1
|
Naseer A, Singh VV, Sellamuthu G, Synek J, Mogilicherla K, Kokoska L, Roy A. Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle. Int J Mol Sci 2024; 25:10209. [PMID: 39337695 PMCID: PMC11432361 DOI: 10.3390/ijms251810209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the Eurasian spruce bark beetle, ESBB (Ips typographus). Despite these defences, the ESBB infests Norway spruce, causing significant ecological damage by exploiting weakened trees and using pheromones for aggregation. However, the mechanism of sensing and resistance towards host allelochemicals in ESBB is poorly understood. We hypothesised that the exposure of ESBB to spruce allelochemicals, especially monoterpenes, leads to an upsurge in the important detoxification genes like P450s, GSTs, UGTs, and transporters, and at the same time, genes responsible for development must be compromised. The current study demonstrates that exposure to monoterpenes like R-limonene and sabiene effectively elevated detoxification enzyme activities. The differential gene expression (DGE) analysis revealed 294 differentially expressed (DE) detoxification genes in response to R-limonene and 426 DE detoxification genes in response to sabiene treatments, with 209 common genes between the treatments. Amongst these, genes from the cytochrome P450 family 4 and 6 genes (CP4 and CP6), esterases, glutathione S-transferases family 1 (GSTT1), UDP-glucuronosyltransferase 2B genes (UDB), and glucose synthesis-related dehydrogenases were highly upregulated. We further validated 19 genes using RT-qPCR. Additionally, we observed similar high expression levels of detoxification genes across different monoterpene treatments, including myrcene and α-pinene, suggesting a conserved detoxification mechanism in ESBB, which demands further investigation. These findings highlight the potential for molecular target-based beetle management strategies targeting these key detoxification genes.
Collapse
Affiliation(s)
- Aisha Naseer
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Vivek Vikram Singh
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- Institute of Forest Ecology, Slovak Academy of Sciences, Štúrova 2, 960 53 Zvolen, Slovakia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Jiří Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Ladislav Kokoska
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| |
Collapse
|
2
|
Wang S, Huang W, Li M, Wang N, Liu X, Chen M, Peng X. RpUGT344J7 is involved in the reproduction switch of Rhopalosiphum padi with holocyclic life cycle. INSECT SCIENCE 2024. [PMID: 38282241 DOI: 10.1111/1744-7917.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Many aphid species exhibit both cyclical parthenogenesis (CP) and the obligate parthenogenesis (OP) life history, which are genetically determined. In CP aphid lineages, the parthenogenetic individuals can switch from asexual to sexual reproduction quickly in response to environmental factors such as changes in photoperiod and temperature. However, the OP aphid lineages do not undergo sexual reproduction under any conditions. So far, mechanisms underlying the reproduction switch in CP aphids have not been fully elucidated. Rhopalosiphum padi, a serious worldwide insect pest of wheat, has both CP and OP lineages. Uridine diphosphate-glycosyltransferases (UGTs) are enzymes that participate in the metabolic detoxification of xenobiotics. Here, we identified 43 RpUGT genes from R. padi genome and transcriptome sequences, and found that: (1) the UGT content of the CP lineage was significantly higher than that in the OP lineage at the key time points when CP lineage mainly produce virginoparae, gynoparae, and males under inducing condition, while there were no significant difference under normal conditions; (2) RpUGT344J7 gene was highly expressed during the time points when CP lineages produce gynopara and males; (3) the critical time points for CP lineages to produce virginoparaee, gynoparae, and males were affected when the CP lineages were injected with dsRpUGT344J7; (4) the knockdown of RpUGT344J7 caused a significant reduction in the total number of virginoparae, gynoparae, and males in the offspring under inducing condition. The findings contribute to our understanding of the molecular mechanisms underlying the quick shift from asexual to sexual reproduction in aphid species.
Collapse
Affiliation(s)
- Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Wenjie Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Ni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
7
|
Armisén D, Rajakumar R, Friedrich M, Benoit JB, Robertson HM, Panfilio KA, Ahn SJ, Poelchau MF, Chao H, Dinh H, Doddapaneni HV, Dugan S, Gibbs RA, Hughes DST, Han Y, Lee SL, Murali SC, Muzny DM, Qu J, Worley KC, Munoz-Torres M, Abouheif E, Bonneton F, Chen T, Chiang LM, Childers CP, Cridge AG, Crumière AJJ, Decaras A, Didion EM, Duncan EJ, Elpidina EN, Favé MJ, Finet C, Jacobs CGC, Cheatle Jarvela AM, Jennings EC, Jones JW, Lesoway MP, Lovegrove MR, Martynov A, Oppert B, Lillico-Ouachour A, Rajakumar A, Refki PN, Rosendale AJ, Santos ME, Toubiana W, van der Zee M, Vargas Jentzsch IM, Lowman AV, Viala S, Richards S, Khila A. The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water. BMC Genomics 2018; 19:832. [PMID: 30463532 PMCID: PMC6249893 DOI: 10.1186/s12864-018-5163-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders.
Collapse
Affiliation(s)
- David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Rajendhran Rajakumar
- Department of Molecular Genetics & Microbiology and UF Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610 USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202 USA
| | - Joshua B. Benoit
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kristen A. Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL UK
| | - Seung-Joon Ahn
- USDA-ARS Horticultural Crops Research Unit, 3420 NW Orchard Avenue, Corvallis, OR 97330 USA
- Department of Crop and Soil Science, Oregon State University, 3050 SW Campus Way, Corvallis, OR 97331 USA
| | - Monica F. Poelchau
- USDA Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Daniel S. T. Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Sandra L. Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Shwetha C. Murali
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Kim C. Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | | | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - François Bonneton
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Travis Chen
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Li-Mei Chiang
- USDA Agricultural Research Service, National Agricultural Library, Beltsville, MD 20705 USA
| | | | - Andrew G. Cridge
- Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Antonin J. J. Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Amelie Decaras
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Elise M. Didion
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Elizabeth J. Duncan
- Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991 Russia
| | - Marie-Julie Favé
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Cédric Finet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Chris G. C. Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745 Jena, Germany
| | | | - Emily C. Jennings
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Jeffery W. Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202 USA
| | - Maryna P. Lesoway
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa Ancon, Panama City, Panama
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Russia
| | - Mackenzie R. Lovegrove
- Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Alexander Martynov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025 Russia
| | - Brenda Oppert
- USDA ARS Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS-66502 USA
| | - Angelica Lillico-Ouachour
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Arjuna Rajakumar
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield Avenue, Montréal, Québec H3A 1B1 Canada
| | - Peter Nagui Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
- Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Andrew J. Rosendale
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH 45221-0006 USA
| | - Maria Emilia Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - William Toubiana
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Iris M. Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Aidamalia Vargas Lowman
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Severine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon 46, allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|