1
|
Vasas NC, Forrest AM, Meyers NA, Christensen MB, Pierce JL, Kaufmann SM, Lanaghen KB, Paniello RC, Barkmeier‐Kraemer JM, Vande Geest JP. A finite element model for biomechanical characterization of ex vivo peripheral nerve dysfunction during stretch. Physiol Rep 2024; 12:e70125. [PMID: 39537361 PMCID: PMC11560341 DOI: 10.14814/phy2.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Peripheral nerve damage can cause debilitating symptoms ranging from numbness and pain to sensory loss and atrophy. To uncover the underlying mechanisms of peripheral nerve injury, our research aims to develop a relationship between biomechanical peripheral nerve damage and function through finite element modeling. A noncontact, ex vivo electrophysiology chamber, capable of axially stretching explanted nerves while recording electrical signals, was used to investigate peripheral nerve injury. Successive stretch trials were run on eight sciatic nerves (four females and four males) excised from Sprague-Dawley rats. Nerves were stretched until 50% compound action potential (CAP) amplitude reduction was obtained. A constitutive model developed by Raghavan and Vorp was suitable for rat sciatic nerves, with an average α and β of 0.183 MPa and 1.88 MPa, respectively. We then generated 95% confidence intervals for the stretch at which specific CAP amplitude reductions would occur, which compares well to previous studies. We also developed a finite element model that can predict stretch-induced signaling deficits, applicable for complex nerve geometries and injuries. This relationship between nerve biomechanics and function can be expanded upon to create a clinical model for peripheral nerve dysfunction due to stretch.
Collapse
Affiliation(s)
- Nicholas C. Vasas
- Department of Bioengineering, Swanson School of EngineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Adam M. Forrest
- Department of Bioengineering, Swanson School of EngineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Nathaniel A. Meyers
- Department of Bioengineering, Swanson School of EngineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Michael B. Christensen
- Department of Otolaryngology – Head & Neck SurgeryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Division of Urology, Department of SurgeryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Jenny L. Pierce
- Department of Otolaryngology – Head & Neck SurgeryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Sidney M. Kaufmann
- Department of Otolaryngology – Head & Neck SurgeryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Kimberly B. Lanaghen
- Department of Otolaryngology – Head & Neck SurgeryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Randal C. Paniello
- Department of Otolaryngology–Head and Neck SurgeryWashington University School of MedicineSt. LouisMissouriUSA
| | - Julie M. Barkmeier‐Kraemer
- Department of Otolaryngology – Head & Neck SurgeryUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Jonathan P. Vande Geest
- Department of Bioengineering, Swanson School of EngineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Vascular Medicine InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Trambitas C, Pap T, Niculescu R, Popelea MC, Cotoi OS, Cordoș B, Domnariu HP, Marin A, Feier AM, David C, Vintila C. Biocompatible 3D-Printed Devices With Adipose Stem Cells in the Regenerative Process of Sciatic Nerve Lesions in Rodent Models: An Experimental Study. Cureus 2024; 16:e62412. [PMID: 39011200 PMCID: PMC11248491 DOI: 10.7759/cureus.62412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
INTRODUCTION Peripheral nerve injuries are a significant clinical challenge. The rat sciatic nerve serves as an ideal model for studying nerve regeneration. Extensive research has been conducted to unravel the intricate mechanisms involved in peripheral nerve regeneration, aiming to develop effective therapeutic strategies for nerve injury patients. Research including different types of materials that can be used as nerve guides like synthetic polymers have been investigated for their biocompatibility and molding properties. Among multiple stem cell types, adipose-derived stem cells (ASCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), and induced pluripotent stem cells (iPSCs) have shown neuroprotective and regenerative important properties. METHODS The purposes of our study were to develop a protocol for rat sciatic nerve injury treated with 3D-printed guide and adipose stem cells to investigate nerve regeneration through histologic examination and biomechanical characteristics of muscular tissue. We use 20 (100%) male Wistar rats, measuring between 350 g ± 35 g, who underwent complete transection of the right sciatic nerve, resulting in a 1 cm defect. The group was separated into three subgroups: the first subgroup (n = 8) was treated with a 3D-printed guide with adipose stem cells, the second subgroup (n = 8) was treated with a 3D-printed guide without adipose stem cells, and the third subgroup (n = 4) was the control group. At four, eight, and 12 weeks, we measured with ultrasonography the grade of muscular atrophy. At 12 weeks, we harvested the sciatic nerve and performed a histological examination and mechanical investigation of the tibialis anterior muscle. RESULTS On the examined specimen of the first subgroup, cross-sectioned nerve structures were present, surrounded by a mature fibro-adipose connective tissue, with blood vessels. In the second subgroup, no nerve structure was observed on the examined sections, but in the polymorphic inflammatory infiltrate and control group, no signs of regeneration were found. CONCLUSIONS The present study shows a promising potential when utilizing adipose stem cell-based therapies for promoting peripheral nerve regeneration following large (>1 cm) nerve defects knowing that at this size, regeneration is impossible with known treatments.
