1
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Zhang Z, Kuang D, Xu X, Zhan Z, Ren H, Shi C. Dissemination of IncC plasmids in Salmonella enterica serovar Thompson recovered from seafood and human diarrheic patients in China. Int J Food Microbiol 2024; 417:110708. [PMID: 38653121 DOI: 10.1016/j.ijfoodmicro.2024.110708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Salmonella Thompson is a prevalent foodborne pathogen and a major threat to food safety and public health. This study aims to reveal the dissemination mechanism of S. Thompson with co-resistance to ceftriaxone and ciprofloxacin. In this study, 181 S. Thompson isolates were obtained from a retrospective screening on 2118 serotyped Salmonella isolates from foods and patients, which were disseminated in 12 of 16 districts in Shanghai, China. A total of 10 (5.5 %) S. Thompson isolates exhibited resistance to ceftriaxone (MIC ranging from 8 to 32 μg/mL) and ciprofloxacin (MIC ranging from 2 to 8 μg/mL). The AmpC β-lactamase gene blaCMY-2 and plasmid-mediated quinolone resistance (PMQR) genes of qnrS and qepA were identified in the 9 isolates. Conjugation results showed that the co-transfer of blaCMY-2, qnrS, and qepA occurred on the IncC plasmids with sizes of ∼150 (n = 8) or ∼138 (n = 1) kbp. Three typical modules of ISEcp1-blaCMY-2-blc-sugE, IS26-IS15DIV-qnrS-ISKpn19, and ISCR3-qepA-intl1 were identified in an ST3 IncC plasmid pSH11G0791. Phylogenetic analysis indicated that IncC plasmids evolved into Lineages 1, 2, and 3. IncC plasmids from China including pSH11G0791 in this study fell into Lineage 1 with those from the USA, suggesting their close genotype relationship. In conclusion, to our knowledge, it is the first report of the co-existence of blaCMY-2, qnrS, and qepA in IncC plasmids, and the conjugational transfer contributed to their dissemination in S. Thompson. These findings underline further challenges for the prevention and treatment of Enterobacteriaceae infections posed by IncC plasmids bearing blaCMY-2, qnrS, and qepA.
Collapse
Affiliation(s)
- Zengfeng Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dai Kuang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; National Health Commission (NHC) Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, China
| | - Xuebin Xu
- Laboratory of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200050, China
| | - Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Ren
- Xianyang Center for Food and Drug Control, Shaanxi, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Huo B, Wei D, Huang Q, Huang S, Fan L, Li P, Qiu J, Ren Q, Wei C, Liu Y. Acquisition of a stable and transferable plasmid coharbouring hypervirulence and MDR genes with low fitness cost: Accelerating the dissemination of ST11-KL64 CR-HvKP. J Glob Antimicrob Resist 2024; 36:350-357. [PMID: 38307249 DOI: 10.1016/j.jgar.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVES This study aimed to delineate the ability of a plasmid, pS130-4, which harboured both hypervirulence and multidrug resistance genes, to disseminate within Klebsiella pneumoniae, as well as its potential formation mechanism. METHODS We employed whole-genome sequencing to decipher the genetic architecture of pS130-4. Its capability to conjugate and transfer was assessed through a series of experiments, including plasmid stability, competitive growth, and growth curve analysis. Its expression stability was further evaluated using drug sensitivity, larval survival, and biofilm formation tests. RESULTS pS130-4 contained four intact modules typical of self-transmissible plasmids. BLAST analysis revealed a sequence identity exceeding 90% with other plasmids from a variety of hosts, suggesting its broad prevalence. Our findings indicated the plasmid's formation resulted from IS26-mediated recombination, leading us to propose a model detailing the creation of this conjugative fusion plasmid housing both blaKPC-2 and hypervirulence genes. Our conjugation experiments established that pS130-4, when present in the clinical strain S130, was self-transmissible with an estimated efficiency between 10-5 and 10-4. Remarkably, pS130-4 showcased a 90% retention rate and did not impede the growth of host bacteria. Galleria mellonella larval infection assay demonstrated that S130 had pronounced toxicity when juxtaposed with high-virulence control strain NTUH-K2044 and low-toxicity control strain ATCC700603. Furthermore, pS130-4's virulence remained intact postconjugation. CONCLUSION A fusion plasmid, encompassing both hypervirulence and multidrug resistance genes, was viable within K. pneumoniae ST11-KL64 and incurred minimal fitness costs. These insights underscored the criticality of rigorous monitoring to pre-empt the escalation and distribution of this formidable super-plasmid.
Collapse
Affiliation(s)
- Binghui Huo
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - DanDan Wei
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China; China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang city, Jiangxi, PR China
| | - QiSen Huang
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Shanshan Huang
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - LinPing Fan
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Jiehui Qiu
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Qun Ren
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - ChunPing Wei
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Yang Liu
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China; School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, PR China; China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang city, Jiangxi, PR China.
| |
Collapse
|
4
|
Sobkowiak A, Scherff N, Schuler F, Bletz S, Mellmann A, Schwierzeck V, van Almsick V. Plasmid-encoded gene duplications of extended-spectrum β-lactamases in clinical bacterial isolates. Front Cell Infect Microbiol 2024; 14:1343858. [PMID: 38469349 PMCID: PMC10925753 DOI: 10.3389/fcimb.2024.1343858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction The emergence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is an urgent and alarming One Health problem. This study aimed to investigate duplications of plasmid-encoded ESBL genes and their impact on antimicrobial resistance (AMR) phenotypes in clinical and screening isolates. Methods Multi-drug-resistant bacteria from hospitalized patients were collected during routine clinical surveillance from January 2022 to June 2023, and their antimicrobial susceptibility patterns were determined. Genotypes were extracted from long-read whole-genome sequencing data. Furthermore, plasmids and other mobile genetic elements associated with ESBL genes were characterized, and the ESBL genes were correlated to ceftazidime minimal inhibitory concentration (MIC). Results In total, we identified four cases of plasmid-encoded ESBL gene duplications that match four genetically similar plasmids during the 18-month surveillance period: five Escherichia coli and three Klebsiella pneumoniae isolates. As the ESBL genes were part of transposable elements, the surrounding sequence regions were duplicated as well. In-depth analysis revealed insertion sequence (IS)-mediated transposition mechanisms. Isolates with duplicated ESBL genes exhibited a higher MIC for ceftazidime in comparison to isolates with a single gene copy (3-256 vs. 1.5-32 mg/L, respectively). Conclusion ESBL gene duplications led to an increased phenotypic resistance against ceftazidime. Our data suggest that ESBL gene duplications by an IS-mediated transposition are a relevant mechanism for how AMR develops in the clinical setting and is part of the microevolution of plasmids.
Collapse
Affiliation(s)
- Annika Sobkowiak
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Natalie Scherff
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | - Franziska Schuler
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Stefan Bletz
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | | | - Vera Schwierzeck
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | - Vincent van Almsick
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| |
Collapse
|
5
|
She Y, Jiang Y, Luo M, Duan X, Xie L, Yang C, Xu L, Fu Y, Lv Z, Cai R, Li Y, Qiu Y, Hu L, Shi X, Wang L, Wu S, Chen Q, Jiang M, Hu Q. Emergence of chromosomally located bla CTX-M-14b and qnrS1 in Salmonella enterica serotype Kentucky ST198 in China. Int J Antimicrob Agents 2023; 62:106896. [PMID: 37343807 DOI: 10.1016/j.ijantimicag.2023.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
Highly fluoroquinolone-resistant Salmonella enterica serotype Kentucky has become widespread in recent years, largely associated with the spread of sequence type 198 (ST198), which often leads to multidrug resistance. Research on the genomic epidemiology of Salmonella Kentucky in China is currently uncommon. In this study, we analysed the genomic epidemiology and antimicrobial resistance characteristics of Salmonella Kentucky ST198 collected from foodborne disease surveillance in Shenzhen, China, during 2010-2021, using whole-genome sequencing and antibiotic susceptibility testing. In addition, 158 global Salmonella Kentucky ST198 genomes were included for comparison. Among 8559 Salmonella isolates, 43 Salmonella Kentucky ST198 isolates were detected during 2010-2021. The global Salmonella Kentucky ST198 evolutionary tree was divided into five clades, with Shenzhen isolates distributed in clades 198.1, 198.2-1 and 198.2-2, mainly clustered with Chinese strains. Strains in clade 198.2 dominated in Shenzhen and all of them showed multidrug resistance. Nine strains showed high resistance to ceftriaxone, which was associated with blaCTX-M-14b in clade 198.2-1, which was demonstrated to be located on the chromosome. Fifteen strains showed high resistance to ciprofloxacin, which was associated with carriage of qnrS1 in clade 198.2-2. qnrS1 was first located on an IncHI2 plasmid and then transferred into the chromosome. Here we report the genomic and antimicrobial resistance characterisation of Salmonella Kentucky ST198 in Shenzhen. Of particular concern, we identified for the first time a clade 198.2-1 isolate carrying blaCTX-M-14b as well as chromosomally located qnrS1 in clade 198.2-2 of Salmonella Kentucky ST198 in China, highlighting the necessity of surveillance of clade 198.2.
