1
|
Knudsen AS, Arney DE, Butterfield RD, Sims NM, Suja VC, Peterfreund RA. Pump-driven clinical infusions: laboratory comparison of pump types, fluid composition and flow rates on model drug delivery applying a new quantitative tool, the pharmacokinetic coefficient of short-term variation (PK-CV). J Clin Monit Comput 2024:10.1007/s10877-024-01200-y. [PMID: 39299986 DOI: 10.1007/s10877-024-01200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024]
Abstract
Critically ill or anesthetized patients commonly receive pump-driven intravenous infusions of potent, fast-acting, short half-life medications for managing hemodynamics. Stepwise dosing, e.g. over 3-5 min, adjusts physiologic responses. Flow rates range from < 0.1 to > 30 ml/h, depending on pump type (large volume, syringe) and drug concentration. Most drugs are formulated in aqueous solutions. Hydrophobic drugs are formulated as lipid emulsions. Do the physical and chemical properties of emulsions impact delivery compared to aqueous solutions? Does stepwise dose titration by the pump correlate with predicted plasma concentrations? Precise, gravimetric, flow rate measurement compared delivery of a 20% lipid emulsion (LE) and 0.9% saline (NS) using different pump types and flow rates. We measured stepwise delivery and then computed predicted plasma concentrations following stepwise dose titration. We measured the pharmacokinetic coefficient of short-term variation, (PK-CV), to assess pump performance. LE and NS had similar mean flow rates in stepwise rate increments and decrements between 0.5 and 32 ml/h and continuous flows 0.5 and 5 ml/h. Pharmacokinetic computation predictions suggest delayed achievement of intended plasma levels following dose titrations. Syringe pumps exhibited smaller variations in PK-CV than large volume pumps. Pump-driven deliveries of lipid emulsion and aqueous solution behave similarly. At low flow rates we observed large flow rate variability differences between pump types showing they may not be interchangeable. PK-CV analysis provides a quantitative tool to assess infusion pump performance. Drug plasma concentrations may lag behind intent of pump dose titration.
Collapse
Affiliation(s)
- Anders Steen Knudsen
- Department of Biomedical Engineering, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David E Arney
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | | | - Nathaniel M Sims
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Vineeth Chandran Suja
- School of Engineering and Applied Science, Wyss Institute for Biologically Inspired Engineering, Harvard University, 150 Western Avenue, Boston, MA, 02134, USA
| | - Robert A Peterfreund
- Department of Anesthesia, Critical Care and Pain Medicine, Jackson 439, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Battaglia LS, Dorati R, Maestrelli F, Conti B, Gabriele M, Di Cesare Mannelli L, Selmin F, Cosco D. Repurposing of parenterally administered active substances used to treat pain both systemically and locally. Drug Discov Today 2022; 27:103321. [PMID: 35850432 DOI: 10.1016/j.drudis.2022.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
Pain is a constant in our lives. The efficacy of drug therapy administered by the parenteral route is often limited either by the physicochemical characteristics of the drug itself or its adsorption-distribution-metabolism-excretion (ADME) mechanisms. One promising alternative is the design of innovative drug delivery systems that can improve the pharmacokinetics |(PK) and/or reduce the toxicity of traditionally used drugs. In this review, we discuss several products that have been approved by the main regulatory agencies (i.e., nano- and microsystems, implants, and oil-based solutions), highlighting the newest technologies that govern both locally and systemically the delivery of drugs. Finally, we also discuss the risk assessment of the scale-up process required, given the impact that this approach could have on drug manufacturing. Teaser: The management of pain by way of the parenteral route can be improved using complex drug delivery systems (e.g., micro- and nanosystems) which require high-level assessment and shorten the regulatory pathway.
Collapse
Affiliation(s)
- Luigi S Battaglia
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Rossella Dorati
- Department of Drug Science, University of Pavia, Pavia, Italy
| | | | - Bice Conti
- Department of Drug Science, University of Pavia, Pavia, Italy
| | - Mirko Gabriele
- Patheon Italia SPA, Thermo Fisher Scientific, Ferentino, Italy; President Elect, PDA Italy Chapter
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Selmin
- Department of Pharmaceutical Science, University of Milan, Milan, Italy.