Collapse
Affiliation(s)
- Cristian Trambitas
- Plastic and Reconstructive Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, ROU
| | - Timea Pap
- Plastic and Reconstructive Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, ROU
| | - Raluca Niculescu
- Pathology and Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, ROU
| | - Maria Catalina Popelea
- Pathology and Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, ROU
| | - Ovidiu S Cotoi
- Physiopathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, ROU
| | - Bogdan Cordoș
- Center of Experimental and Imaging Studies, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, ROU
| | - Horatiu-Paul Domnariu
- Plastic and Reconstructive Surgery, University of Oradea, Lucian Blaga University of Sibiu, Oradea, ROU
| | - Andrei Marin
- Plastic and Reconstructive Surgery, Carol Davila University of Medicine and Pharmacy, Bucuresti, ROU
| | - Andrei Marian Feier
- Orthopaedics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, ROU
| | - Camelia David
- Plastic and Reconstructive Surgery, Emergency County Hospital Targu Mures, Targu Mures, ROU
| | - Cristian Vintila
- Plastic and Reconstructive Surgery, Emergency County Hospital Targu Mures, Targu Mures, ROU
| |
Collapse
|
3
|
Lecoq FA, Barnouin L, Ardouin L, Hartmann D, Obert L. Inverted human umbilical artery as a 3D scaffold for sciatic nerve regeneration in rats. Cell Tissue Bank 2022; 23:909-922. [PMID: 35503142 PMCID: PMC9675695 DOI: 10.1007/s10561-022-10006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/03/2022] [Indexed: 11/02/2022]
Abstract
Treatment of peripheral nerve injuries (PNIs) remains a challenge. Interposing a graft delivers better regenerative outcomes. Autografts present major drawbacks which have given rise to the development of alternatives such as artificial scaffolds, some of which are very promising. This study was designed to investigate the potential use of an inverted human umbilical cord artery (iHUA) as a 3D scaffold nerve chamber, for nerve regeneration after transection of the sciatic nerve (SN) in rats. Rats underwent surgical SN transection in their right hindlimb, followed by suture of the device at the resected stumps. Local tolerance, insert biodegradability and nerve reconstruction over time were thoroughly studied by histopathological and morphometric analysis, completed by functional test assessment of sensitivity and motricity recovery. We have demonstrated that nerve reconstruction in the presence of an iHUA insert is effective. The device is well tolerated and highly biodegraded. Although the regenerated nerve is still immature at the end of our study, signs of sensitivity and partial functional recovery were witnessed, confirming our histological findings. Our results support the potential clinical use of iHUA as a 3D scaffold to bridge nerve discontinuity and guide axonal regrowth in selected cases of PNIs.