Collapse
Affiliation(s)
- Yiying She
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yixiang Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Miaomiao Luo
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiangke Duan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Li Xie
- University of South China, Hengyang, China
| | - Chao Yang
- Institute Pasteur of Shanghai Chinese Academy of Sciences, Shanghai, China
| | - Liangcai Xu
- Shenzhen Futian District Center for Disease Control and Prevention, Shenzhen, China
| | - Yulin Fu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lulu Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lei Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuang Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Qinghua Hu
- School of Public Health, Shanxi Medical University, Taiyuan, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Xu Y, Zheng Z, Ye L, Chan EWC, Chen S. Identification and Genetic Characterization of Conjugative Plasmids Encoding Coresistance to Ciprofloxacin and Cephalosporin in Foodborne Vibrio spp. Microbiol Spectr 2023; 11:e0103223. [PMID: 37395663 PMCID: PMC10434038 DOI: 10.1128/spectrum.01032-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023] Open
Abstract
Plasmid-mediated quinolone resistance (PMQR) determinants, such as qnrVC genes, have been widely reported in Vibrio spp. while other types of PMQR genes were rarely reported in these bacteria. This study characterized the phenotypic and genotypic features of foodborne Vibrio spp. carrying qnrS, a key PMQR gene in Enterobacteriaceae. Among a total of 1,811 foodborne Vibrio isolates tested, 34 (1.88%) were found to harbor the qnrS gene. The allele qnrS2 was the most prevalent, but coexistence with other qnr alleles was common. Missense mutations in the quinolone resistance-determining region (QRDR) of the gyrA and parC genes were only found in 11 of the 34 qnrS-bearing isolates. Antimicrobial susceptibility tests showed that all 34 qnrS-bearing isolates were resistant to ampicillin and that a high percentage also exhibited resistance to cefotaxime, ceftriaxone, and trimethoprim-sulfamethoxazole. Genetic analysis showed that these phenotypes were attributed to a diverse range of resistance elements that the qnrS-bearing isolates harbored. The qnrS2 gene could be found in both the chromosome and plasmids; the plasmid-borne qnrS2 genes could be found on both conjugative and nonconjugative plasmids. pAQU-type qnrS2-bearing conjugative plasmids were able to mediate expression of phenotypic resistance to both ciprofloxacin and cephalosporins. Transmission of this plasmid among Vibrio spp. would speed up the emergence of multidrug-resistant (MDR) pathogens that are resistant to the most important antibiotics used in treatment of Vibrio infections, suggesting that close monitoring of emergence and dissemination of MDR Vibrio spp. in both food samples and clinical settings is necessary. IMPORTANCE Vibrio spp. used to be very susceptible to antibiotics. However, resistance to clinically important antibiotics, such as cephalosporins and fluoroquinolones, among clinically isolated Vibrio strains is increasingly common. In this study, we found that plasmid-mediated quinolone resistance (PMQR) genes, such as qnrS, that have not been previously reported in Vibrio spp. can now be detected in food isolates. The qnrS2 gene alone could mediate expression of ciprofloxacin resistance in Vibrio spp.; importantly, this gene could be found in both the chromosome and plasmids. The plasmids that harbor the qnrS2 gene could be both conjugative and nonconjugative, among which the pAQU-type qnrS2-bearing conjugative plasmids were able to mediate expression of resistance to both ciprofloxacin and cephalosporins. Transmission of this plasmid among Vibrio spp. would accelerate the emergence of multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Chengdu Research Institute, Chengdu, People’s Republic of China
| | - Zhiwei Zheng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People’s Republic of China
- State Key Laboratory of Chirosciences and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- State Key Laboratory of Chirosciences and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chirosciences and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sheng Chen
- City University of Hong Kong Chengdu Research Institute, Chengdu, People’s Republic of China
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People’s Republic of China
- State Key Laboratory of Chirosciences and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
7
|
Shariati A, Noei M, Chegini Z. Bacteriophages: The promising therapeutic approach for enhancing ciprofloxacin efficacy against bacterial infection. J Clin Lab Anal 2023:e24932. [PMID: 37377167 PMCID: PMC10388223 DOI: 10.1002/jcla.24932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The emergence of ciprofloxacin-resistant bacteria is a serious challenge worldwide, bringing the need to find new approaches to manage this bacterium. Bacteriophages (phages) have been shown inhibitory effects against ciprofloxacin-resistance bacteria; thus, ciprofloxacin resistance or tolerance may not affect the phage's infection ability. Additionally, researchers used phage-ciprofloxacin combination therapy for the inhibition of multidrug-resistant bacteria. RESULTS The sublethal concentrations of ciprofloxacin could lead to an increase in progeny production. Antibiotic treatments could enhance the release of progeny phages by shortening the lytic cycle and latent period. Thus, sublethal concentrations of antibiotics combined with phages can be used for the management of bacterial infections with high antibiotic resistance. In addition, combination therapy exerts various selection pressures that can mutually decrease phage and antibiotic resistance. Moreover, phage ciprofloxacin could significantly reduce bacterial counts in the biofilm community. Immediate usage of phages after the attachment of bacteria to the surface of the flow cells, before the development of micro-colonies, could lead to the best effect of phage therapy against bacterial biofilm. Noteworthy, phage should be used before antibiotics usage because this condition may have allowed phage replication to occur first before ciprofloxacin interrupted the bacterial DNA replication process, thereby interfering with the activity of the phages. Furthermore, the phage-ciprofloxacin combination showed a promising result for the management of Pseudomonas aeruginosa infections in mouse models. Nevertheless, low data are existing about the interaction between phages and ciprofloxacin in combination therapies, especially regarding the emergence of phage-resistant mutants. Additionally, there is a challenging and important question of how the combined ciprofloxacin with phages can increase antibacterial functions. Therefore, more examinations are required to support the clinical usage of phage-ciprofloxacin combination therapy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Centre, Khomein University of Medical Sciences, Khomein, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Xie M, Chen K, Chan EWC, Chen S. Identification and genetic characterization of two conjugative plasmids that confer azithromycin resistance in Salmonella. Emerg Microbes Infect 2022; 11:1049-1057. [PMID: 35333699 PMCID: PMC9009942 DOI: 10.1080/22221751.2022.2058420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the development of multidrug resistance in Salmonella spp. in recent years, ciprofloxacin, ceftriaxone, and azithromycin have become the principal antimicrobial agents used for the treatment of Salmonella infections. The underlying mechanisms of plasmid-mediated ciprofloxacin and ceftriaxone resistance have attracted extensive research interest, but not much is focused on azithromycin resistance in Salmonella. In this study, we investigated the genetic features of two conjugative plasmids and a non-transferable virulence plasmid that encode azithromycin resistance in food-borne Salmonella strains. We showed that the azithromycin resistance phenotype of these strains was conferred by erm(B) gene and/or the complete genetic structure IS26-mph(A)-mrx-mphR-IS6100. Comparative genetic analysis showed that these conjugative plasmids might originate from Escherichia coli and play a role in the rapid dissemination of azithromycin resistance in Salmonella. These conjugative plasmids may also serve as a reservoir of antimicrobial resistance (AMR) genes in Salmonella in which these AMR genes may be acquired by the virulence plasmids of Salmonella via genetic transposition events. Importantly, the formation of a novel macrolide-resistance and virulence-encoding plasmid, namely pS1380-118 kb, was observed in this study. This plasmid was found to exhibit transmission potential and pose a serious health threat as the extensive transmission of azithromycin resistant and virulent Salmonella strains would further compromise the effectiveness of treatment for salmonellosis. Further surveillance and research on the dissemination and evolution routes of pS1380-118kb-like plasmids in potential human pathogens of the family of Enterobacteriaceae are necessary.
