1
|
Hiki K, Oka K, Nakajima N, Watanabe H, Yamamoto H, Yamagishi T. The complete mitochondrial genome of water flea Ceriodaphnia dubia (Crustacea: Cladocera) NIES strain. Mitochondrial DNA B Resour 2023; 8:831-835. [PMID: 37560176 PMCID: PMC10408566 DOI: 10.1080/23802359.2023.2241663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Water flea Ceriodaphnia dubia has been widely used for risk assessments of chemicals and environmental contamination. In this study, the complete mitochondrial genome (mitogenome) of this species NIES strain was determined using short-read high throughput and long-read sequencing technologies. The mitogenome of C. dubia was 15,170 bp in length and consisted of 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs), and 22 transfer RNAs (tRNAs). The gene order was identical to the pattern conserved across crustaceans. The complete mitogenome of the NIES strain will serve as genetical reference in ecological risk assessments in Japan, as well as resources for future phylogenetical studies using cladocerans.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Kenta Oka
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Nobuyoshi Nakajima
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hiroshi Yamamoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Takahiro Yamagishi
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
2
|
Gu YL, Sun CH, Liu P, Zhang X, Sinev AY, Dumont HJ, Han BP. Complete mitochondrial genome of Ovalona pulchella (Branchiopoda, Cladocera) as the first representative in the family Chydoridae: Gene rearrangements and phylogenetic analysis of Cladocera. Gene X 2022; 818:146230. [PMID: 35093448 DOI: 10.1016/j.gene.2022.146230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chydoridae are phytophilic-benthic microcrustaceans that make up a significant proportion of species diversity and play an important role in the littoral zone of freshwater ecosystems worldwide. Here, we provide the complete mitochondrial genome of Ovalona pulchella (King, 1853), determined by next-generation sequencing. The entire mitochondrial genome is 15,362 bp in length; this is the first sequenced mitochondrial genome in the family Chydoridae. The base composition and codon usage were typical of Cladocera species. The mitochondrial gene arrangement (37 genes) was not consistent with that of other Branchiopoda. Both maximum likelihood and Bayesian analyses supported each suborder and family of Branchiopoda as monophyletic groups. The relationships among the families were as follows: [(Leptestheriidae + Limnadiidae) + (Sididae + (Bosminidae + (Chydoridae + Daphniidae)))] + Triopsidae. The newly sequenced O. pulchella was most closely related to the family Daphniidae. The complete mitochondrial genome of O. pulchella also provides valuable molecular information for further analysis of the phylogeny of the Chydoridae and the taxonomic status of the Branchiopoda.
Collapse
Affiliation(s)
- Yang-Liang Gu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China
| | - Cheng-He Sun
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China.
| | - Ping Liu
- College of Environmental Science and Engineering, Yangzhou University, Jiangsu 225127, China.
| | - Xiaoli Zhang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Artem Y Sinev
- Department of Invertebrate Zoology, Biological Faculty, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Henri J Dumont
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Kitano T, Sato H, Takahashi N, Igarashi S, Hatanaka Y, Igarashi K, Umetsu K. Complete mitochondrial genomes of three fairy shrimps from snowmelt pools in Japan. BMC ZOOL 2022; 7:11. [PMID: 37170326 PMCID: PMC10127424 DOI: 10.1186/s40850-022-00111-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/27/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Fairy shrimps belong to order Anostraca, class Branchiopoda, subphylum Crustacea, and phylum Arthropoda. Three fairy shrimp species (Eubranchipus uchidai, E. asanumai, and E. hatanakai) that inhabit snowmelt pools are currently known in Japan. Whole mitochondrial genomes are useful genetic information for conducting phylogenetic analyses. Mitochondrial genome sequences for Branchiopoda members are gradually being collated.
Results
Six whole mitochondrial genomes from the three Eubranchipus species are presented here. Eubranchipus species share the anostracan pattern of gene arrangement in their mitochondrial genomes. The mitochondrial genomes of the Eubranchipus species have a higher GC content than those of other anostracans. Accelerated substitution rates in the lineage of Eubranchipus species were observed.
Conclusion
This study is the first to obtain whole mitochondrial genomes for Far Eastern Eubranchipus species. We show that the nucleotide sequences of cytochrome oxidase subunit I and the 16S ribosomal RNA of E. asanumai presented in a previous study were nuclear mitochondrial DNA segments. Higher GC contents and accelerated substitution rates are specific characteristics of the mitochondrial genomes of Far Eastern Eubranchipus. The results will be useful for further investigations of the evolution of Anostraca as well as Branchiopoda.
Collapse
|
4
|
Nickel J, Schell T, Holtzem T, Thielsch A, Dennis SR, Schlick-Steiner BC, Steiner FM, Möst M, Pfenninger M, Schwenk K, Cordellier M. Hybridization Dynamics and Extensive Introgression in the Daphnia longispina Species Complex: New Insights from a High-Quality Daphnia galeata Reference Genome. Genome Biol Evol 2021; 13:6448229. [PMID: 34865004 PMCID: PMC8695838 DOI: 10.1093/gbe/evab267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Hybridization and introgression are recognized as an important source of variation that influence adaptive processes; both phenomena are frequent in the genus Daphnia, a keystone zooplankton taxon in freshwater ecosystems that comprises several species complexes. To investigate genome-wide consequences of introgression between species, we provide here the first high-quality genome assembly for a member of the Daphnia longispina species complex, Daphnia galeata. We further resequenced 49 whole genomes of three species of the complex and their interspecific hybrids both from genotypes sampled in the water column and from single resting eggs extracted from sediment cores. Populations from habitats with diverse ecological conditions offered an opportunity to study the dynamics of hybridization linked to ecological changes and revealed a high prevalence of hybrids. Using phylogenetic and population genomic approaches, we provide first insights into the intra- and interspecific genome-wide variability in this species complex and identify regions of high divergence. Finally, we assess the length of ancestry tracts in hybrids to characterize introgression patterns across the genome. Our analyses uncover a complex history of hybridization and introgression reflecting multiple generations of hybridization and backcrossing in the Daphnia longispina species complex. Overall, this study and the new resources presented here pave the way for a better understanding of ancient and contemporary gene flow in the species complex and facilitate future studies on resting egg banks accumulating in lake sediment.
Collapse
Affiliation(s)
- Jana Nickel
- Institute of Zoology, Universität Hamburg, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Tania Holtzem
- Department of Ecology, University of Innsbruck, Austria
| | - Anne Thielsch
- Molecular Ecology, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Stuart R Dennis
- Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland
| | | | | | - Markus Möst
- Department of Ecology, University of Innsbruck, Austria
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany.,Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.,IoME, Gutenberg University, Mainz, Germany
| | - Klaus Schwenk
- Molecular Ecology, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | | |
Collapse
|