1
|
Pak DH, Liu M, Kim T, Ozturk C, McKay R, Roche ET, Gleason R, Duncan JS. Robust automated calcification meshing for personalized cardiovascular biomechanics. NPJ Digit Med 2024; 7:213. [PMID: 39143242 PMCID: PMC11324740 DOI: 10.1038/s41746-024-01202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
Calcification has significant influence over cardiovascular diseases and interventions. Detailed characterization of calcification is thus desired for predictive modeling, but calcium deposits on cardiovascular structures are still often manually reconstructed for physics-driven simulations. This poses a major bottleneck for large-scale adoption of computational simulations for research or clinical use. To address this, we propose an end-to-end automated image-to-mesh algorithm that enables robust incorporation of patient-specific calcification onto a given cardiovascular tissue mesh. The algorithm provides a substantial speed-up from several hours of manual meshing to ~1 min of automated computation, and it solves an important problem that cannot be addressed with recent template-based meshing techniques. We validated our final calcified tissue meshes with extensive simulations, demonstrating our ability to accurately model patient-specific aortic stenosis and Transcatheter Aortic Valve Replacement. Our method may serve as an important tool for accelerating the development and usage of personalized cardiovascular biomechanics.
Collapse
Affiliation(s)
- Daniel H Pak
- Yale University, 300 Cedar St, New Haven, CT, 06511, USA.
| | - Minliang Liu
- Texas Tech University, 805 Boston Avenue, Lubbock, TX, 79409, USA
| | - Theodore Kim
- Yale University, 300 Cedar St, New Haven, CT, 06511, USA
| | - Caglar Ozturk
- Massachusetts Institute of Technology, 45 Carleton St, Cambridge, MA, 02142, USA
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Raymond McKay
- Hartford Hospital, 85 Seymour St, Hartford, CT, 06106, USA
| | - Ellen T Roche
- Massachusetts Institute of Technology, 45 Carleton St, Cambridge, MA, 02142, USA
| | - Rudolph Gleason
- Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - James S Duncan
- Yale University, 300 Cedar St, New Haven, CT, 06511, USA
| |
Collapse
|
2
|
Owais T, Bisht O, Polat E, Abdelmoteleb N, El Garhy M, Lauten P, Kuntze T, Girdauskas E. Transcatheter Aortic Valve Replacement as a bridge to minimally invasive endoscopic mitral valve surgery in Elderly Patients in the era of ERAS and Fast Track TAVI concepts. J Clin Med 2024; 13:471. [PMID: 38256605 PMCID: PMC10816775 DOI: 10.3390/jcm13020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
In this bicentric study, we report the outcomes of combined transcatheter aortic valve replacement combined with minimally invasive mitral valve surgery. We included a cohort of six patients (79.6 ± 3.2 years, 83% women) with high-risk profiles and deemed to be non-operable with combined mitral and aortic valvular disease. All patients had unsuitable anatomies for transcatheter mitral valve edge-to-edge repair (TEER). Moreover, most of the patients (5/6) suffered a combined aortic valve lesion, which complicates the efficiency of cardioplegia in the case of CBP through minimally invasive incisions. The first stage was implanting a TAVI valve to achieve aortic valve competency and hence facilitate the infusion of cardioplegia after clamping the aorta during endoscopic mitral valve surgery. After one week, we performed the minimally invasive mitral valve repair. Most patients (n = 5; 83%) underwent successful endoscopic mitral valve repair. Intraoperatively, the mean ischemic time was 42 min, and the total bypass time was 72 min. Postoperatively, the mean intubation time was 0 h. Postoperative complications included reoperation for bleeding in one patient (16.7%) and a new heart block requiring pacemaker implantation in one patient (16.7%). There was neither in-hospital mortality nor 1-year mortality.
Collapse
Affiliation(s)
- Tamer Owais
- Department of Cardiac Surgery, University Hospital Augsburg, 86156 Augsburg, Germany; (T.O.); (N.A.); (E.G.)