Collapse
Affiliation(s)
- Miaomiao Xie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
9
|
The Clinical Implication of Serogroup Distribution and Drug Resistance of Non-Typhoidal Salmonella in Children: A Single Center Study in Southern Taiwan during 2004-2019. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9091403. [PMID: 36138712 PMCID: PMC9497768 DOI: 10.3390/children9091403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Background: A regional antibiotic susceptibility database of certain pathogens is crucial for first-line physicians in terms of providing clinical judgement and appropriate selection of antimicrobial agents. The aim of this study is to update the epidemiological data of Salmonella serogroups and drug resistance in pediatric patients. Methods: This is a single-center retrospective study enrolling patients aged from 0 to 18 years who were hospitalized with cultured proven non-typhoidal Salmonella (NTS) infection from 2004 to 2019. The isolates were collected and the demographic data, serogroups of Salmonella and antimicrobial susceptibilities were further analyzed. Results: A total of 1583 isolates of NTS were collected. Serogroup C2 was prone to cause invasive non-typhoidal salmonellosis (iNTS), especially bacteremia. Patients aged < 2 years were associated with serogroups B and C2 infection, while those aged ≥ 2 years were associated with serogroups D and E infection. The prevalence of serogroup B declined with simultaneous increase in prevalence of serogroups D and E. Serogroups B and E were associated with ceftriaxone resistance, while Serogroup D was less drug-resistant than the others. The prevalence of ceftriaxone-resistant Salmonella had not increased, although more ciprofloxacin-resistant isolates were found in iNTS infection. Conclusions: Age < 2 years is a risk factor of iNTS for children, and the distribution of serogroup changes should be closely monitored. Ceftriaxone is still the drug of choice for treating pediatric iNTS infection, and although no increase was observed in the prevalence of ceftriaxone-resistant strains in this study, continuing surveillance of such cases is warranted.
Collapse
|
10
|
Li L, Olsen RH, Xiao J, Liang M, Meng H, Peng S. Characterization of extended-spectrum cephalosporins and fluoroquinolone resistance of a Salmonella enterica serovar Thompson isolate from ready-to-eat pork product in China. Front Microbiol 2022; 13:964009. [PMID: 36187962 PMCID: PMC9521377 DOI: 10.3389/fmicb.2022.964009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Salmonella is a leading cause of foodborne illness worldwide and is a common concern in food safety. Salmonella enterica displaying resistance to extended-spectrum cephalosporins (ESCs) and fluoroquinolone (FQs) has been deemed a high-priority pathogen by the World Health Organization. Co-resistance to ESCs and FQs has been reported in S. enterica serovar Thompson (S. Thompson). However, the genetic context of ESCs and FQs resistance genes in S. Thompson lacks sufficient characterization. In this study, we characterized a multi-drug resistant (MDR) S. Thompson isolate recovered from a retail ready-to-eat (RTE) pork product in China. Short- and long-read sequencing (HiSeq and MinION) of the genome identified the presence of blaCMY−2, qnrS1, and qepA8, along with 11 additional acquired antimicrobial resistance genes, residing on a 152,940 bp IncA/C plasmid. Specifically, the blaCMY−2, qnrS1, and qepA8 genes were located in insertion sequences (ISs) and integron mediated mobile genetic structure, sugE-blc-blaCMY−2-ISEc9, IS26-orf6-qnrS1-orf5-ISKpn19, and intl1-qepA8-orf10-IS91-orf1-dfrA12-orf11-aadA2-qacEΔ1-sul1, respectively. Each gene was identified in various bacteria species, indicating their high transfer ability. The plasmid was found to be transferable to Escherichia coli J53 by conjugation and resulted in the acquiring of multiple resistances in the transconjugants. The plasmid is closely related to plasmids from two human S. Thompson strains isolated in different regions and years in China. Moreover, core-genome Multi Locus Sequence Typing (cgMLST) and phylogenetic analysis based on global 1,868 S. Saintpaul isolates showed that the S. Thompson isolate was highly epidemiologically linked to a human isolate in China. Our findings suggest that Chinese RTE pork products are a possible source of human pathogenic ESCs and FQs co-resistant S. Thompson. Furthermore, the results underline the important role of conjugative plasmids in acquiring and transmission of ESCs and FQs resistance in S. Thompson isolates, which need continuous investigation.
Collapse
Affiliation(s)
- Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jian Xiao
- Guangzhou Food Inspection Institute, Guangzhou, China
| | - Meidan Liang
- Guangzhou Food Inspection Institute, Guangzhou, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Hecheng Meng
| | - Shifu Peng
- Department of Environment and Health, Jiangsu Center for Disease Control and Prevention, Nanjing, China
- Shifu Peng
| |
Collapse
|
11
|
Wang X, Tang B, Liu G, Wang M, Sun J, Tan R, Pan T, Qu J, Liu J, Ou HY, Qu H. Transmission of Nonconjugative Virulence or Resistance Plasmids Mediated by a Self-Transferable IncN3 Plasmid from Carbapenem-Resistant Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0136422. [PMID: 35863038 PMCID: PMC9430514 DOI: 10.1128/spectrum.01364-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Klebsiella pneumoniae poses a critical challenge to clinical and public health. Along with conjugative plasmids, nonconjugative resistance or virulence plasmids associated with carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKP), and even carbapenem-resistant and hypervirulent K. pneumoniae (CR-hvKP) strains have been spreading globally. In this study, a clinical CRKP strain KP2648 was isolated, and the transferability of its plasmids was assessed using conjugation experiments. The transconjugants were characterized by polymerase chain reaction (PCR) detection, XbaI and S1-pulsed-field gel electrophoresis (PFGE), and/or whole-genome sequencing. Genetically modified IncN3 plasmids were employed to elucidate the self-transferability and the mobilization mechanisms. KP2648 has three natural plasmids: a nonconjugative IncFIB/IncHI3B virulence plasmid, a nonconjugative IncFII/IncR carbapenem-resistant plasmid, and a self-transferable IncN3 plasmid with a high conjugation frequency (7.54 ± 1.06) × 10-1. The IncN3 plasmid could mobilize the coexisting nonconjugative virulence/resistance plasmids either directly or by employing intermediate E. coli with two forms: a hybrid plasmid fused with IncN3 or a cotransfer with the helper plasmid, IncN3. Various mobile genetic elements, including ISKpn74, ISKpn14, IS26, ISShes11, ISAba11, and Tn3, are involved in the genetic transposition of diverse hybrid plasmids and the cotransfer process during the intra/interspecies transmission. IMPORTANCE Nowadays, the underlying mobilization mechanism and evolutionary processes of nonconjugative virulence or resistance plasmids in Klebsiella pneumoniae remain poorly understood. Our study revealed the high conjugation ability of IncN3 plasmid isolated from carbapenem-resistant K. pneumoniae and confirmed its capability to mobilize the nonconjugative virulence or resistance plasmids. The self-transferable IncN3 plasmid could facilitate the transmission of pathogenicity and genetic evolution of carbapenem-resistant and hypervirulent K. pneumoniae, including hv-CRKP (virulence plasmid obtained by carbapenem-resistant K. pneumoniae) and CR-hvKP (resistance plasmid obtained by hypervirulent K. pneumoniae), warranting further monitoring.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Tang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guitian Liu
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Wang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyong Sun
