1
|
Jebabli N, Ouerghi N, Abassi W, Yagin FH, Khlifi M, Boujabli M, Bouassida A, Ben Abderrahman A, Ardigò LP. Acute effect of hydrogen-rich water on physical, perceptual and cardiac responses during aerobic and anaerobic exercises: a randomized, placebo-controlled, double-blinded cross-over trial. Front Physiol 2023; 14:1240871. [PMID: 38162831 PMCID: PMC10757640 DOI: 10.3389/fphys.2023.1240871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Molecular hydrogen (H2 gas) dissolved in water to produce Hydrogen-Rich Water. Hydrogen-Rich Water (HRW) is considered as ergogenic aid in different exercise modes. However, acute pre-exercise HRW ingestion effect is unclear regarding athlete performance. This study aimed at investigating acute effect of HRW ingestion on aerobic and anaerobic exercise performance. Twenty-two male amateur middle-distance runners volunteered to participate in this study. In a randomized, double-blind study design, all players ingested 500 mL of HRW or placebo (PLA) supplement 30 min before the start of the tests. Over 4 days, maximal aerobic speed of Vameval test (MAS), time to exhaustion at MAS (Tlim), squat jump (SJ), counter-movement jump (CMJ) and five jump test (5JT) were evaluated. Also, rate of perceived exertion (RPE) and peak heart rate (HRpeak) were measured during the aerobic tests. For Vameval test, HRW ingestion improved MAS, HRpeak and RPE compared with the placebo condition. For Tlim test, HRW ingestion demonstrated improvements in time to exhaustion, RPE and HRpeak. However, no significant change was observed between HW and placebo conditions in SJ, CMJ, 5JT. 500 mL of HRW can significantly improve HRpeak, time to exhaustion, RPE, with no significant effect on MAS, jumping performance in amateur endurance athletes.
Collapse
Affiliation(s)
- Nidhal Jebabli
- Research Unit: “Sport Sciences, Health and Movement”, High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, Tunisia
| | - Nejmeddine Ouerghi
- Research Unit: “Sport Sciences, Health and Movement”, High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, Tunisia
- Faculty of Medicine of Tunis, Rabta Hospital, University of Tunis El Manar, LR99ES11, Tunis, Tunisia
- High Institute of Sport and Physical Education of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Wissal Abassi
- Research Unit: “Sport Sciences, Health and Movement”, High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, Tunisia
| | - Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Inonu University Faculty of Medicine, Malatya, Türkiye
| | - Mariem Khlifi
- Research Unit: “Sport Sciences, Health and Movement”, High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, Tunisia
| | - Manar Boujabli
- Research Unit: “Sport Sciences, Health and Movement”, High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, Tunisia
| | - Anissa Bouassida
- Research Unit: “Sport Sciences, Health and Movement”, High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, Tunisia
| | - Abderraouf Ben Abderrahman
- Higher Institute of Sport and Physical Education of Ksar-Said, University of Manouba, Manouba, Tunisia
- Tunisian Research Laboratory “Sports Performance Optimization”, National Center of Medicine and Science in Sports (CNMSS) LR09SEP01, Tunis, Tunisia
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, Oslo, Norway
| |
Collapse
|
2
|
Valenta M, Botek M, Krejčí J, McKune A, Sládečková B, Neuls F, Bajgar R, Klimešová I. Acute pre-exercise hydrogen rich water intake does not improve running performance at maximal aerobic speed in trained track and field runners: A randomized, double-blind, placebo-controlled crossover study. PLoS One 2022; 17:e0279307. [PMID: 36538554 PMCID: PMC9767360 DOI: 10.1371/journal.pone.0279307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE This study investigated the effects of acute, pre-exercise, hydrogen rich water (HRW) ingestion on running time to exhaustion at maximal aerobic speed in trained track and field runners. METHODS Twenty-four, male runners aged 17.5 ± 1.8 years, with body mass index = 21.0 ± 1.3 kg⋅m-2, and maximal oxygen uptake = 55.0 ± 4.6 ml⋅kg-1⋅min-1 (mean ± standard deviation) participated in this randomized, double-blind, placebo-controlled crossover study. All runners ingested 1260 ml of HRW which was divided into four doses and taken at 120 min (420 ml), 60 min (420 ml), 30 min (210 ml), and 10 min (210 ml) prior to exercise. The running protocol consisted of three phases: warm-up performed at 10 km⋅h-1 for 3 min, followed by a transition phase performed at an individually determined speed (10 km⋅h-1 + maximal aerobic speed)/2 for 1 min, and finally the third phase performed at individual maximal aerobic speed until exhaustion. Time to exhaustion, cardiorespiratory variables, and post-exercise blood lactate concentration were measured. RESULTS When running to exhaustion at maximal aerobic speed, compared with placebo, HRW had no significant effects on the following variables: time to exhaustion (217 ± 49 and 227 ± 53 s, p = 0.20), post-exercise blood lactate concentration (9.9 ± 2.2 and 10.1 ± 2.0 mmol⋅L-1, p = 0.42), maximal heart rate (186 ± 9 and 186 ± 9 beats⋅min-1, p = 0.80), and oxygen uptake (53.1 ± 4.5 and 52.2 ± 4.7 ml⋅kg-1⋅min-1, p = 0.33). No variable assessed as a candidate moderator was significantly correlated with time to exhaustion (Spearman's correlation coefficients ranged from -0.28 to 0.30, all p ≥ 0.16). CONCLUSIONS Pre-exercise administration of 1260 ml of HRW showed no ergogenic effect on running performance to exhaustion at maximal aerobic speed in trained track and field runners.
