1
|
Chen J, Li F, Zhao B, Gu J, Brejcha NM, Bartoli M, Zhang W, Zhou Y, Fu S, Domena JB, Zafar A, Zhang F, Tagliaferro A, Verde F, Zhang F, Zhang Y, Leblanc RM. Gene Transfection Efficiency Improvement with Lipid Conjugated Cationic Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27087-27101. [PMID: 38752799 DOI: 10.1021/acsami.4c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
An ideal vehicle with a high transfection efficiency is crucial for gene delivery. In this study, a type of cationic carbon dot (CCD) known as APCDs were first prepared with arginine (Arg) and pentaethylenehexamine (PEHA) as precursors and conjugated with oleic acid (OA) for gene delivery. By tuning the mass ratio of APCDs to OA, APCDs-OA conjugates, namely, APCDs-0.5OA, APCDs-1.0OA, and APCDs-1.5OA were synthesized. All three amphiphilic APCDs-OA conjugates show high affinity to DNA through electrostatic interactions. APCDs-0.5OA exhibit strong binding with small interfering RNA (siRNA). After being internalized by Human Embryonic Kidney (HEK 293) and osteosarcoma (U2OS) cells, they could distribute in both the cytoplasm and the nucleus. With APCDs-OA conjugates as gene delivery vehicles, plasmid DNA (pDNA) that encodes the gene for the green fluorescence protein (GFP) can be successfully delivered in both HEK 293 and U2OS cells. The GFP expression levels mediated by APCDs-0.5OA and APCDs-1.0OA are ten times greater than that of PEI in HEK 293 cells. Furthermore, APCDs-0.5OA show prominent siRNA transfection efficiency, which is proven by the significantly downregulated expression of FANCA and FANCD2 proteins upon delivery of FANCA siRNA and FANCD2 siRNA into U2OS cells. In conclusion, our work demonstrates that conjugation of CCDs with a lipid structure such as OA significantly improves the gene transfection efficiency, providing a new idea about the designation of nonviral carriers in gene delivery systems.
Collapse
Affiliation(s)
- Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Fang Li
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Bowen Zhao
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Nicholas Michael Brejcha
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Shiwei Fu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Alyan Zafar
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
2
|
Qin J, Fan J, Li G, Liu S, Liu Z, Wu Y. DNA double-strand break repair gene mutation and the risk of papillary thyroid microcarcinoma: a case-control study. Cancer Cell Int 2021; 21:334. [PMID: 34215272 PMCID: PMC8252242 DOI: 10.1186/s12935-021-02032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/19/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To study the relationship between DNA double-strand break (DSB) repair gene mutations and the risk of papillary thyroid microcarcinoma (PTMC). Methods One hundred patients with PTMC or benign thyroid nodules (BTNs) at Henan Cancer Hospital were retrospectively analyzed. The DSB repair capacity of peripheral blood T lymphocytes in the two groups was assessed by flow cytometry. Data were compared using Student’s t-test to evaluate the relationship between DSB repair capacity and the risk of PTMC. Factors influencing DSB repair capacity were analyzed by multivariate logistic regression analysis. The relationship between PTMC and DSB repair capacity was analyzed by univariate analysis. Targeted next-generation DNA sequencing was applied to screen and analyze DSB repair genes related to PTMC. Results The DSB repair capacity was 31.30% in the PTMC group and 44.40% in the BTN group, with that of the former being significantly lower (P < 0.05). Multivariate logistic regression analysis of age, sex, obesity status, radiation and other factors showed that radiation exposure was positively correlated with reduced DSB repair capacity(OR = 3.642; 95% CI 1.484–8.935, P = 0.020). Moreover, univariate analysis showed that a reduction in DSB repair capacity was a risk factor for PTMC(OR = 2.333; 95% CI 1.027–5.300, P = 0.043).Targeted next-generation DNA sequencing was performed on the DSB repair genes discovered, and those that were mutated in association with PTMC were Rad50 and FANCA; Rad51 mutations were related to BTN. Conclusion Radiation exposure is positively associated with induced DSB repair gene mutations, which may cause a reduced capacity for DSB repair and eventually lead to PTMC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02032-5.
Collapse
Affiliation(s)
- Jiali Qin
- Department of Head and Neck Thyroid Surgery, Affiliated Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jie Fan
- Department of Head and Neck Thyroid Surgery, Affiliated Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Gang Li
- Department of Head and Neck Thyroid Surgery, Affiliated Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Shanting Liu
- Department of Head and Neck Thyroid Surgery, Affiliated Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Zhensheng Liu
- Department of Head and Neck Thyroid Surgery, Affiliated Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Yao Wu
- Department of Head and Neck Thyroid Surgery, Affiliated Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| |
Collapse
|
3
|
Liu W, Palovcak A, Li F, Zafar A, Yuan F, Zhang Y. Fanconi anemia pathway as a prospective target for cancer intervention. Cell Biosci 2020; 10:39. [PMID: 32190289 PMCID: PMC7075017 DOI: 10.1186/s13578-020-00401-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Fanconi anemia (FA) is a recessive genetic disorder caused by biallelic mutations in at least one of 22 FA genes. Beyond its pathological presentation of bone marrow failure and congenital abnormalities, FA is associated with chromosomal abnormality and genomic instability, and thus represents a genetic vulnerability for cancer predisposition. The cancer relevance of the FA pathway is further established with the pervasive occurrence of FA gene alterations in somatic cancers and observations of FA pathway activation-associated chemotherapy resistance. In this article we describe the role of the FA pathway in canonical interstrand crosslink (ICL) repair and possible contributions of FA gene alterations to cancer development. We also discuss the perspectives and potential of targeting the FA pathway for cancer intervention.
Collapse
Affiliation(s)
- Wenjun Liu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Anna Palovcak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Fang Li
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Alyan Zafar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|