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Pelyuntha W, Sanguankiat A, Kovitvadhi A, Vongkamjan K. Broad lytic spectrum of novel Salmonella phages on ciprofloxacin-resistant Salmonella contaminated in the broiler production chain. Vet World 2022; 15:2039-2045. [PMID: 36313854 PMCID: PMC9615508 DOI: 10.14202/vetworld.2022.2039-2045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Ciprofloxacin (CIP) is recommended for salmonellosis treatment as the drug of choice; however, overuse of this drug can cause drug resistance issues and failure to treat diseases. Phage therapy is an alternative approach for combatting CIP-resistant infection. This study aimed to estimate the prevalence of CIP-resistant Salmonella isolated from the broiler production chain and evaluated the lytic ability of novel Salmonella phages isolated from water samples. Materials and Methods: Samples were obtained from the broiler production chain and used for Salmonella isolation. serovar and CIP resistance of each isolate were characterized through latex agglutination and agar disk diffusion test, respectively. Water samples from different sources were acquired for phage isolation. The lytic activity of novel-isolated phages was also examined. Results: In this study, 51 Salmonella isolates were recovered from the broiler production chain (two commercial farms, one free-range farm, two slaughterhouses, and three stalls from the wet market). Kentucky was the major serovar characterized (16), followed by Typhimurium (9), Agona (5), Corvalis (5), Schwarzengrund (5), Singapore (3), Weltevreden (3), Mbandaka (2), Give (2), and Albany (1). The serovars that exhibited CIP resistance were 14/16 isolates of serovar Kentucky (87.5%) and one isolate of serovar Give (50%), whereas eight other serovars were susceptible to this drug. Overall, the prevalence of CIP-resistant Salmonella recovered from the sources included in this study was 29.4%. This study identified 11 Salmonella phages isolated from wastewater samples derived from broiler farms, wastewater treatment stations, and natural reservoirs. Our phages showed the total percentage of lysis ability ranging from 33.3% to 93.3% against CIP-resistant isolates. However, only one bacterial isolate, namely 210SL, recovered from the food contact surface of a wet market stall and was resistant to all phages. Conclusion: Diverse serovars of Salmonella were recovered in the broiler production chain in this study, while the isolates presenting CIP-resistant Salmonella were as high as 29.4%. Overall, Salmonella phages showed high lysis ability against these CIP-resistant Salmonella isolates, suggesting the potential application of phage-based treatments or biocontrol in the broiler production chain.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Arsooth Sanguankiat
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
13
|
Zheng Z, Xu Y, Ye L, Chan EWC, Chen S. Genomic insights into the emergence and spread of NDM-1-producing Vibrio spp. isolates in China. J Antimicrob Chemother 2022; 77:3039-3049. [PMID: 35978475 DOI: 10.1093/jac/dkac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Carbapenemase-producing Vibrio spp., which exhibit an XDR phenotype, have become increasingly prevalent and pose a severe threat to public health. OBJECTIVES To investigate the genetic characteristics of NDM-1-producing Vibrio spp. isolates and the dissemination mechanisms of blaNDM-1 in Vibrio. METHODS A total of 1363 non-duplicate Vibrio spp. isolates collected from shrimp samples in China were subjected to antimicrobial susceptibility tests and screened for blaNDM-1. The blaNDM-1-positive isolates were further characterized by PFGE, MLST, conjugation and WGS using Illumina and Nanopore platforms. Plasmid stability and fitness cost were assessed using Escherichia coli J53, Klebsiella pneumoniae Kpt80 and Salmonella spp. SA2051 as recipient strains. RESULTS In total, 13 blaNDM-1-positive isolates were identified, all exhibiting MDR. WGS analysis revealed that the 13 blaNDM-1 genes were all associated with a derivative of Tn125. Plasmid analysis revealed that six blaNDM-1 genes were located in IncC plasmids and the other seven were carried by plasmids of two different novel types. Conjugation and plasmid stability assays showed that only the IncC plasmids could be transferred to all the recipient strains and could be stably maintained in the hosts. CONCLUSIONS The emergence of the novel plasmids has contributed to the variable genetic contexts of blaNDM-1 in Vibrio spp. and IncC plasmids harbouring the blaNDM-1 gene could facilitate the spread of such genes between Vibrio spp. and other zoonotic pathogens, leading to a rapid dissemination of blaNDM-1 in bacterial pathogens worldwide.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hum Hung, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
14
|
Carmosino I, Bonardi S, Rega M, Luppi A, Lamperti L, Ossiprandi MC, Bacci C. Evolution of β-lactams, fluroquinolones and colistin resistance and genetic profiles in <em>Salmonella</em> isolates from pork in northern Italy. Ital J Food Saf 2022; 11:9972. [PMID: 35795463 PMCID: PMC9251873 DOI: 10.4081/ijfs.2022.9972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
The European Food Safety Authority and European Centre of Disease Prevention and Control antimicrobial resistance report published in 2021 shows increasing levels of antimicrobial resistance in Salmonella against antibiotics of choice for human salmonellosis (s-lactams and fluoroquinolones). The aim of the study was to follow the evolution of resistance against some Critical Important Antimicrobials in Salmonella isolates from fresh pork collected in Emilia-Romagna region, northern Italy, over two decades. Emilia-Romagna region is characterized by production of well-known pork derived products, as Parma Ham. The samples were collected in three different periods, ranging from 2000 to 2003, 2012 to 2016 and 2018 to 2021. After serotyping, the isolates were phenotypically tested for resistance to three classes of antibiotics: s-lactams, fluoroquinolones and polymyxins. End-point polymerase chain reaction (PCR) and PCRReal Time were used for genotypical analyses. The phenotypical resistance to s-lactams and fluoroquinolones were clearly increasing when comparing the results obtained from isolates collected in the first period (16.7% and 16.7%, respectively) with those of the third period (29.7% and 32.4%, respectively). On the contrary, the resistance to colistin decreased from 33.3% to 5.4%. Genotypically, the 71.4% and 83.3% of the strains harboured s-lactams and fluoroquinolones genes, respectively, while colistin resistance genes were not detected in the phenotypically resistant strains.
Collapse
|
15
|
Yang X, Xie M, Xu Q, Ye L, Yang C, Dong N, Chan EWC, Zhang R, Chen S. Transmission of pLVPK-like virulence plasmid in Klebsiella pneumoniae mediated by an Incl1 conjugative helper plasmid. iScience 2022; 25:104428. [PMID: 35663037 PMCID: PMC9160755 DOI: 10.1016/j.isci.2022.104428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/13/2022] [Accepted: 05/13/2022] [Indexed: 11/27/2022] Open
Abstract
We previously reported the recovery of five ST11 carbapenem resistant hypervirulent Klebsiella pneumoniae (CR-HvKP) strains that harbored pLVPK-like virulence plasmids, yet molecular mechanisms underlying acquisition of virulence plasmid by ST11 K. pneumoniae have not been characterized. In this study, we showed that virulence plasmids in these CR-HvKP strains could be transferred to Escherichia coli strain EC600 via conjugation. Transmission of the virulence plasmids was found to involve formation of fusion plasmids with an Incl1 type conjugative plasmid and a small ColRNAI plasmid through homologous recombination and by insertion sequences IS26 and IS903B. The conjugative fusion event would transform different ST types of K. pneumoniae, in particular, the clinically prevalent ST11 or ST258 CRKP into CR-HvKP. Clinical factors that promote or suppress the occurrence of this fusion process should be further investigated to devise new approaches to halt such bacterial evolution trends.
