1
|
Luo X, Saleem A, Shafique U, Sarwar S, Ullah K, Imran M, Zeb A, Din FU. Rivaroxaban-loaded SLNs with treatment potential of deep vein thrombosis: in-vitro, in-vivo, and toxicity evaluation. Pharm Dev Technol 2023; 28:625-637. [PMID: 37366661 DOI: 10.1080/10837450.2023.2231069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVES Rivaroxaban (RXB), a novel Xa inhibitor having groundbreaking therapeutic potential. However, this drug is associated with few limitations, including its pharmacokinetics related toxicities. Here, we developed RXB-loaded SLNs (RXB-SLNs) to improve its biopharmaceutical profile. Methods: High pressure homogenizer was used to prepare RXB-SLNs, followed by their particle characterization, Transmission electron microscopy (TEM), Dynamic light scattering (DSC), and Powder X-ray diffraction (PXRD) analysis. Beside this, in-vitro, ex-vivo, and in-vivo evaluation, prothrombin time assessment and toxicity was investigated. RESULTS RXB-SLNs had their particle size in nano range (99.1 ± 5.50 nm) with excellent morphology and low polydispersity index (0.402 ± 0.02) and suitable zeta potential (-25.9 ± 1.4 mV). The incorporation efficiency was observed around 95.9 ± 3.9%. In-vitro release profiles of the RXB-SLNs exhibited enhanced dissolution (89 ± 9.91%) as compared to pure drug (11 ± 1.43%) after 24 h of the study. PK study demonstrated a seven times enhanced bioavailability of RXB-SLNs when compared with pure drug. Furthermore, RXB-SLNs exhibited an expressive anti-coagulant behavior in human and rat blood plasma. Also, the final formulation exhibited no toxicity after oral administration of the SLNs. CONCLUSIONS All together, these studies revealed the capability of the SLNs for carrying the RXB with enhanced therapeutic efficacy and no toxicity, most importantly for the treatment of deep vein thrombosis.
Collapse
Affiliation(s)
- Xuemei Luo
- Department of General Surgery, Mianzhu Peoples Hospital of Sichuan, Mianzhu, Sichuan, China
| | - Aiman Saleem
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Uswa Shafique
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadia Sarwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Kalim Ullah
- Department of Zoology, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imran
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
2
|
Ali Z, Din FU, Zahid F, Sohail S, Imran B, Khan S, Malik M, Zeb A, Khan GM. Transdermal delivery of allopurinol-loaded nanostructured lipid carrier in the treatment of gout. BMC Pharmacol Toxicol 2022; 23:86. [PMID: 36443818 PMCID: PMC9703780 DOI: 10.1186/s40360-022-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Allopurinol (ALP), a xanthine oxidase inhibitor, is a first line drug for the treatment of gout and hyperuricemia. Being the member of BCS class II drugs, ALP has solubility problem, which affects its bioavailability. Also, ALP has shorter half-life and showed GI related problems. In present study, ALP was encapsulated in nanostructured lipid carriers (NLCs) to ensure enhanced bioavailability, improved efficacy and safety in vivo. METHODOLOGY ALP-loaded NLCs were fabricated by micro-emulsion technique. The prepared NLCs were optimized via design expert in term of particle size, zeta potential and entrapment efficiency. FTIR, PXRD and TEM analysis were carried out to check chemical interaction, polymorphic form and surface morphology of the optimized formulation. ALP-loaded NLCs were then loaded into HPMC based poloxamer-407 gel and were characterized. In vitro and ex vivo analysis were carried out via dialysis membrane method and franz diffusion cell, respectively. Uric acid was used for induction of gout and the anti-gout activity of ALP-loaded NLCs gel was performed and compared with ALP suspension. RESULTS The optimized formulation had particles in nano-range (238.13 nm) with suitable zeta potential (-31.5 mV), poly-dispersity index (0.115) and entrapment of 87.24%. FTIR results confirmed absence of chemical interaction among formulation ingredients. XRD indicated amorphous nature of ALP-loaded NLCs, whereas TEM analysis confirmed spherical morphology of nanoparticles. The optimized formulation was successfully loaded in to gel and characterized accordingly. The in vitro release and drug release kinetics models showed sustained release of the drug from ALP-loaded NLCs gel. Furthermore, about 28 fold enhanced permeation was observed from ALP-loaded NLCs gel as compared to conventional gel. Skin irritation study disclosed safety of ALP-loaded NLCs gel for transdermal application. Furthermore, ALP-loaded NLCs gel showed significantly enhanced anti-gout activity in Sprague-Dawley rats after transdermal administration as compared to oral ALP suspension. CONCLUSION ALP-loaded NLCs gel after transdermal administration sustained the drug release, avoid gastrointestinal side effects and enhance the anti-gout performance of ALP. It can be concluded, that NLCs have the potential to deliver drugs via transdermal route as indicated in case of allopurinol.