Collapse
Affiliation(s)
- Michal Valenta
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic
| | - Michal Botek
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jakub Krejčí
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic
| | - Andrew McKune
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Barbora Sládečková
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic
| | - Filip Neuls
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Iva Klimešová
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
3
|
Pogorelov A, Ipatova L, Pogorelova M, Kuznetsov A, Suvorov O. Properties of serum albumin in electrolyzed water. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-1-117-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Electrochemical activation of water controls the physicochemical parameters of aquatic food environment without any reagents. Electrolyzed water affects the properties of macronutrient solutions. The present research studied the effect of anodic and cathodic fractions of electrochemically activated water on protein molecules and their interaction patterns.
Study objects and methods. The study featured bovine serum albumin and its properties in electrochemically activated water with nonstandard redox and acidity values. The aqueous solution of bovine serum albumin was studied by viscometry, UV spectrometry, time-of-flight secondary ion mass spectrometry, and electrophoresis.
Results and discussion. By knowing the interaction patterns of electrochemically activated water and protein molecules, food producers can control the properties of biological raw materials. Bovine serum albumin was studied in metastable fractions of electrochemically activated water obtained in the anode or cathode chamber of an electrochemical reactor. Both fractions of electrochemically activated water appeared to modify the properties of bovine serum albumin. The oxidized fraction of electrochemically activated water (anolyte) converted the protein solution into a more homogeneous molecular composition. The solution of bovine serum albumin in the reduced fraction of electrochemically activated water (catholyte) had an abnormally negative redox potential (–800 mV). The aqueous solution of bovine serum albumin in catholyte retained its initial viscosity for a long time, and its level was lower than in the control sample. This effect was consistent with other physicochemical characteristics of the solution.
Conclusion. The research revealed some patterns that make it possible to apply reagent-free viscosity regulation to protein media in the food industry.
Collapse
Affiliation(s)
- Alexander Pogorelov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Larisa Ipatova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Maria Pogorelova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Alexander Kuznetsov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Oleg Suvorov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| |
Collapse
|
4
|
Effects of carbohydrate-electrolyte dissolved alkaline electrolyzed water on physiological responses during exercise under heat stress in physically active men. Curr Res Physiol 2022; 5:389-398. [PMID: 36193515 PMCID: PMC9525732 DOI: 10.1016/j.crphys.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/31/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose This study investigated the effects of 1400 mL intake of alkaline electrolyzed water (AEW) or purified water (PW) into which carbohydrate-electrolyte (CE) was dissolved on improving physiological responses during exercise under heat stress. Methods This double-blinded, crossover randomized controlled trial included 10 male participants who completed two exercise trials in a hot environment (35 °C, ambient temperature, and 50% relative humidity) after consuming CE-dissolved PW (P-CE) or CE-dissolved AEW (A-CE). The exercise trial consisted of running for 30 min on a treadmill (at an intensity corresponding to 65% of heart rate reserve adjusted for heat stress conditions) and repeated sprint cycling (10 × 7-s maximal sprint cycling), with a 35-min rest interval between the two exercises, followed by a 30-min post-exercise recovery period. Before and after running, and after cycling, the participants drank P-CE (hydrogen concentration of 0 ppm, pH 3.8) or A-CE (0.3 ppm, pH 4.1). Blood samples were obtained before, during (rest interval between running and cycling), and post-exercise. Results Repeated sprint performance and oxidative stress response did not differ between the P-CE and A-CE trials. A-CE consumption significantly attenuated the increase in blood lactate concentration during the running exercise but not during repeated sprint cycling under heat stress conditions. Conclusion Our findings suggested that A-CE did not significantly affect repeated sprint performance; however, the attenuated elevation in blood lactate by A-CE ingestion implies a partial enhancement of endurance performance during submaximal exercise under heat stress. A-CE did not enhance repeated sprint performance in a hot environment. A-CE failed to decrease oxidative damage induced by exercise in a hot environment. Blood lactate response during submaximal running was attenuated by drinking A-CE.