Collapse
Affiliation(s)
- Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Miaomiao Xie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Qi Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chen Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
16
|
Chang MX, Zhang J, Zhang JF, Ding XM, Lu Y, Zhang J, Li R, Jiang HX. Formation, Transmission, and Dynamic Evolution of a Multidrug-Resistant Chromosomally Integrated Plasmid in Salmonella Spp. Front Microbiol 2022; 13:846954. [PMID: 35464949 PMCID: PMC9019673 DOI: 10.3389/fmicb.2022.846954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
IncHI2 plasmids, possessing high flexibility and genetic plasticity, play a vital role in the acquisition and transmission of resistance determinants. Polymorphic mobile genetic elements (MGEs) generated by a chromosomally integrated IncHI2 plasmid in an individual Salmonella isolate have not yet been detected, and the mechanisms of the formation, excision, and dynamic evolution of a multidrug-resistant chromosomally integrated plasmid (MRCP) have remained obscure. Herein, we identified a 260-kb blaCTX–M–55-qnrS1-bearing IncHI2 plasmid within a Salmonella Muenster strain. Plenty of heterogeneous MGEs (new Escherichia coli chromosomally integrated plasmid or circular plasmids with different profiles) were yielded when this MRCP was conjugated into E. coli J53 with a transfer frequency of 10–4–10–5 transconjugants per donor. A bioinformatic analysis indicated that replicative transposition and homologous recombination of IS26 elements were particularly active, and the truncated Tn1721 also played a vital role in the formation of MRCP offspring. More importantly, when released from the chromosome, MRCP could capture and co-transfer adjacent chromosomal segments to form larger plasmid progeny than itself. Stability and growth kinetics assays showed that the biological characteristics of MRCP progeny were differentiated. This study provides an insight into a flexible existence of MRCP. The conversion between vertical and horizontal transmission endowed MRCP with genetic stability as a chromosomal coding structure and transferability as extra-chromosomal elements. This alternation may accelerate the acquisition and persistence of antibiotic resistance of clinical pathogens and enhance their ability to respond to adverse environments, which poses a great challenge to the traditional antibiotic treatment.
Collapse
Affiliation(s)
- Man-Xia Chang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jing Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jin-Fei Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Min Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yang Lu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hong-Xia Jiang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
17
|
Algarni S, Ricke SC, Foley SL, Han J. The Dynamics of the Antimicrobial Resistance Mobilome of Salmonella enterica and Related Enteric Bacteria. Front Microbiol 2022; 13:859854. [PMID: 35432284 PMCID: PMC9008345 DOI: 10.3389/fmicb.2022.859854] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
The foodborne pathogen Salmonella enterica is considered a global public health risk. Salmonella enterica isolates can develop resistance to several antimicrobial drugs due to the rapid spread of antimicrobial resistance (AMR) genes, thus increasing the impact on hospitalization and treatment costs, as well as the healthcare system. Mobile genetic elements (MGEs) play key roles in the dissemination of AMR genes in S. enterica isolates. Multiple phenotypic and molecular techniques have been utilized to better understand the biology and epidemiology of plasmids including DNA sequence analyses, whole genome sequencing (WGS), incompatibility typing, and conjugation studies of plasmids from S. enterica and related species. Focusing on the dynamics of AMR genes is critical for identification and verification of emerging multidrug resistance. The aim of this review is to highlight the updated knowledge of AMR genes in the mobilome of Salmonella and related enteric bacteria. The mobilome is a term defined as all MGEs, including plasmids, transposons, insertion sequences (ISs), gene cassettes, integrons, and resistance islands, that contribute to the potential spread of genes in an organism, including S. enterica isolates and related species, which are the focus of this review.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Steven L. Foley
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, United States
| | - Jing Han
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- *Correspondence: Jing Han,
| |
Collapse
|
18
|
Characterization of a Conjugative Multidrug Resistance IncP-2 Megaplasmid, pPAG5, from a Clinical Pseudomonas aeruginosa Isolate. Microbiol Spectr 2022; 10:e0199221. [PMID: 35171033 PMCID: PMC8849076 DOI: 10.1128/spectrum.01992-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spread of resistance genes via horizontal plasmid transfer plays a significant role in the formation of multidrug-resistant (MDR) Pseudomonas aeruginosa strains. Here, we identified a megaplasmid (ca. 513 kb), designated pPAG5, which was recovered from a clinical multidrug-resistant P. aeruginosa PAG5 strain. The pPAG5 plasmid belonged to the IncP-2 incompatibility group. Two large multidrug resistance regions (MDR-1 and MDR-2) and two heavy metal resistance operons (merEDACPTR and terZABCDE) were identified in the pPAG5 plasmid. Genetic analysis demonstrated that the formation of MDR regions was mediated by several homologous recombination events. Further conjugation assays identified that pPAG5 could be transferred to P. aeruginosa but not Escherichia coli. Antimicrobial susceptibility testing on transconjugants demonstrated that pPAG5 was capable of transferring resistance genes to transconjugants and producing a multidrug-resistant phenotype. Comparative analysis revealed that pPAG5 and related plasmids shared an overall similar backbone, including genes essential for replication (repA), partition (par), and conjugal transfer (tra). Further phylogenetic analysis showed that pPAG5 was closely related to plasmids pOZ176 and pJB37, both of which are members of the IncP-2-type plasmid group. IMPORTANCE The emergence and spread of plasmid-associated multidrug resistance in bacterial pathogens is a key global threat to public health. It is important to understand the mechanisms of the formation and evolution of these plasmids in patients, hospitals, and the environment. In this study, we detailed the genetic characteristics of a multidrug resistance IncP-2 megaplasmid, pPAG5, and investigated the formation of its MDR regions and evolution. To the best of our knowledge, plasmid pPAG5 is the largest multidrug resistance plasmid ever sequenced in the Pseudomonas genus. Our results may provide further insight into the formation of multidrug resistance plasmids in bacteria and the molecular evolution of plasmids.
Collapse
|
19
|
Chen K, Xie M, Chan EWC, Chen S. Delineation of ISEcp1 and IS26-Mediated Plasmid Fusion Processes by MinION Single-Molecule Long-Read Sequencing. Front Microbiol 2022; 12:796715. [PMID: 35197941 PMCID: PMC8859459 DOI: 10.3389/fmicb.2021.796715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
We recently reported the recovery of a novel IncI1 type conjugative helper plasmid which could target mobile genetic elements (MGE) located in non-conjugative plasmid and form a fusion conjugative plasmid to mediate the horizontal transfer of the non-conjugative plasmid. In this study, interactions between the helper plasmid pSa42-91k and two common MGEs, ISEcp1 and IS15DI, which were cloned into a pBackZero-T vector, were monitored during the conjugation process to depict the molecular mechanisms underlying the plasmid fusion process mediated by insertion sequence (IS) elements. The MinION single-molecule long-read sequencing technology can dynamically reveal the plasmid recombination events and produce valuable information on genetic polymorphism and plasmid heterogeneity in different multidrug resistance (MDR) encoding bacteria. Such data would facilitate the development of new strategies to control evolution and dissemination of MDR plasmids.
Collapse
Affiliation(s)
- Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Miaomiao Xie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Edward Wai-Chi Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Sheng Chen,
| |
Collapse
|
20
|
Plasmid Fusion and Recombination Events That Occurred during Conjugation of poxtA-Carrying Plasmids in Enterococci. Microbiol Spectr 2022; 10:e0150521. [PMID: 35044200 PMCID: PMC8768628 DOI: 10.1128/spectrum.01505-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Linezolid plays a crucial role in the treatment of infections caused by multiresistant Gram-positive bacteria. The poxtA gene not only confers oxazolidinone and phenicol resistance but also decreases susceptibility to tetracycline. In this study, we investigated structural changes in mobilizable poxtA-carrying plasmids in enterococci which occurred during conjugation experiments using S1-PFGE (pulsed-field gel electrophoresis), Southern blot hybridization, and whole-genome sequencing (WGS) analysis. Two poxtA-carrying strains were identified in Enterococcus faecalis E006 and Enterococcus lactis E843, respectively. E. faecalis E006 contains the 121,520-bp conjugative plasmid pE006-121 and the 19,832-bp mobilizable poxtA-carrying plasmid pE006-19, while E. lactis E843 contains the 171,930-bp conjugative plasmid pE843-171 and the 27,847-bp mobilizable poxtA-carrying plasmid pE843-27. Moreover, both poxtA-carrying plasmids were mobilized by their respective conjugative plasmid in enterococci by plasmid fusion; one was generated by homologous recombination in E. faecalis through an identical 864-bp homologous region in the plasmids of the parental strain, while another was generated by an IS1216E-mediated plasmid integration in E. lactis, involving a replicative transposition. IMPORTANCE Until now, all the poxtA genes described in enterococci, including E. faecalis, E. faecium, and E. hirae, are plasmid-borne, suggesting that plasmids play an important role in the dissemination of the poxtA gene among enterococci. This study showed that the mobilizable poxtA-carrying plasmid could transfer with the help of conjugative plasmid in enterococci via plasmid fusion, with one generated by homologous recombination in E. faecalis, and another by replicative transposition in E. lactis. During both the fusion events, the poxtA-carrying plasmids changed from nonconjugative to conjugative, leading to the generation and enhanced dissemination of the larger phenicol-oxazolidinone-tetracycline resistance-encoding plasmids in enterococci.