Collapse
Affiliation(s)
- Zakir Ali
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Fakhar ud Din
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Fatima Zahid
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Saba Sohail
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Basalat Imran
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Salman Khan
- grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Maimoona Malik
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alam Zeb
- grid.414839.30000 0001 1703 6673Department of Pharmacy, Riphah International University, Islamabad, Pakistan
| | - Gul Majid Khan
- grid.412621.20000 0001 2215 1297Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan ,grid.412621.20000 0001 2215 1297Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan ,grid.459615.a0000 0004 0496 8545Islamia College University, Peshawar, Pakistan
| |
Collapse
|
3
|
Imran B, Din FU, Ali Z, Fatima A, Khan MW, Kim DW, Malik M, Sohail S, Batool S, Jawad M, Shabbir K, Zeb A, Khan BA. Statistically designed dexibuprofen loaded solid lipid nanoparticles for enhanced oral bioavailability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Smułek W, Kaczorek E. Factors Influencing the Bioavailability of Organic Molecules to Bacterial Cells-A Mini-Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196579. [PMID: 36235114 PMCID: PMC9570905 DOI: 10.3390/molecules27196579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/26/2022]
Abstract
The bioavailability of organic compounds to bacterial cells is crucial for their vital activities. This includes both compounds that are desirable to the cells (e.g., sources of energy, carbon, nitrogen, and other nutrients) and undesirable compounds that are toxic to the cells. For this reason, bioavailability is an issue of great importance in many areas of human activity that are related to bacteria, e.g., biotechnological production, bioremediation of organic pollutants, and the use of antibiotics. This article proposes a classification of factors determining bioavailability, dividing them into factors at the physicochemical level (i.e., those related to the solubility of a chemical compound and its transport in aqueous solution) and factors at the microbiological level (i.e., those related to adsorption on the cell surface and those related to transport into the cell). Awareness of the importance of and the mechanisms governing each of the factors described allows their use to change bioavailability in the desired direction.
Collapse
|
5
|
Raloxifene-loaded solid lipid nanoparticles decorated gel with enhanced treatment potential of osteoporosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
DFT studies on the physicochemical properties of a new potential drug carrier containing cellobiose units and its complex with paracetamol. Struct Chem 2022. [DOI: 10.1007/s11224-022-01950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Hydrogel Containing Solid Lipid Nanoparticles Loaded with Argan Oil and Simvastatin: Preparation, In Vitro and Ex Vivo Assessment. Gels 2022; 8:gels8050277. [PMID: 35621575 PMCID: PMC9140805 DOI: 10.3390/gels8050277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Transdermal hydrogels have the potential to improve therapeutic outcomes via enhancing bioavailability and reducing toxicity associated with oral delivery. The goal of the present study was to formulate and optimise argan oil loaded transdermal hydrogel containing lipid nanoparticles. The high pressure homogenization (HPH) method was utilised to fabricate Simvastatin loaded solid lipid nanoparticles (SIM-SLNs) with precirol ATO 5 as a lipid core and Poloxamer 407 (P407) to stabilise the core. The optimised nanoformulation was characterised for its particle diameter, zeta potential, surface morphology, entrapment efficiency, crystallinity and molecular interaction. Furthermore, transdermal hydrogel was characterised for physical appearance, rheology, pH, bio adhesion, extrudability, spreadability and safety profile. In vitro and ex vivo assays were executed to gauge the potential of SLNs and argan oil for transdermal delivery. The mean particle size, zeta potential and polydispersity index (PDI) of the optimised nanoparticles were 205 nm, −16.6 mV and 0.127, respectively. Crystallinity studies and Fourier transform infrared (FTIR) analysis revealed no molecular interaction. The in vitro release model explains anomalous non-Fickian release of drug from matrix system. Ex vivo skin penetration studies conducted through a fluorescence microscope confirmed penetration of the formulation across the stratum corneum. Hydrogel plays a crucial role in controlling the burst release and imparting the effect of argan oil as hypolipidemic agent and permeation enhancer.
Collapse
|
8
|
A self assembled dextran-stearic acid-spermine nanocarrier for delivery of rapamycin as a hydrophobic drug. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Khan AS, Ud Din F, Ali Z, Bibi M, Zahid F, Zeb A, Mujeeb-Ur-Rehman, Khan GM. Development, in vitro and in vivo evaluation of miltefosine loaded nanostructured lipid carriers for the treatment of Cutaneous Leishmaniasis. Int J Pharm 2020; 593:120109. [PMID: 33253802 DOI: 10.1016/j.ijpharm.2020.120109] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022]
Abstract
The purpose of this study was to enhance the anti-leishmanial efficacy of miltefosine (MTF) and reduce its toxic effects by loading it into nanostructured lipid carriers (NLCs). Micro-emulsion technique was used to prepare MTF-loaded NLCs. The optimized NLCs were characterized in terms of various physicochemical parameters including particle size, poly dispersity index (PDI), zeta potential, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) technique. In vitro and in vivo assays were performed to evaluate the potential of NLCs as an effective nanocarrier system for oral delivery of MTF in Cutaneous Leishmaniasis. The optimized MTF-loaded NLCs exhibited mean particle size of 160.8 ± 5.3 nm with narrow PDI and high incorporation efficiency (IE%) of 96.17 ± 1.3%. MTF-loaded NLCs demonstrated slow release of the incorporated drug as compared to the drug solution. The optimized formulation showed significant decrease in hemolytic potential, 2.5~folds increase in anti-leishmanial efficacy and 6~fold decrease in macrophage cytotoxicity as compared to MTF solution, in vitro. Macrophage uptake study confirmed passive targeting ability of MTF-loaded NLCs. In-vivo analysis demonstrated enhanced anti-leishmanial effect of the MTF-loaded NLCs and better pharmacokinetic profiles with no gastrointestinal (GI) toxicity. NLCs are potential nanocarriers for the oral delivery of MTF with enhanced anti-leishmanial activity, better safety profile and reduced hemolytic potential.
Collapse
Affiliation(s)
- Anam Sajjad Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad 45320, Pakistan.
| | - Zakir Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad 45320, Pakistan
| | - Maryam Bibi
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad 45320, Pakistan
| | - Fatima Zahid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad 45320, Pakistan
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Mujeeb-Ur-Rehman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-e-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
10
|
Din FU, Zeb A, Shah KU, Zia-ur-Rehman. Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|