1
|
Huang M, Mark A, Pham J, Vera K, Saravia-Butler AM, Beheshti A, Jiang Q, Fisch KM. RNA editing regulates host immune response and T cell homeostasis in SARS-CoV-2 infection. PLoS One 2024; 19:e0307450. [PMID: 39178184 PMCID: PMC11343423 DOI: 10.1371/journal.pone.0307450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/04/2024] [Indexed: 08/25/2024] Open
Abstract
Adenosine to inosine (A-to-I) RNA editing by ADAR1 has been implicated in maintaining self-tolerance, preventing autoimmunity, and mediating antiviral immunity. Foreign viral double-stranded RNA triggers rapid interferon response and activates ADAR1 in the host immune system. Emerging data points to a role of ADAR1 A-to-I editing in the inflammatory response associated with severe COVID-19 disease. We identify A-to-I editing events within human whole transcriptome data from SARS-CoV-2 infected individuals, non-infected individuals, and individuals with other viral illnesses from nasopharyngeal swabs. High levels of RNA editing in host cells are associated with low SARS-CoV-2 viral load (p = 9.27 E-06), suggesting an inhibitory effect of ADAR1 on viral infection. Additionally, we find differentially expressed genes associated with RNA-modifications and interferon response. Single cell RNA-sequencing analysis of SARS-CoV-2 infected nasopharyngeal swabs reveals that cytotoxic CD8 T cells upregulate ADAR1 in COVID-19 positive samples (p = 0.0269). We further reveal ADAR1 expression increases with CD4 and CD8 T cell activation, and knockdown of ADAR1 leads to apoptosis and aberrant IL-2 secretion. Together, our data suggests A-to-I RNA editing is required to maintain healthy homeostasis of activated T cells to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Molly Huang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Adam Mark
- Center for Computational Biology & Bioinformatics, University of California San Diego, La Jolla, California, United States of America
| | - Jessica Pham
- Division of Regenerative Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Karina Vera
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Amanda M. Saravia-Butler
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- COVID-19 International Research Team, Medford, Massachusetts, United States of America
| | - Qingfei Jiang
- Division of Regenerative Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Kathleen M. Fisch
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, California, United States of America
- Center for Computational Biology & Bioinformatics, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
2
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
3
|
Maarouf M, Wang L, Wang Y, Rai KR, Chen Y, Fang M, Chen JL. Functional Involvement of circRNAs in the Innate Immune Responses to Viral Infection. Viruses 2023; 15:1697. [PMID: 37632040 PMCID: PMC10458642 DOI: 10.3390/v15081697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Effective viral clearance requires fine-tuned immune responses to minimize undesirable inflammatory responses. Circular RNAs (circRNAs) are a class of non-coding RNAs that are abundant and highly stable, formed by backsplicing pre-mRNAs, and expressed ubiquitously in eukaryotic cells, emerging as critical regulators of a plethora of signaling pathways. Recent progress in high-throughput sequencing has enabled a better understanding of the physiological and pathophysiological functions of circRNAs, overcoming the obstacle of the sequence overlap between circRNAs and their linear cognate mRNAs. Some viruses also encode circRNAs implicated in viral replication or disease progression. There is increasing evidence that viral infections dysregulate circRNA expression and that the altered expression of circRNAs is critical in regulating viral infection and replication. circRNAs were shown to regulate gene expression via microRNA and protein sponging or via encoding small polypeptides. Recent studies have also highlighted the potential role of circRNAs as promising diagnostic and prognostic biomarkers, RNA vaccines and antiviral therapy candidates due to their higher stability and lower immunogenicity. This review presents an up-to-date summary of the mechanistic involvement of circRNAs in innate immunity against viral infections, the current understanding of their regulatory roles, and the suggested applications.