Collapse
Affiliation(s)
- Flore-Anne Lecoq
- Institut de la Main Nantes Atlantique, Elsan Santé Atlantique, Saint Herblain, France
| | | | - Ludovic Ardouin
- Institut de la Main Nantes Atlantique, Elsan Santé Atlantique, Saint Herblain, France
| | | | | |
Collapse
|
4
|
Arabzadeh E, Reza Rahimi A, Zargani M, Feyz Simorghi Z, Emami S, Sheikhi S, Zaeri Amirani Z, Yousefi P, Sarshin A, Aghaei F, Feizollahi F. Resistance exercise promotes functional test via sciatic nerve regeneration, and muscle atrophy improvement through GAP-43 regulation in animal model of traumatic nerve injuries. Neurosci Lett 2022; 787:136812. [PMID: 35872241 DOI: 10.1016/j.neulet.2022.136812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Resistance training improves muscle strength through a combination of neural plasticity and muscle hypertrophy. This study aimed to evaluate the effects of resistance exercise on sciatic nerve regeneration and histology, growth-associated protein 43 (GAP-43) expressions, and soleus muscle atrophy following traumatic nerve injuries in Wistar rats. In the present study, 40 male Wistar rats were randomly assigned into four groups: healthy control (HC) as a sham group was exposed to the surgical procedures without any sciatic nerve compression, lesioned control (LC), resistance training (RT,non-lesioned), and lesioned rats+RT (LRT) (n=10 in each). The RT group performed a resistance-training program 5 days/week for 4 weeks. Sciatic functional index (SFI) score, beam score and Basso, Beattie, and Bresnahan (BBB) score decreased and the hot plate time increased significantly in the LC group compared to the HC (p<0.05) group. However, the LRT group showed a significant increase in the SFI score (p=0.001) and a significant decrease in hot plate time (p=0.0232) compared to the LC group. The LC group also showed neurological morphological damage and muscle atrophy and a decrease in GAP-43 in nerve tissue. In comparison to the LC group, a significant increase in sciatic nerve caliber, diameter, number of muscle fibers, and the expression of GAP-43 (p<0.05) was observed in the LRT group. Doing resistance training even for four weeks seems to affect sciatic nerve lesions and injuries. It can also repair and regenerate nerve tissue by upregulating GAP-43 expression, improving motor behavioral tests, and controlling muscle atrophy.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Reza Rahimi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Zeinab Feyz Simorghi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Shaghayegh Emami
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Sahar Sheikhi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Zeinab Zaeri Amirani
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Parisa Yousefi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Fariba Aghaei
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Foad Feizollahi
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
5
|
Dursun Usal T, Yesiltepe M, Yucel D, Sara Y, Hasirci V. Fabrication of a 3D Printed PCL Nerve Guide: In Vitro and In Vivo Testing. Macromol Biosci 2021; 22:e2100389. [PMID: 34939303 DOI: 10.1002/mabi.202100389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Indexed: 12/27/2022]
Abstract
Nerve guides are medical devices designed to guide proximal and distal ends of injured peripheral nerves in order to assist regeneration of the damaged nerves. A 3D-printed polycaprolactone (PCL) nerve guide using an aligned gelatin-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) electrospun mat, seeded with PC12 and Schwann cells (SCs) is produced. During characterization with microCT and SEM porosity (55%), pore sizes (675 ± 40 µm), and fiber diameters (382 ± 25 µm) are determined. Electrospun fibers have degree of alignment of 7°, indicating high potential for guidance. On Day 14, PC12 cells migrated from proximal to distal end of nerve guide when SCs are seeded on the guide. After 28 days, over 95% of PC12 are alive and aligned. PC12 cells express early differentiation marker beta-tubulin 10 times more than late marker NeuN. In a 10 mm rat sciatic nerve injury, functional recovery evaluated by using static sciatic index (SSI) is observed in mat-free guides and guides containing mat and SCs. Nerve conduction velocities are also improved in these groups. Histological stainings showed tissue growth around nerve guides with highest new tissue organization being observed with mat and cell-free guides. These suggest 3D-printed PCL nerve guides have significant potential for treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Tugba Dursun Usal
- Middle East Technical University (METU), BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.,Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey.,Department of Biological Sciences, Middle East Technical University (METU), Ankara, 06800, Turkey
| | - Metin Yesiltepe
- Hacettepe University, Faculty of Medicine, Medical Pharmacology, Ankara, 06100, Turkey