Collapse
|
21
|
Chen S, Wan L, Wei DD, Du F, Huang QS, Liu Y. High Prevalence and Fitness of IncFrepB Carrying qnrS1 in Hypervirulent Klebsiella pneumoniae Isolates. Microb Drug Resist 2022; 28:361-369. [PMID: 35021884 DOI: 10.1089/mdr.2021.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to reveal the prevalence and fitness of qnrS1-carrying plasmids in hypervirulent Klebsiella pneumoniae (hvKP) isolates. Materials and Methods: Two hundred ninety-nine hvKP strains carrying qnrS1 were collected and screened for resistance genes using PCR and sequencing. The location of qnrS1 and rmpA2 was identified by Southern blotting. The transferability and fitness of qnrS1-carrying plasmids were analyzed by conjugation experiments and plasmid stability assay. Result: In 299 hvKP isolates, the most frequently detected capsular serotype was K64 (81.9%, 245/299), followed by K1 (4.7%, 14/299) and K2 (3.7%, 11/299). All K64-hvKP were sequence type (ST) 11. The qnrS1 and rmpA2 gene mainly was located on the ∼70-210 kb IncFrepB and ∼170-220 kb IncFIB plasmid, respectively. QnrS1-carrying plasmids could be transferred into Escherichia coli J53. However, the plasmid was transferred at a low rate of 13.4% (40/299). The 40 donor isolates belong to 4 STs-ST11, ST700, ST592, and ST86, and none contains the CRISPR-Cas loci. CRISPR-Cas loci were mainly found in ST23 K. pneumoniae. The relative fitness (RF) of qnrS1-carrying plasmids in ST86 and ST11 (cotransfer with blaTEM-1 genes) was more than one and enhanced during cultivation, especially in ST86. However, the RF of qnrS1-carrying plasmids in ST592 and ST700 showed a high fitness cost. Whole-genome sequencing showed that the qnrS1-carrying plasmids in ST86 harbored more maintenance modules (SOS inhibitor protein psiB, parA, and parB partition systems) and insertion sequence (IS) elements (IS91, IS481-like, IS1380), indicating that the qnrS1-carrying plasmid in ST86 is more stable than the other types of qnrS1-carrying plasmids. Conclusion: QnrS1-carrying IncFrepB plasmids were highly prevalent and show polymorphism in hvKP strains. The qnrS1-carrying IncFrepB plasmid in ST86 hvKP should be highlighted due to its remarkable adaptability advantages.
Collapse
Affiliation(s)
- Si Chen
- Department of Bacteriology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China.,School of Public Health, Nanchang University, Nanchang, P.R. China
| | - Lagen Wan
- Department of Bacteriology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Dan-Dan Wei
- Department of Bacteriology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Fanglin Du
- Department of Bacteriology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Qi-Seng Huang
- Department of Bacteriology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China.,School of Public Health, Nanchang University, Nanchang, P.R. China
| | - Yang Liu
- Department of Bacteriology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
22
|
Pan Y, Zhang T, Yu L, Zong Z, Zhao S, Li R, Wang Q, Yuan L, Hu G, He D. IS 1294 Reorganizes Plasmids in a Multidrug-Resistant Escherichia coli Strain. Microbiol Spectr 2021; 9:e0050321. [PMID: 34612694 PMCID: PMC8510248 DOI: 10.1128/spectrum.00503-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023] Open
Abstract
The aims of this study were to elucidate the role of IS1294 in plasmid reorganization and to analyze biological characteristics of cointegrates derived from different daughter plasmids. The genetic profiles of plasmids in Escherichia coli strain C21 and its transconjugants were characterized by conjugation, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern hybridization, whole-genome sequencing (WGS) analysis, and PCR. The traits of cointegrates were characterized by conjugation and stability assays. blaCTX-M-55-bearing IncI2 pC21-1 and nonresistant IncI1 pC21-3, as conjugative helper plasmids, were fused with nonconjugative rmtB-bearing IncN-X1 pC21-2, generating cointegrates pC21-F1 and pC21-F2. Similarly, pC21-1 and pC21-3 were fused with nonconjugative IncF33:A-:B- pHB37-2 from another E. coli strain to generate cointegrates pC21-F3 and pC21-F4 under experimental conditions. Four cointegrates were further conjugated into the E. coli strain J53 recipient at high conjugation frequencies, ranging from 2.8 × 10-3 to 3.2 × 10-2. The formation of pC21-F1 and pC21-F4 was the result of host- and IS1294-mediated reactions and occurred at high fusion frequencies of 9.9 × 10-4 and 2.1 × 10-4, respectively. Knockout of RecA resulted in a 100-fold decrease in the frequency of plasmid reorganization. The phenomenon of cointegrate pC21-F2 and its daughter plasmids coexisting in transconjugants was detected for the first time in plasmid stability experiments. IS26-orf-oqxAB was excised from cointegrate pC21-F2 through a circular intermediate at a very low frequency, which was experimentally observed. To the best of our knowledge, this is the first report of IS1294-mediated fusion between plasmids with different replicons. This study provides insight into the formation and evolution of cointegrate plasmids under different drug selection pressures, which can promote the dissemination of MDR plasmids. IMPORTANCE The increasing resistance to β-lactams and aminoglycoside antibiotics, mainly due to extended-spectrum β-lactamases (ESBLs) and 16S rRNA methylase genes, is becoming a serious problem in Gram-negative bacteria. Plasmids, as the vehicles for resistance gene capture and horizontal gene transfer, serve a key role in terms of antibiotic resistance emergence and transmission. IS26, present in many antibiotic-resistant plasmids from Gram-negative bacteria, plays a critical role in the spread, clustering, and reorganization of resistance determinant-encoding plasmids and in plasmid reorganization through replicative transposition mechanisms and homologous recombination. However, the role of IS1294, present in many MDR plasmids, in the formation of cointegrates remains unclear. Here, we investigated experimentally the intermolecular recombination of IS1294, which occurred with high frequencies and led to the formation of conjugative MDR cointegrates and facilitated the cotransfer of blaCTX-M-55 and rmtB, and we further uncovered the significance of IS1294 in the formation of cointegrates and the common features of IS1294-driven cointegration of plasmids.