- Department of Cardiothoracic Surgery, Cairo University, Giza P.O. Box 12613, Egypt
| | - Osama Bisht
- Department of Cardiology and Angiology, Regiomed Klinikum Coburg, 3396450 Coburg, Germany
| | - Emre Polat
- Department of Cardiac Surgery, University Hospital Augsburg, 86156 Augsburg, Germany; (T.O.); (N.A.); (E.G.)
| | - Noureldin Abdelmoteleb
- Department of Cardiac Surgery, University Hospital Augsburg, 86156 Augsburg, Germany; (T.O.); (N.A.); (E.G.)
| | - Mohammad El Garhy
- Department of Cardiology, Helios Clinic Erfurt, 99089 Erfurt, Germany;
| | - Phillip Lauten
- Department of Cardiology, Heart Center, Zentralklinik Bad Berka, Robert-Koch-Allee 9, 99437 Bad Berka, Germany; (P.L.); (T.K.)
| | - Thomas Kuntze
- Department of Cardiology, Heart Center, Zentralklinik Bad Berka, Robert-Koch-Allee 9, 99437 Bad Berka, Germany; (P.L.); (T.K.)
| | - Evaldas Girdauskas
- Department of Cardiac Surgery, University Hospital Augsburg, 86156 Augsburg, Germany; (T.O.); (N.A.); (E.G.)
| |
Collapse
|
3
|
Pak DH, Liu M, Kim T, Liang L, Caballero A, Onofrey J, Ahn SS, Xu Y, McKay R, Sun W, Gleason R, Duncan JS. Patient-Specific Heart Geometry Modeling for Solid Biomechanics Using Deep Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:203-215. [PMID: 37432807 PMCID: PMC10764002 DOI: 10.1109/tmi.2023.3294128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Automated volumetric meshing of patient-specific heart geometry can help expedite various biomechanics studies, such as post-intervention stress estimation. Prior meshing techniques often neglect important modeling characteristics for successful downstream analyses, especially for thin structures like the valve leaflets. In this work, we present DeepCarve (Deep Cardiac Volumetric Mesh): a novel deformation-based deep learning method that automatically generates patient-specific volumetric meshes with high spatial accuracy and element quality. The main novelty in our method is the use of minimally sufficient surface mesh labels for precise spatial accuracy and the simultaneous optimization of isotropic and anisotropic deformation energies for volumetric mesh quality. Mesh generation takes only 0.13 seconds/scan during inference, and each mesh can be directly used for finite element analyses without any manual post-processing. Calcification meshes can also be subsequently incorporated for increased simulation accuracy. Numerous stent deployment simulations validate the viability of our approach for large-batch analyses. Our code is available at https://github.com/danpak94/Deep-Cardiac-Volumetric-Mesh.
Collapse
|
4
|
Huang X, Zhang G, Zhou X, Yang X. A review of numerical simulation in transcatheter aortic valve replacement decision optimization. Clin Biomech (Bristol, Avon) 2023; 106:106003. [PMID: 37245279 DOI: 10.1016/j.clinbiomech.2023.106003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Recent trials indicated a further expansion of clinical indication of transcatheter aortic valve replacement to younger and low-risk patients. Factors related to longer-term complications are becoming more important for use in these patients. Accumulating evidence indicates that numerical simulation plays a significant role in improving the outcome of transcatheter aortic valve replacement. Understanding mechanical features' magnitude, pattern, and duration is a topic of ongoing relevance. METHODS We searched the PubMed database using keywords such as "transcatheter aortic valve replacement" and "numerical simulation" and reviewed and summarized relevant literature. FINDINGS This review integrated recently published evidence into three subtopics: 1) prediction of transcatheter aortic valve replacement outcomes through numerical simulation, 2) implications for surgeons, and 3) trends in transcatheter aortic valve replacement numerical simulation. INTERPRETATIONS Our study offers a comprehensive overview of the utilization of numerical simulation in the context of transcatheter aortic valve replacement, and highlights the advantages, potential challenges from a clinical standpoint. The convergence of medicine and engineering plays a pivotal role in enhancing the outcomes of transcatheter aortic valve replacement. Numerical simulation has provided evidence of potential utility for tailored treatments.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Cardiovascular Surgery, West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China
