1
|
Shi Y, Wang Z, Xu J, Niu W, Wu Y, Guo H, Shi J, Li Z, Fu B, Hong Y, Wang Z, Guo W, Chen D, Li X, Li Q, Wang S, Gao J, Sun A, Xiao Y, Cao J, Fu L, Wu Y, Zhang T, Xia N, Yuan Q. TCR-like bispecific antibodies toward eliminating infected hepatocytes in HBV mouse models. Emerg Microbes Infect 2024; 13:2387448. [PMID: 39109538 PMCID: PMC11313007 DOI: 10.1080/22221751.2024.2387448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Therapeutics for eradicating hepatitis B virus (HBV) infection are still limited and current nucleos(t)ide analogs (NAs) and interferon are effective in controlling viral replication and improving liver health, but they cannot completely eradicate the hepatitis B virus and only a very small number of patients are cured of it. The TCR-like antibodies recognizing viral peptides presented on human leukocyte antigens (HLA) provide possible tools for targeting and eliminating HBV-infected hepatocytes. Here, we generated three TCR-like antibodies targeting three different HLA-A2.1-presented peptides derived from HBV core and surface proteins. Bispecific antibodies (BsAbs) were developed by fuzing variable fragments of these TCR-like mAbs with an anti-CD3ϵ antibody. Our data demonstrate that the BsAbs could act as T cell engagers, effectively redirecting and activating T cells to target HBV-infected hepatocytes in vitro and in vivo. In HBV-persistent mice expressing human HLA-A2.1, two infusions of BsAbs induced marked and sustained suppression in serum HBsAg levels and also reduced the numbers of HBV-positive hepatocytes. These findings highlighted the therapeutic potential of TCR-like BsAbs as a new strategy to cure hepatitis B.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Zihan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Jingjing Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Wenxia Niu
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Yubin Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Huiyu Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Jinmiao Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Zonglin Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Baorong Fu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Yunda Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Zikang Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Wenjie Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Dabing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Xingling Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Qian Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Shaojuan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Jiahua Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Aling Sun
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Yaosheng Xiao
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Jiali Cao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Lijuan Fu
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
2
|
Shiraishi K, Yoshida O, Imai Y, Akbar SMF, Sanada T, Kohara M, Miyazaki T, Kamishita T, Miyake T, Hirooka M, Tokumoto Y, Abe M, Rubido JCA, Nieto GG, Hiasa Y. Intranasal HBsAg/HBcAg-Containing Vaccine Induces Neutralizing Anti-HBs Production in Hepatitis B Vaccine Non-Responders. Vaccines (Basel) 2023; 11:1479. [PMID: 37766155 PMCID: PMC10535445 DOI: 10.3390/vaccines11091479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis B vaccine induces the production of antibodies against hepatitis B surface antigen (anti-HBs) and prevents hepatitis B virus (HBV) infection. However, 5-10% of individuals cannot develop anti-HBs even after multiple vaccinations (HB vaccine non-responders). We developed an intranasal vaccine containing both HBs antigen (HBsAg) and HB core antigen (HBcAg) and mixed it with a viscosity enhancer, carboxyl vinyl polymer (CVP-NASVAC). Here, we investigated the prophylactic capacity of CVP-NASVAC in HB vaccine non-responders. Thirty-four HB vaccine non-responders were administered three doses of intranasal CVP-NASVAC. The prophylactic capacity of CVP-NASVAC was assessed by evaluating the induction of anti-HBs and anti-HBc (IgA and IgG) production, HBV-neutralization activity of sera, and induction of HBs- and HBc-specific cytotoxic T lymphocytes (CTLs). After CVP-NASVAC administration, anti-HBs and anti-HBc production were induced in 31/34 and 27/34 patients, respectively. IgA anti-HBs and anti-HBc titers significantly increased after CVP-NASVAC vaccination. HBV-neutralizing activity in vitro was confirmed in the sera of 26/29 CVP-NASVAC-administered participants. HBs- and HBc-specific CTL counts substantially increased after the CVP-NASVAC administration. Mild adverse events were observed in 9/34 participants; no serious adverse events were reported. Thus, CVP-NASVAC could be a beneficial vaccine for HB vaccine non-responders.
Collapse
Affiliation(s)
- Kana Shiraishi
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Yusuke Imai
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | | | - Teruki Miyake
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Julio Cesar Aguilar Rubido
- Vaccine Division, Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Gerardo Guillen Nieto
- Vaccine Division, Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| |
Collapse
|
3
|
Tan M, Ren F, Yang X. Anti-HBV therapeutic potential of small molecule 3,5,6,7,3',4'-Hexamethoxyflavone in vitro and in vivo. Virology 2021; 560:66-75. [PMID: 34051476 DOI: 10.1016/j.virol.2021.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Current treatment methods for hepatitis B are mainly antiviral drug therapy and immunotherapy, in which antiviral drugs are mainly nucleoside analogue and interferon. They can significantly reduce the viral load but rarely achieve hepatitis B surface antigen (HBsAg) loss. 3,5,6,7,3',4'-Hexamethoxyflavone was screened out from a small molecule compound library for its lower cytotoxic effect and greater HBsAg inhibition activity. Meanwhile, we further performed experiments in HepG2.2.15, HepG2-NTCP cells, PHHs and HBV transgenic mouse model to evaluate the anti-HBV effects of 3,5,6,7,3',4'-Hexamethoxyflavone. Our study found that 3,5,6,7,3',4'-Hexamethoxyflavone can significantly reduce the level of HBV RNAs, HBV DNA and HBsAg, in addition, the activity of four HBV promoters and the ratio of total RNAs/cccDNA and 3.5 kb RNA/cccDNA were decreased by 3,5,6,7,3',4'-Hexamethoxyflavone. Mechanistically, we found HNF3α plays important roles in Hex mediated HBV transcription inhibition. Our study indicated Hex was a potential anti-HBV therapeutic drug.
Collapse
Affiliation(s)
- Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiao Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|