nor genetic alterations of EGRs contributed to the prognosis significance. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that EGRs were involved in several immune-related functions. Afterward, we assessed the correlation between EGRs and the immune system before establishing a risk prediction model with a 14-gene immune signature associated with EGRs, a prognostic nomogram predicting individuals’ 1-, 3-, and 5-year survival probabilities. The risk score was an independent prognosis predictor in the breast cancer cohorts. This study evidenced EGRs’ significance for tumor immunity, demonstrating that the EGR family may be a potential immunotherapeutic target for breast cancer. The 14-gene immune signature is a promising prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Breast Surgery, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Fang-Yuan Zhang
- Department of Breast Surgery, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Yan Liu
- Department of Breast Surgery, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Dong-Xin Wei
- Department of Breast Surgery, Zibo Maternal and Child Health Hospital, Zibo, China
| |
Collapse
|