Collapse
Affiliation(s)
- Mohamed Maarouf
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lulu Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiming Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kul Raj Rai
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Microbiology, ShiGan International College of Science and Technology/ShiGan Health Foundation, Narayangopal Chowk, Kathmandu 44600, Nepal
| | - Yuhai Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Jing H, Song Y, Li H, Duan E, Liu J, Ke W, Tao R, Li Y, Zhao P, Wang J, Cao S, Wang H, Sun Y, Zhang Y. HnRNP K reduces viral gene expression by targeting cytosine-rich sequences in porcine reproductive and respiratory syndrome virus-2 genome to dampen the viral growth. Virology 2023; 581:15-25. [PMID: 36842269 DOI: 10.1016/j.virol.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
HnRNP K is a well-known member of HnRNP family proteins that has been implicated in the regulation of protein expression. Currently, the impact of HnRNP K on the reproduction cycle of a broad range of virus were reported, while the precise function for PRRSV was lacking. In this study, we determined that both PRRSV infection and ectopic expression of N protein induced an enrichment of HnRNP K in the cytoplasm. Using RNA pulldown and RNA immunoprecipitation, we described the interactions between the KH2 domain of HnRNP K and cytosine-rich sequences (CRS) in PRRSV genomic RNA corresponding to Nsp7α coding region. Meanwhile, overexpression of HnRNP K inhibited viral gene expression and PRRSV replication, while silencing of HnRNP K resulted in an increased in virus yield. Taken together, this study assists in the understanding of PRRSV-host interactions, and the development of vaccines based on viral genome engineering.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| | - Yuzhen Song
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Huawei Li
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Erzhen Duan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pandeng Zhao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Jinhe Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Sufang Cao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Haihua Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yanting Sun
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yan Zhang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| |
Collapse
|
5
|
Chan JFW, Huang X, Hu B, Chai Y, Shi H, Zhu T, Yuen TTT, Liu Y, Liu H, Shi J, Wen L, Shuai H, Hou Y, Yoon C, Cai JP, Zhang AJ, Zhou J, Yin F, Yuan S, Zhang BZ, Brindley MA, Shi ZL, Yuen KY, Chu H. Altered host protease determinants for SARS-CoV-2 Omicron. SCIENCE ADVANCES 2023; 9:eadd3867. [PMID: 36662861 PMCID: PMC9858505 DOI: 10.1126/sciadv.add3867] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/19/2022] [Indexed: 05/02/2023]
Abstract
Successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires proteolytic cleavage of the viral spike protein. While the role of the host transmembrane protease serine 2 in SARS-CoV-2 infection is widely recognized, the involvement of other proteases capable of facilitating SARS-CoV-2 entry remains incompletely explored. Here, we show that multiple members from the membrane-type matrix metalloproteinase (MT-MMP) and a disintegrin and metalloproteinase families can mediate SARS-CoV-2 entry. Inhibition of MT-MMPs significantly reduces SARS-CoV-2 replication in vitro and in vivo. Mechanistically, we show that MT-MMPs can cleave SARS-CoV-2 spike and angiotensin-converting enzyme 2 and facilitate spike-mediated fusion. We further demonstrate that Omicron BA.1 has an increased efficiency on MT-MMP usage, while an altered efficiency on transmembrane serine protease usage for virus entry compared with that of ancestral SARS-CoV-2. These results reveal additional protease determinants for SARS-CoV-2 infection and enhance our understanding on the biology of coronavirus entry.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China
- Academician Workstation of Hainan Province, Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Guangzhou Laboratory, Guangdong Province, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hongyu Shi
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, NY, New York, USA
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Lei Wen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Feifei Yin
- Academician Workstation of Hainan Province, Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan Province, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China
| | - Melinda A. Brindley
- Department of Infectious Diseases and Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan, Hubei, People’s Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China
- Academician Workstation of Hainan Province, Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Guangzhou Laboratory, Guangdong Province, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Centre for Virology, Vaccinology, and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
6
|
Gao X, Fang D, Liang Y, Deng X, Chen N, Zeng M, Luo M. Circular RNAs as emerging regulators in COVID-19 pathogenesis and progression. Front Immunol 2022; 13:980231. [PMID: 36439162 PMCID: PMC9681929 DOI: 10.3389/fimmu.2022.980231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious acute respiratory disease caused by a newly emerging RNA virus, is a still-growing pandemic that has caused more than 6 million deaths globally and has seriously threatened the lives and health of people across the world. Currently, several drugs have been used in the clinical treatment of COVID-19, such as small molecules, neutralizing antibodies, and monoclonal antibodies. In addition, several vaccines have been used to prevent the spread of the pandemic, such as adenovirus vector vaccines, inactivated vaccines, recombinant subunit vaccines, and nucleic acid vaccines. However, the efficacy of vaccines and the onset of adverse reactions vary among individuals. Accumulating evidence has demonstrated that circular RNAs (circRNAs) are crucial regulators of viral infections and antiviral immune responses and are heavily involved in COVID-19 pathologies. During novel coronavirus infection, circRNAs not only directly affect the transcription process and interfere with viral replication but also indirectly regulate biological processes, including virus-host receptor binding and the immune response. Consequently, understanding the expression and function of circRNAs during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will provide novel insights into the development of circRNA-based methods. In this review, we summarize recent progress on the roles and underlying mechanisms of circRNAs that regulate the inflammatory response, viral replication, immune evasion, and cytokines induced by SARS-CoV-2 infection, and thus highlighting the diagnostic and therapeutic challenges in the treatment of COVID-19 and future research directions.