| | - Guangming Zhang
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyan Yang
- Department of Cardiovascular Surgery, West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Angellotti D, Manzo R, Castiello DS, Immobile Molaro M, Mariani A, Iapicca C, Nappa D, Simonetti F, Avvedimento M, Leone A, Canonico ME, Spaccarotella CAM, Franzone A, Ilardi F, Esposito G, Piccolo R. Echocardiographic Evaluation after Transcatheter Aortic Valve Implantation: A Comprehensive Review. Life (Basel) 2023; 13:1079. [PMID: 37240724 PMCID: PMC10221682 DOI: 10.3390/life13051079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Transcatheter aortic valve implantation (TAVI) is an increasingly popular treatment option for patients with severe aortic stenosis. Recent advancements in technology and imaging tools have significantly contributed to the success of TAVI procedures. Echocardiography plays a pivotal role in the evaluation of TAVI patients, both before and after the procedure. This review aims to provide an overview of the most recent technical advancements in echocardiography and their use in the follow-up of TAVI patients. In particular, the focus will be on the examination of the influence of TAVI on left and right ventricular function, which is frequently accompanied by other structural and functional alterations. Echocardiography has proven to be key also in detecting valve deterioration during extended follow-up. This review will provide valuable insights into the technical advancements in echocardiography and their role in the follow-up of TAVI patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Raffaele Piccolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
6
|
Toma M, Singh-Gryzbon S, Frankini E, Wei Z(A, Yoganathan AP. Clinical Impact of Computational Heart Valve Models. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3302. [PMID: 35591636 PMCID: PMC9101262 DOI: 10.3390/ma15093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
This paper provides a review of engineering applications and computational methods used to analyze the dynamics of heart valve closures in healthy and diseased states. Computational methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves. Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the need for a more robust method for resolving valvular disease. For example, while fluid-structure interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that computational flow dynamic analyses can be integrated with other methods to create a superior, more compatible method of understanding risk and compatibility.
Collapse
Affiliation(s)
- Milan Toma
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Shelly Singh-Gryzbon
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| | - Elisabeth Frankini
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Zhenglun (Alan) Wei
- Department of Biomedical Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Ajit P. Yoganathan
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| |
Collapse
|
7
|
Fluid-Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics. BIOLOGY 2021; 10:biology10030185. [PMID: 33801566 PMCID: PMC8001855 DOI: 10.3390/biology10030185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Due to the inherent complexity of biological applications that more often than not include fluids and structures interacting together, the development of computational fluid-structure interaction models is necessary to achieve a quantitative understanding of their structure and function in both health and disease. The functions of biological structures usually include their interactions with the surrounding fluids. Hence, we contend that the use of fluid-structure interaction models in computational studies of biological systems is practical, if not necessary. The ultimate goal is to develop computational models to predict human biological processes. These models are meant to guide us through the multitude of possible diseases affecting our organs and lead to more effective methods for disease diagnosis, risk stratification, and therapy. This review paper summarizes computational models that use smoothed-particle hydrodynamics to simulate the fluid-structure interactions in complex biological systems.