| | - Donato Cosco
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Rasouli B, Ghahari L, Safari M, Shahroozian E, Naeimi S. Combination therapy of the granulocyte colony stimulating factor and intravenous lipid emulsion protect the hippocampus after global ischemia in rat: focusing on CA1 region. Metab Brain Dis 2020; 35:991-997. [PMID: 32458336 DOI: 10.1007/s11011-020-00579-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Brain stroke is one of the causes of human death and disability worldwide. Global ischemia results in the accumulation of free radicals in the neurons. It leads to histologically brain damage. The CA1 region of the hippocampus is a sensitive area for free radicals. This study investigated the combined therapy of the Granulocyte colony stimulating factor (G-CSF) and the Intravenous lipid emulsion (ILE). These neuroprotective agents play a role in the regeneration of neurons. They improve the learning ability and memory in rats induced global ischemia. We divided 35 rats into five groups. The groups were sham group, ischemia group, G-CSF group, ILE group, and G-CSF plus ILE group. Ischemia was induced by occlusion of the bilateral common carotid about 10 min. The drugs applied on days 1, 3 and 7. The treated groups received subcutaneous injection of 20 μg/kg G-CSF and intravenous injection of 5 ml/kg ILE. After two weeks, the memory and learning ability of the rats was evaluated by the shuttle box. Hematoxylin and Eosin and Nissl and TUNEL stainings were used to determine the necrosis, normal and apoptotic cells. The combined therapy increased normal cells compared to the ischemia group. They decreased the number of necrotic and apoptosis cells in other groups. The combined group improved the passive avoidance test compared to the other groups. The combination therapy of G-CSF plus ILE is more effective than each alone.
Collapse
Affiliation(s)
- Babak Rasouli
- Department of Anatomy, Medical School, AJA University of Medical Sciences, Tehran, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Laya Ghahari
- Department of Anatomy, Medical School, AJA University of Medical Sciences, Tehran, Iran.
| | - Manouchehr Safari
- Research Center of Nervous System Stem Cells, Semnan University of Medical Science, Semnan, Iran
| | - Ebrahim Shahroozian
- Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Saeideh Naeimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| |
Collapse
|
4
|
Dianzani C, Monge C, Miglio G, Serpe L, Martina K, Cangemi L, Ferraris C, Mioletti S, Osella S, Gigliotti CL, Boggio E, Clemente N, Dianzani U, Battaglia L. Nanoemulsions as Delivery Systems for Poly-Chemotherapy Aiming at Melanoma Treatment. Cancers (Basel) 2020; 12:cancers12051198. [PMID: 32397484 PMCID: PMC7281359 DOI: 10.3390/cancers12051198] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Aims: Advanced melanoma is characterized by poor outcome. Despite the number of treatments having been increased over the last decade, current pharmacological strategies are only partially effective. Therefore, the improvement of the current systemic therapy is worthy of investigation. Methods: a nanotechnology-based poly-chemotherapy was tested at preclinical level. Temozolomide, rapamycin, and bevacizumab were co-loaded as injectable nanoemulsions for total parenteral nutrition (Intralipid®), due to suitable devices, and preliminarily tested in vitro on human and mouse cell models and in vivo on the B16-F10 melanoma mouse model. Results: Drug combination was efficiently loaded in the liquid lipid matrix of Intralipid®, including bevacizumab monoclonal antibody, leading to a fast internalization in tumour cells. An increased cytotoxicity towards melanoma cells, as well as an improved inhibition of tumour relapse, migration, and angiogenesis were demonstrated in cell models for the Intralipid®-loaded drug combinations. In preliminary in vivo studies, the proposed approach was able to reduce tumour growth significantly, compared to controls. A relevant efficacy towards tumour angiogenesis and mitotic index was determined and immune response was involved. Conclusions: In these preliminary studies, Intralipid® proved to be a safe and versatile poly-chemotherapy delivery system for advanced melanoma treatment, by acting on multiple mechanisms.
Collapse
Affiliation(s)
- Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Gianluca Miglio
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Katia Martina
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Silvia Mioletti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Sara Osella
- San Giovanni Bosco Hospital, Piazza del Donatore di Sangue 3, 10154 Turin, Italy;
| | - Casimiro Luca Gigliotti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Elena Boggio
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Nausicaa Clemente
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
- Correspondence:
| |
Collapse
|
5
|
Purg D, Markota A, Grenc D, Sinkovič A. Low-dose intravenous lipid emulsion for the treatment of severe quetiapine and citalopram poisoning. Arh Hig Rada Toksikol 2017; 67:164-6. [PMID: 27331303 DOI: 10.1515/aiht-2016-67-2802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/01/2016] [Indexed: 11/15/2022] Open
Abstract
The treatment of quetiapine and/or citalopram poisoning is mainly supportive and involves gastric lavage, activated charcoal, intubation, and mechanical ventilation. Recently, however, there were reports of successful treatment with intravenous lipid emulsion. Here we report a case of a 19-year-old Caucasian girl who ingested approximately 6000 mg of quetiapine, 400 mg of citalopram, and 45 mg of bromazepam in a suicide attempt. The patient developed ventricular tachycardia and epileptic seizures 12 h after admission to the hospital. As the patient's condition deteriorated, we combined standard therapy (intubation, mechanical ventilation, and vasopressors) with low-dose intravenous lipid emulsion (ILE) (a total of 300 mL of 20 % lipid emulsion) and normalised her heart rhythm and stopped the seizures. She was discharged to the psychiatric ward after 48 h and home after a prolonged (2-month) psychiatric rehabilitation. Intravenous lipid emulsion turned out to be effective even in the lower dose range than previously reported for quetiapine poisoning in patients presenting with seizure and ventricular arrhythmia. To our knowledge, there are no case reports describing the use of ILE in treating citalopram poisoning.
Collapse
|