| | - Deniz Yucel
- Middle East Technical University (METU), BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.,Department of Histology and Embryology, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey.,ACU Biomaterials Center, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey
| | - Yıldırım Sara
- Hacettepe University, Faculty of Medicine, Medical Pharmacology, Ankara, 06100, Turkey
| | - Vasif Hasirci
- Middle East Technical University (METU), BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.,Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey.,Department of Biological Sciences, Middle East Technical University (METU), Ankara, 06800, Turkey.,ACU Biomaterials Center, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey.,Department of Medical Engineering, Acıbadem Mehmet Ali Aydinlar University (ACU), Istanbul, 34755, Turkey
| |
Collapse
|
6
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
7
|
Fahmi A, Aji YK, Aprianto DR, Wido A, Asadullah A, Roufi N, Indiastuti DN, Subianto H, Turchan A. The Effect of Intrathecal Injection of Dextromethorphan on the Experimental Neuropathic Pain Model. Anesth Pain Med 2021; 11:e114318. [PMID: 34540637 PMCID: PMC8438745 DOI: 10.5812/aapm.114318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022] Open
Abstract
Background Peripheral glucocorticoid receptors (GRs) are altered by peripheral nerve injury and may modulate the development of neuropathic pain. Two central pathogenic mechanisms underlying neuropathic pain are neuroinflammation and N-methyl-D-aspartate receptor (NMDAR)-dependent neural plasticity in the spinal cord. Objectives This study examined the effect of the non-competitive NMDAR antagonist dextromethorphan on partial sciatic nerve ligation (PSL)-induced neuropathic pain and the spinal expression of the glucocorticoid receptor (GR). Methods Male mice were randomly assigned into a sham group and two groups receiving PSL followed by intrathecal saline vehicle or dextromethorphan (iDMP). Vehicle or iDMP was administered 8 - 14 days after PSL. The hotplate paw-withdrawal latency was considered to measure thermal pain sensitivity. The spinal cord was then sectioned and immunostained for GR. Results Thermal hyperalgesia developed similarly in the vehicle and iDMP groups prior to the injections (P = 0.828 and 0.643); however, it was completely mitigated during the iDMP treatment (P < 0.001). GR expression was significantly higher in the vehicle group (55.64 ± 4.50) than in the other groups (P < 0.001). The iDMP group (9.99 ± 0.66) showed significantly higher GR expression than the sham group (6.30 ± 1.96) (P = 0.043). Conclusions The suppression of PLS-induced thermal hyperalgesia by iDMP is associated with the downregulation of GR in the spinal cord, suggesting that this analgesic effect is mediated by inhibiting GR-regulated neuroinflammation.
Collapse
Affiliation(s)
- Achmad Fahmi
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
- Corresponding Author: Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia.
| | - Yunus Kuntawi Aji
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Dirga Rachmad Aprianto
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Akbar Wido
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Asadullah Asadullah
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | | | - Danti Nur Indiastuti
- Department of Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Heri Subianto
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Agus Turchan
- Neurosurgery Department, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
8
|
Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med 2019; 13:2077-2100. [PMID: 31350868 DOI: 10.1002/term.2945] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Peripheral nerve damage is a common clinical complication of traumatic injury occurring after accident, tumorous outgrowth, or surgical side effects. Although the new methods and biomaterials have been improved recently, regeneration of peripheral nerve gaps is still a challenge. These injuries affect the quality of life of the patients negatively. In the recent years, many efforts have been made to develop innovative nerve tissue engineering approaches aiming to improve peripheral nerve treatment following nerve injuries. Herein, we will not only outline what we know about the peripheral nerve regeneration but also offer our insight regarding the types of nerve conduits, their fabrication process, and factors associated with conduits as well as types of animal and nerve models for evaluating conduit function. Finally, nerve regeneration in a rat sciatic nerve injury model by nerve conduits has been considered, and the main aspects that may affect the preclinical outcome have been discussed.
Collapse
Affiliation(s)
- Maliheh Jahromi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Bakhtiari
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|