Collapse
Affiliation(s)
- Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tengli Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lijie Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhiyong Zong
- West China Hospital, Sichuan University, Chengdu, China
| | - Shiyu Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Qianqian Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
23
|
Molecular characterisation of antimicrobial resistance determinants and class 1 integrons of Salmonella enterica subsp. enterica serotype Enteritidis strains from retail food in China. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Gu Y, Lü Z, Cao C, Sheng H, Li W, Cui S, Li R, Lü X, Yang B. Cunning plasmid fusion mediates antibiotic resistance genes represented by ESBLs encoding genes transfer in foodborne Salmonella. Int J Food Microbiol 2021; 355:109336. [PMID: 34352499 DOI: 10.1016/j.ijfoodmicro.2021.109336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
Foodborne disease caused by antibiotic resistant Salmonella is quite difficult to deal with. In order to further explore the antibiotic resistance associated with gene transfer among foodborne Salmonella, several wild-type Salmonella strains were used as donors and recipients, respectively, to investigate how extended spectrum β-lactamases (ESBLs) encoding genes co-transfer with transposable elements to transmit antibiotic resistance. Antibiotic susceptibility was determined by agar dilution method, the transposase encoding gene was detected via PCR combined with DNA sequencing, S1 nuclease and pulsed field gel electrophoresis (S1-PFGE), and southern-blot. Illumina HiSeq 4000 platform and Nanopore MinION long-read sequencing technology were used to determine the antibiotic resistance encoding genes (ARGs) and their surrounding gene environment. The results indicated that the conjugation frequency was from ×10-4 to ×10-5 per recipient cell. A 185,608-bp-long DNA fragment and two short backbone protein encoding regions in pG19 in the donor fused with part genes in pS3 in the recipient during conjugation, the size of this fusion plasmid is as same as that of pG19. Cefoxitin resistance of the transconjugant was mediated by a tnpA21-related blaDHA-1 transfer. Resistance of Salmonella to ceftriaxone, cefoperazone and ceftiofur was mediated by a tnpU1548 related blaTEM-1B and blaCTX-M-3 transfer. The study indicated that transposase synergy and plasmid selective fusion act as important roles for foodborne Salmonella gathering ARGs. The consistent size of the plasmid before and after fusion suggested the invisibility and complexity of bacterial conjugation without DNA sequencing, the fact reminded us that the rampant transmission of antibiotic-resistance encoding genes would pose tremendous threat to food safety.
Collapse
Affiliation(s)
- Yaxin Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
25
|
Xie M, Yang X, Xu Q, Ye L, Chen K, Zheng Z, Dong N, Sun Q, Shu L, Gu D, Chan EWC, Zhang R, Chen S. Clinical evolution of ST11 carbapenem resistant and hypervirulent Klebsiella pneumoniae. Commun Biol 2021; 4:650. [PMID: 34075192 PMCID: PMC8169677 DOI: 10.1038/s42003-021-02148-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/23/2021] [Indexed: 11/18/2022] Open
Abstract
Carbapenem-resistant and hypervirulent K. pneumoniae (CR-HvKP) strains that have emerged recently have caused infections of extremely high mortality in various countries. In this study, we discovered a conjugative plasmid that encodes carbapenem resistance and hypervirulence in a clinical ST86 K2 CR-HvKP, namely 17ZR-91. The conjugative plasmid (p17ZR-91-Vir-KPC) was formed by fusion of a non-conjugative pLVPK-like plasmid and a conjugative blaKPC-2-bearing plasmid and is present dynamically with two other non-fusion plasmids. Conjugation of p17ZR-91-Vir-KPC to other K. pneumoniae enabled them to rapidly express the carbapenem resistance and hypervirulence phenotypes. More importantly, genome analysis provided direct evidence that p17ZR-91-Vir-KPC could be directly transmitted from K2 CR-HvKP strain, 17ZR-91, to ST11 clinical K. pneumoniae strains to convert them into ST11 CR-HvKP strains, which explains the evolutionary mechanisms of recently emerged ST11 CR-HvKP strains. Carbapenem-resistant and hypervirulent Klebsiella pneumoniae strains are emerging. Here Xie et al. show that these phenotypes are carried on a plasmid formed from the fusion of a virulence plasmid with a conjugative plasmid.
Collapse
Affiliation(s)
- Miaomiao Xie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Qi Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Zhiwei Zheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Lingbin Shu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Danxia Gu
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Edward Wai-Chi Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China.
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
26
|
Liu YY, He DD, Zhang MK, Pan YS, Wu H, Yuan L, Liu JH, Hu GZ. The Formation of Two Hybrid Plasmids Mediated by IS 26 and Tn 6952 in Salmonella enterica Serotype Enteritidis. Front Microbiol 2021; 12:676574. [PMID: 34122390 PMCID: PMC8193513 DOI: 10.3389/fmicb.2021.676574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022] Open
Abstract
To characterize the formation mechanism and characteristics of two cointegrate plasmids in Salmonella enterica serotype Enteritidis strain S13, plasmids from strain S13 and three corresponding transconjugants were subjected to whole genome sequencing and analyzed using bioinformatics tools. The traits of two fusion plasmids in transconjugants were characterized by stability and conjugation experiments. Sequence analysis indicated that strain S13 contained four plasmids, including mcr-1-bearing pS13-1, bla CTX-M-55-carrying pS13-2, tet(M)-bearing pS13-3, and floR-carrying pS13-4. IncN1-F33:A-:B- plasmid pS13-2, respectively, fused with IncFI:A-:B- plasmid pS13-3 and IncX1 plasmid pS13-4, which generated two cointegrate plasmids, designated pS13D and pS13F, which involved in two intermolecular replicative mechanisms mediated by IS26 and the novel transposon Tn6952 (ΔTnAS3-IS26-ΔISEcp1-ramA-ΔIS26-ΔTnAS1), respectively. This is the first report of the fusion of the IncN1-F33:A-:B- plasmid and IncFI:A-:B- plasmid mediated by IS26, and with IncX1 plasmid mediated by Tn6952. The formation and evolution of cointegrate plasmids could expand the resistance and host spectrum of fusion plasmids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian-hua Liu
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Gong-zheng Hu
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
27
|
Chang MX, Zhang JF, Sun YH, Li RS, Lin XL, Yang L, Webber MA, Jiang HX. Contribution of Different Mechanisms to Ciprofloxacin Resistance in Salmonella spp. Front Microbiol 2021; 12:663731. [PMID: 34025618 PMCID: PMC8137344 DOI: 10.3389/fmicb.2021.663731] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Development of fluoroquinolone resistance can involve several mechanisms that include chromosomal mutations in genes (gyrAB and parCE) encoding the target bacterial topoisomerase enzymes, increased expression of the AcrAB-TolC efflux system, and acquisition of transmissible quinolone-resistance genes. In this study, 176 Salmonella isolates from animals with a broad range of ciprofloxacin MICs were collected to analyze the contribution of these different mechanisms to different phenotypes. All isolates were classified according to their ciprofloxacin susceptibility pattern into five groups as follows: highly resistant (HR), resistant (R), intermediate (I), reduced susceptibility (RS), and susceptible (S). We found that the ParC T57S substitution was common in strains exhibiting lowest MICs of ciprofloxacin while increased MICs depended on the type of GyrA mutation. The ParC T57S substitution appeared to incur little cost to bacterial fitness on its own. The presence of PMQR genes represented an route for resistance development in the absence of target-site mutations. Switching of the plasmid-mediated quinolone resistance (PMQR) gene location from a plasmid to the chromosome was observed and resulted in decreased ciprofloxacin susceptibility; this also correlated with increased fitness and a stable resistance phenotype. The overexpression of AcrAB-TolC played an important role in isolates with small decreases in susceptibility and expression was upregulated by MarA more often than by RamA. This study increases our understanding of the relative importance of several resistance mechanisms in the development of fluoroquinolone resistance in Salmonella from the food chain.