Collapse
|
8
|
Caballero A, McKay R, Sun W. Computer simulations of transapical mitral valve repair with neochordae implantation: Clinical implications. JTCVS OPEN 2020; 3:27-44. [PMID: 36003874 PMCID: PMC9390497 DOI: 10.1016/j.xjon.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Transapical beating heart neochordae implantation is an innovative mitral valve repair technique that has demonstrated promising clinical results in patients with primary mitral regurgitation. However, as clinical experience continues to increase, neochordae implantation criteria have not been fully standardized. The aim of this study was to investigate the biomechanical effects of selecting an antero-lateral apical access site compared with a postero-lateral site, and suboptimal neochordae length compared with optimal suture length, on restoring physiologic left heart dynamics. METHODS Transapical neochordae implantation using 3 and 4 sutures was computer simulated under 3 posterior mitral leaflet prolapse conditions: isolated P2, multiscallop P2/P3 and multiscallop P2/P1. Physiologic, pre- and postrepair left heart dynamics were evaluated using a fluid-structure interaction modeling framework. RESULTS Despite the absence of residual mitral regurgitation in all postrepair models with optimal neochordae length, selecting an antero-lateral apical entry site for the treatment of P2/P3 prolapse generated a significant increase (>80%) in neochordae tension and P2 peak stress, with respect to a postero-lateral entry site. During isolated P2 prolapse repair, although neochordae overtension by 5% led to minimal hemodynamic changes in the regurgitant volume compared with using an optimal suture length, a significant increase in systolic and diastolic neochordae tension (>300%) and posterior leaflet average stress (70%-460%) was quantified. On the other hand, neochordae undertension by 5% led to worsening of regurgitation severity. CONCLUSIONS This parametric computer study represents a further step toward an improved understanding of the biomechanical outcomes of transapical neochordae technologies.
Collapse
Key Words
- AL-NC, antero-lateral neochordae
- AML, anterior mitral leaflet
- AV, aortic valve
- FSI, fluid-structure interaction
- LV, left ventricle
- MR, mitral regurgitation
- MV, mitral valve
- NC, neochordae
- PL-NC, postero-lateral neochordae
- PM, papillary muscle
- PML, posterior mitral leaflet
- beating heart mitral valve repair
- ePTFE suture
- ePTFE, expanded polytetrafluoroethylene
- fluid-structure interaction FSI
- primary mitral regurgitation
- transapical neochord
Collapse
Affiliation(s)
- Andrés Caballero
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Ga
| | - Raymond McKay
- Division of Cardiology, The Hartford Hospital, Hartford, Conn
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Ga
| |
Collapse
|
9
|
Caballero A, Mao W, McKay R, Hahn RT, Sun W. A Comprehensive Engineering Analysis of Left Heart Dynamics After MitraClip in a Functional Mitral Regurgitation Patient. Front Physiol 2020; 11:432. [PMID: 32457650 PMCID: PMC7221026 DOI: 10.3389/fphys.2020.00432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Percutaneous edge-to-edge mitral valve (MV) repair using MitraClip has been recently established as a treatment option for patients with heart failure and functional mitral regurgitation (MR), which significantly expands the number of patients that can be treated with this device. This study aimed to quantify the morphologic, hemodynamic and structural changes, and evaluate the biomechanical interaction between the MitraClip and the left heart (LH) complex of a heart failure patient with functional MR using a fluid-structure interaction (FSI) modeling framework. MitraClip implantation using lateral, central and double clip positions, as well as combined annuloplasty procedures were simulated in a patient-specific LH model that integrates detailed anatomic structures, incorporates age- and gender-matched non-linear elastic material properties, and accounts for mitral chordae tethering. Our results showed that antero-posterior distance, mitral annulus spherecity index, anatomic regurgitant orifice area, and anatomic opening orifice area decreased by up to 28, 39, 52, and 71%, respectively, when compared to the pre-clip model. MitraClip implantation immediately decreased the MR severity and improved the hemodynamic profile, but imposed a non-physiologic configuration and loading on the mitral apparatus, with anterior and posterior leaflet stress significantly increasing up to 210 and 145% during diastole, respectively. For this patient case, while implanting a combined central clip and ring resulted in the highest reduction in the regurgitant volume (46%), this configuration also led to mitral stenosis. Patient-specific computer simulations as used here can be a powerful tool to examine the complex device-host biomechanical interaction, and may be useful to guide device positioning for potential favorable clinical outcomes.
Collapse
Affiliation(s)
- Andrés Caballero
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Wenbin Mao
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Raymond McKay
- Division of Cardiology, The Hartford Hospital, Hartford, CT, United States
| | - Rebecca T. Hahn
- Division of Cardiology, Columbia University Medical Center, New York, NY, United States
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|