Collapse
Affiliation(s)
- Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Tang YS, So WK, Ng KLA, Mok KPC, Shaw PC. Interaction of Influenza A Nucleoprotein with Host hnRNP-C Is Implicated in Viral Replication. Int J Mol Sci 2022; 23:13613. [PMID: 36362400 PMCID: PMC9655074 DOI: 10.3390/ijms232113613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 08/18/2023] Open
Abstract
The host interactome of influenza viral proteins is ever-expanding. In this work, we report the identification of host heterogeneous nuclear ribonucleoprotein C (hnRNP-C) as an interacting partner of influenza A virus nucleoprotein (NP). We confirmed that this interaction exists across different influenza A subtypes and strains. Using biochemical methods, we determined that hnRNP-C interacts with NP via its C-terminal auxiliary domain. Further, we determined that the hnRNP-C is a negative regulator of influenza viral growth. Its interaction with NP is implicated in the promotion of host cell apoptosis during viral infection. It is the first time that the interaction between influenza nucleoprotein and host heterogeneous nuclear ribonucleoprotein C is characterized in detail. Overall, these findings not only characterize the interaction between NP and its host interacting partner hnRNP-C but also clarify the functional significance of this interaction. This work may lead to a new therapeutic target for the development of anti-influenza drugs.
Collapse
Affiliation(s)
- Yun-Sang Tang
- Centre for Protein Sciences and Crystallography, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai-Kin So
- Centre for Protein Sciences and Crystallography, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Leung Andy Ng
- Office of University General Education, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Pun Chris Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pang-Chui Shaw
- Centre for Protein Sciences and Crystallography, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Rahmani-Kukia N, Abbasi A. New insights on circular RNAs and their potential applications as biomarkers, therapeutic agents, and preventive vaccines in viral infections: with a glance at SARS-CoV-2. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:705-717. [PMID: 35992045 PMCID: PMC9375856 DOI: 10.1016/j.omtn.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The occurrence of viral infections and approaches to handling them are very challenging and require prompt diagnosis and timely treatment. Recently, genomic medicine approaches have come up with the discovery of the competing endogenous RNA (ceRNA) network, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) on the basis of gene silencing. CircRNAs, as a group of non-encoded RNAs, make a loop-like structure by back-splicing through 3' and 5' ends. They are stable, abundant, specific, and highly conserved and can be quickly generated at large scales in vitro. CircRNAs have the potential to contribute in several cellular processes in a way that some serve as microRNA sponges, cellular transporters, protein-binding RNAs, transcriptional regulators, and immune system modulators. CircRNAs can even play an important role in modulating antiviral immune responses. In the present review, circRNAs' biogenesis, function, and biomarker and therapeutic potential as well as their prospective applications as vaccines against viral infections such as SARS-CoV-2 are explained. By considering their unique properties, their potential to be used as novel vaccines, biomarkers, and a therapeutic approach appears possible.
Collapse
Affiliation(s)
- Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Zhang X, Liang Z, Wang C, Shen Z, Sun S, Gong C, Hu X. Viral Circular RNAs and Their Possible Roles in Virus-Host Interaction. Front Immunol 2022; 13:939768. [PMID: 35784275 PMCID: PMC9247149 DOI: 10.3389/fimmu.2022.939768] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) as novel regulatory molecules have been recognized in diverse species, including viruses. The virus-derived circRNAs play various roles in the host biological process and the life cycle of the viruses. This review summarized the circRNAs from the DNA and RNA viruses and discussed the biogenesis of viral and host circRNAs, the potential roles of viral circRNAs, and their future perspective. This review will elaborate on new insights gained on viruses encoded circRNAs during virus infection.
Collapse
Affiliation(s)
- Xing Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Zi Liang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Chonglong Wang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Zeen Shen
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Sufei Sun
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
- *Correspondence: Xiaolong Hu, ; Chengliang Gong,
| | - Xiaolong Hu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
- *Correspondence: Xiaolong Hu, ; Chengliang Gong,
| |
Collapse
|