Collapse
|
5
|
Yamaguchi K, Imai T, Yatsutani H, Goto K. A Combined Hot and Hypoxic Environment during Maximal Cycling Sprints Reduced Muscle Oxygen Saturation: A Pilot Study. J Sports Sci Med 2021; 20:684-689. [PMID: 35321130 PMCID: PMC8488822 DOI: 10.52082/jssm.2021.684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/05/2021] [Indexed: 06/14/2023]
Abstract
The present study investigated the effects of a combined hot and hypoxic environment on muscle oxygenation during repeated 15-s maximal cycling sprints. In a single-blind, cross-over study, nine trained sprinters performed three 15-s maximal cycling sprints interspersed with 7-min passive recovery in normoxic (NOR; 23℃, 50%, FiO2 20.9%), normobaric hypoxic (HYP; 23℃, FiO2 14.5%), and hot normobaric hypoxic (HH; 35℃, FiO2 14.5%) environments. Relative humidity was set to 50% in all trials. The vastus lateralis muscle oxygenation was evaluated during exercise using near-infrared spectroscopy. The oxygen uptake (VO2) and arterial oxygen saturation (SpO2) were also monitored. There was no significant difference in peak or mean power output among the three conditions. The reduction in tissue saturation index was significantly greater in the HH (-17.0 ± 2.7%) than in the HYP (-10.4 ± 2.8%) condition during the second sprint (p < 0.05). The average VO2 and SpO2 were significantly lower in the HYP (VO2 = 980 ± 52 mL/min, SpO2 = 82.9 ± 0.8%) and HH (VO2 = 965 ± 42 mL/min, SpO2 = 83.2 ± 1.2%) than in the NOR (VO2 = 1149 ± 40 mL/min, SpO2 = 90.6 ± 1.4%; p < 0.05) condition. In conclusion, muscle oxygen saturation was reduced to a greater extent in the HH than in the HYP condition during the second bout of three 15-s maximal cycling sprints, despite the equivalent hypoxic stress between HH and HYP.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Tomohiro Imai
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Haruka Yatsutani
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
6
|
Yano S, Wang J, Kabayama S, Hara T. Electrolyzed Hydrogen Water Protects against Ethanol-Induced Cytotoxicity by Regulating Aldehyde Metabolism-Associated Enzymes in the Hepatic Cell Line HepG2. Antioxidants (Basel) 2021; 10:antiox10050801. [PMID: 34069398 PMCID: PMC8158728 DOI: 10.3390/antiox10050801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/05/2023] Open
Abstract
Excessive alcohol consumption can cause multi-systemic diseases. Among them, alcoholic liver disease is the most frequent and serious disease. Electrolytic hydrogen water (EHW) is produced at the cathode during electrolysis of water and contains a large amount of molecular hydrogen and a low content of platinum nanoparticles with alkaline properties. In this study, we found that EHW inhibits ethanol-induced cytotoxicity by decreasing the intracellular acetaldehyde, a toxic substance produced by ethanol degradation, in hepatocyte cell lines HepG2. Analysis of the mechanism of action revealed that EHW inhibits the metabolism of ethanol to acetaldehyde by suppressing alcohol dehydrogenase. EHW also promotes the metabolism of acetaldehyde to acetic acid by activating aldehyde dehydrogenase, which plays to reduce aldehyde toxicity and intracellular reactive oxygen species in HepG2 cells. These functions were correlated with the concentration of molecular hydrogen in EHW, and were abolished by degassing treatment, suggesting that molecular hydrogen may contribute as a functional factor in the suppression of ethanol-induced hepatocellular damage. Furthermore, hydrogen water with high dissolved hydrogen molecule showed the same hepatocellular protective effect against ethanol as the EHW. These results suggest that EHW may be useful in the prevention of alcoholic liver disease.
Collapse
Affiliation(s)
- Satoshi Yano
- Laboratory of Food and Life Science, Faculty of Human Sciences, Waseda University, Tokorozawa 359-1192, Japan; (S.Y.); (J.W.)
| | - Jinyun Wang
- Laboratory of Food and Life Science, Faculty of Human Sciences, Waseda University, Tokorozawa 359-1192, Japan; (S.Y.); (J.W.)
| | | | - Taichi Hara
- Laboratory of Food and Life Science, Faculty of Human Sciences, Waseda University, Tokorozawa 359-1192, Japan; (S.Y.); (J.W.)
- Correspondence: ; Tel.: +81-4-2947-6763
| |
Collapse
|