Collapse
Affiliation(s)
- Man-Xia Chang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jin-Fei Zhang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yin-Huan Sun
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rong-Sheng Li
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ling Lin
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ling Yang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Hong-Xia Jiang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
28
|
Abstract
The incidence of ciprofloxacin resistance in Salmonella has increased dramatically in the past decade. To track the evolutionary trend of ciprofloxacin resistance-encoding genetic elements during this period, we surveyed the prevalence of Salmonella in food products in Shenzhen, China, during the period of 2012 to 2017 and performed whole-genome sequencing and genetic analysis of 566 ciprofloxacin-resistant clinical Salmonella strains collected during this survey. We observed that target gene mutations have become much less common, with single gyrA mutation currently detectable in Salmonella enterica serovar Typhimurium only. Multiple plasmid-mediated quinolone resistance (PMQR) genes located in the chromosome and plasmids are now frequently detectable in ciprofloxacin-resistant Salmonella strains of various serotypes. Among them, the qnrS1 gene was often harbored by multiple plasmids, with p10k-like plasmids being the most dominant. Importantly, p10k-like plasmids initially were not conjugative but became transmissible with the help of a helper plasmid. Ciprofloxacin resistance due to combined effect of carriage of the qnrS1 gene and other resistance mechanisms is common. In S Typhimurium, carriage of qnrS1 is often associated with a single gyrA mutation; in other serotypes, combination of qnrS1 and other PMQR genes located in the chromosomal fragment or plasmid is observed. Another major mechanism of ciprofloxacin resistance, mainly observable in S Derby, involves a chromosomal fragment harboring the qnrS2-aac(6')lb-cr-oqxAB elements. Intriguingly, this chromosomal fragment, flanked by IS26, could form a circular intermediate and became transferrable. To conclude, the increase in the incidence of various PMQR mobile genetic elements and their interactions with other resistance mechanism contribute to a sharp increase in the prevalence of ciprofloxacin-resistant clinical Salmonella strains in recent years.IMPORTANCE Resistance of nontyphoidal Salmonella to fluoroquinolones such as ciprofloxacin is known to be mediated by target mutations. This study surveyed the prevalence of Salmonella strains recovered from 2,989 food products in Shenzhen, China, during the period 2012 to 2017 and characterized the genetic features of several PMQR gene-bearing plasmids and ciprofloxacin resistance-encoding DNA fragments. The emergence of such genetic elements has caused a shift in the genetic location of ciprofloxacin resistance determinants from the chromosomal mutations to various mobile genetic elements. The distribution of these PMQR plasmids showed that they exhibited high serotype specificity, except for the p10k-like plasmids, which can be widely detected and efficiently transmitted among Salmonella strains of various serotypes by fusing to a new conjugative helper plasmid. The sharp increase in the prevalence of ciprofloxacin resistance in recent years may cause a predisposition to the emergence of multidrug-resistant Salmonella strains and pose huge challenges to public health and infection control efforts.
Collapse
|
29
|
Yang C, Chen K, Chan EWC, Yao W, Chen S. Transmission of Chromosomal MDR DNA Fragment Encoding Ciprofloxacin Resistance by a Conjugative Helper Plasmid in Salmonella. Front Microbiol 2020; 11:556227. [PMID: 33072017 PMCID: PMC7530939 DOI: 10.3389/fmicb.2020.556227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022] Open
Abstract
Resistance to ciprofloxacin, a treatment choice for Salmonella infections, has increased dramatically in recent years in particular in serotype Salmonella Derby with most of strains carrying chromosome-encoded multiple plasmid-mediated quinolone resistance (PMQR) genes. In this work, we discovered a conjugative plasmid, pSa64-96kb, in a Salmonella Derby isolate, namely Sa64, which could extract and fuse to a multiple drug resistance (MDR) DNA fragment containing two PMQR genes, aac(6')-Ib-cr, and qnrS2 located on the chromosome of the Salmonella strain. This process led to the formation of a new 188 kb fusion plasmid, which could be then subsequently transmitted to recipient strain Escherichia coli J53. The chromosomal MDR DNA fragment was shown to be flanked by one copy of IS26 element at each end and could be excised from the chromosome to form circular intermediate, which was then fused to pSa64-96kb and form a single plasmid through IS26 mediated homologous recombination. The role of IS26 on enhancing the efficacy of fusion and transmission of this chromosomal MDR DNA fragment was further proven in other Salmonella strains. These findings showed that dynamic interaction between specific chromosomal fragment and plasmids may significantly enhance resistance development and transferability of mobile resistance-encoding elements among bacterial pathogens.
Collapse
Affiliation(s)
- Chen Yang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China.,Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Wen Yao
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
30
|
García-Soto S, Abdel-Glil MY, Tomaso H, Linde J, Methner U. Emergence of Multidrug-Resistant Salmonella enterica Subspecies enterica Serovar Infantis of Multilocus Sequence Type 2283 in German Broiler Farms. Front Microbiol 2020; 11:1741. [PMID: 32765483 PMCID: PMC7380084 DOI: 10.3389/fmicb.2020.01741] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
During the last decade, Salmonella enterica subspecies enterica serovar Infantis (S. Infantis) has become more prevalent across Europe with an increased capability to persist in broiler farms. In this study, we aimed to identify potential genetic causes for the increased emergence and longer persistence of S. Infantis in German poultry farms by high-throughput-sequencing. Broiler derived S. Infantis strains from two decades, the 1990s (n = 12) and the 2010s (n = 18), were examined phenotypically and genotypically to detect potential differences responsible for increased prevalence and persistence. S. Infantis organisms were characterized by serotyping and determining antimicrobial susceptibility using the microdilution method. Genotypic characteristics were analyzed by whole genome sequencing (WGS) to detect antimicrobial resistance and virulence genes as well as plasmids. To detect possible clonal relatedness within S. Infantis organisms, 17 accessible genomes from previous studies about emergent S. Infantis were downloaded and analyzed using complete genome sequence of SI119944 from Israel as reference. In contrast to the broiler derived antibiotic-sensitive S. Infantis strains from the 1990s, the majority of strains from the 2010s (15 out of 18) revealed a multidrug-resistance (MDR) phenotype that encodes for at least three antimicrobials families: aminoglycosides [ant(3“)-Ia], sulfonamides (sul1), and tetracyclines [tet(A)]. Moreover, these MDR strains carry a virulence gene pattern missing in strains from the 1990s. It includes genes encoding for fimbriae clusters, the yersiniabactin siderophore, mercury and disinfectants resistance and toxin/antitoxin complexes. In depth genomic analysis confirmed that the 15 MDR strains from the 2010s carry a pESI-like megaplasmid with resistance and virulence gene patterns detected in the emerged S. Infantis strain SI119944 from Israel and clones inside and outside Europe. Genotyping analysis revealed two sequence types (STs) among the resistant strains from the 2010s, ST2283 (n = 13) and ST32 (n = 2). The sensitive strains from the 1990s, belong to sequence type ST32 (n = 10) and ST1032 (n = 2). Therefore, this study confirms the emergence of a MDR S. Infantis pESI-like clone of ST2283 in German broiler farms with presumably high tendency of dissemination. Further studies on the epidemiology and control of S. Infantis in broilers are needed to prevent the transfer from poultry into the human food chain.
Collapse
Affiliation(s)
- Silvia García-Soto
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
31
|
Musa DA, Aremu KH, Adebayo ZA, Pellicano R, Smith SI. Molecular detection of main resistance genes by nested PCR in Salmonella spp. isolated from raw meat and stool samples in Niger State, Nigeria. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02611-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Xie M, Chen K, Ye L, Yang X, Xu Q, Yang C, Dong N, Chan EWC, Sun Q, Shu L, Gu D, Lin X, Zhang R, Chen S. Conjugation of Virulence Plasmid in Clinical Klebsiella pneumoniae Strains through Formation of a Fusion Plasmid. ACTA ACUST UNITED AC 2020; 4:e1900239. [PMID: 32293159 DOI: 10.1002/adbi.201900239] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/22/2019] [Indexed: 01/02/2023]
Abstract
The rapid dissemination of non-conjugative virulence plasmids among non-K1/K2 types of Klebsiella pneumoniae poses an unprecedented threat to human health, yet the underlying mechanisms governing dissemination of such plasmids is unclear. In this study, a novel 68 581 bp IncFIA plasmid is discovered that can be fused to a hypervirulence-encoding plasmid to form a hybrid conjugative virulence plasmid in conjugation experiments; such fusion events involve homologous recombination between a 241 bp homologous region located in each of the two plasmids. The fusion hypervirulence-encoding plasmid can be conjugated to both classic and blaKPC-2 -bearing carbapenem-resistant K. pneumoniae strains through conjugation, enabling such strains to acquire the ability to express the hypervirulence phenotype. Dissemination of this fusion virulence plasmid will impose an enormous burden on current efforts to control and treat infections caused by multidrug resistant and hypervirulent K. pneumoniae.
Collapse
Affiliation(s)
- Miaomiao Xie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qi Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chen Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, 310027, China
| | - Lingbin Shu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, 310027, China
| | - Danxia Gu
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou, 310027, China
| | - Xiaodong Lin
- Department of Management Science and Information Systems, Rutgers University, Piscataway, NJ, 08854, USA
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, 310027, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|